References
[1] Dyson JK, et al., Novel
Therapeutic Targets in Primary Biliary Cirrhosis. Nature reviews.
Gastroenterology & hepatology , 2015. 12 (3) 147-158.
[2] Easl Clinical Practice
Guidelines: The Diagnosis and Management of Patients with Primary
Biliary Cholangitis. Journal of hepatology , 2017. 67 (1) 145-172.
[3] Beuers U, et al., Changing
Nomenclature for Pbc: From ’Cirrhosis’ to ’Cholangitis’.Hepatology (Baltimore, Md.) , 2015. 62 (5) 1620-1622.
[4] Hirschfield GM, et al.,
Efficacy of Obeticholic Acid in Patients with Primary Biliary Cirrhosis
and Inadequate Response to Ursodeoxycholic Acid.Gastroenterology , 2015. 148 (4) 751-761.e758.
[5] Nevens F, et al., A
Placebo-Controlled Trial of Obeticholic Acid in Primary Biliary
Cholangitis. The New England journal of medicine , 2016. 375 (7)
631-643.
[6] Yokoda RT, et al., Primary
Biliary Cholangitis and Primary Sclerosing Cholangitis. The
American journal of gastroenterology , 2019. 114 (10) 1593-1605.
[7] Quraishi MN, et al., The
Gut-Adherent Microbiota of Psc-Ibd Is Distinct to That of Ibd.Gut , 2017. 66 (2) 386-388.
[8] Tang R, et al., Gut Microbial
Profile Is Altered in Primary Biliary Cholangitis and Partially Restored
after Udca Therapy. Gut , 2018. 67 (3) 534-541.
[9] Feld JJ, et al., Abnormal
Intestinal Permeability in Primary Biliary Cirrhosis. Dig. Dis.
Sci. , 2006. 51 (9) 1607-1613.
[10] Welcker K, et al., Increased
Intestinal Permeability in Patients with Inflammatory Bowel Disease.European journal of medical research , 2004. 9 (10) 456-460.
[11] Strowig T, et al.,
Inflammasomes in Health and Disease. Nature , 2012. 481 (7381)
278-286.
[12] Tsochatzis EA, et al., Liver
Cirrhosis. Lancet (London, England) , 2014. 383 (9930) 1749-1761.
[13] Murray PJ, et al.,
Protective and Pathogenic Functions of Macrophage Subsets. Nature
reviews. Immunology , 2011. 11 (11) 723-737.
[14] Isaacs-Ten A, et al.,
Intestinal Microbiome-Macrophage Crosstalk Contributes to Cholestatic
Liver Disease by Promoting Intestinal Permeability. Hepatology
(Baltimore, Md.) , 2020.
[15] Ma WT, et al., Immunological
Abnormalities in Patients with Primary Biliary Cholangitis.Clinical science (London, England : 1979) , 2019. 133 (6) 741-760.
[16] You Z, et al., The
Immunopathology of Liver Granulomas in Primary Biliary Cirrhosis.J. Autoimmun. , 2012. 39 (3) 216-221.
[17] Leicester KL, et al.,
Differential Findings for Cd14-Positive Hepatic Monocytes/Macrophages in
Primary Biliary Cirrhosis, Chronic Hepatitis C and Nonalcoholic
Steatohepatitis. Liver international : official journal of the
International Association for the Study of the Liver , 2006. 26 (5)
559-565.
[18] Sasatomi K, et al., Abnormal
Accumulation of Endotoxin in Biliary Epithelial Cells in Primary Biliary
Cirrhosis and Primary Sclerosing Cholangitis. Journal of
hepatology , 1998. 29 (3) 409-416.
[19] Honda Y, et al., Altered
Expression of Tlr Homolog Rp105 on Monocytes Hypersensitive to Lps in
Patients with Primary Biliary Cirrhosis. Journal of hepatology ,
2007. 47 (3) 404-411.
[20] El Kasmi KC, et al.,
Macrophage-Derived Il-1β/Nf-Κb Signaling Mediates Parenteral
Nutrition-Associated Cholestasis. Nature communications , 2018. 9
(1) 1393.
[21] Ma C, et al., Formononetin
Attenuates Atherosclerosis Via Regulating Interaction between Klf4 and
Sra in Apoe Mice. Theranostics , 2020. 10 (3) 1090-1106.
[22] Yang S, et al., Tectorigenin
Attenuates Diabetic Nephropathy by Improving Vascular Endothelium
Dysfunction through Activating Adipor1/2 Pathway. Pharmacol.
Res. , 2020. 153 104678.
[23] Pan CH, et al., Tectorigenin
Inhibits Ifn-Gamma/Lps-Induced Inflammatory Responses in Murine
Macrophage Raw 264.7 Cells. Archives of pharmacal research , 2008.
31 (11) 1447-1456.
[24] Gao XX, et al., The
Therapeutic Effects of Tectorigenin on Chemically Induced Liver Fibrosis
in Rats and an Associated Metabonomic Investigation. Archives of
pharmacal research , 2012. 35 (8) 1479-1493.
[25] Lee HU, et al.,
Hepatoprotective Effect of Tectoridin and Tectorigenin on Tert-Butyl
Hyperoxide-Induced Liver Injury. Journal of pharmacological
sciences , 2005. 97 (4) 541-544.
[26] Lee HW, et al.,
Beta-Glucuronidase Inhibitor Tectorigenin Isolated from the Flower of
Pueraria Thunbergiana Protects Carbon Tetrachloride-Induced Liver
Injury. Liver international : official journal of the
International Association for the Study of the Liver , 2003. 23 (4)
221-226.
[27] Fickert P, et al.,
Characterization of Animal Models for Primary Sclerosing Cholangitis
(Psc). Journal of hepatology , 2014. 60 (6) 1290-1303.
[28] Fickert P, et al., A New
Xenobiotic-Induced Mouse Model of Sclerosing Cholangitis and Biliary
Fibrosis. The American journal of pathology , 2007. 171 (2)
525-536.
[29] Zhang S, et al.,
Rosiglitazone Alleviates Intrahepatic Cholestasis Induced by
Α-Naphthylisothiocyanate in Mice: The Role of Circulating 15-Deoxy-Δ
-Pgj and Nogo. Br. J. Pharmacol. , 2020. 177 (5) 1041-1060.
[30] Yang S, et al., Formononetin
Ameliorates Cholestasis by Regulating Hepatic Sirt1 and Pparα.Biochem. Biophys. Res. Commun. , 2019. 512 (4) 770-778.
[31] Li QY, et al., Tectorigenin
Regulates Adipogenic Differentiation and Adipocytokines Secretion Via
Pparγ and Ikk/Nf-Κb Signaling. Pharm. Biol. , 2015. 53 (11)
1567-1575.
[32] Bouhlel MA, et al.,
Ppargamma Activation Primes Human Monocytes into Alternative M2
Macrophages with Anti-Inflammatory Properties. Cell metabolism ,
2007. 6 (2) 137-143.
[33] Hou Y, et al., Pparγ Is an
E3 Ligase That Induces the Degradation of Nfκb/P65. Nature
communications , 2012. 3 1300.
[34] Trauner M, et al., The Rat
Canalicular Conjugate Export Pump (Mrp2) Is Down-Regulated in
Intrahepatic and Obstructive Cholestasis. Gastroenterology , 1997.
113 (1) 255-264.
[35] Bolder U, et al., Hepatocyte
Transport of Bile Acids and Organic Anions in Endotoxemic Rats: Impaired
Uptake and Secretion. Gastroenterology , 1997. 112 (1) 214-225.
[36] El Kasmi KC, et al.,
Phytosterols Promote Liver Injury and Kupffer Cell Activation in
Parenteral Nutrition-Associated Liver Disease. Science
translational medicine , 2013. 5 (206) 206ra137.
[37] Kaimal R, et al.,
Differential Modulation of Farnesoid X Receptor Signaling Pathway by the
Thiazolidinediones. The Journal of pharmacology and experimental
therapeutics , 2009. 330 (1) 125-134.
[38] Halilbasic E, et al.,
Nuclear Receptors as Drug Targets in Cholestatic Liver Diseases.Clinics in liver disease , 2013. 17 (2) 161-189.
[39] Harada K, et al., Biliary
Innate Immunity: Function and Modulation. Mediators of
inflammation , 2010. 2010.
[40] Funk C, et al., Cholestatic
Potential of Troglitazone as a Possible Factor Contributing to
Troglitazone-Induced Hepatotoxicity: In Vivo and in Vitro Interaction at
the Canalicular Bile Salt Export Pump (Bsep) in the Rat. Mol.
Pharmacol. , 2001. 59 (3) 627-635.
[41] Franca A, et al., Effects of
Endotoxin on Type 3 Inositol 1,4,5-Trisphosphate Receptor in Human
Cholangiocytes. Hepatology (Baltimore, Md.) , 2019. 69 (2)
817-830.
[42] Li Z, et al., Κmethane-Rich
Saline Counteracts Cholestasis-Induced Liver Damage Via Regulating the
Tlr4/Nf-B/Nlrp3 Inflammasome Pathway. Oxidative medicine and
cellular longevity , 2019. 2019 6565283.
[43] Fiorotto R, et al., Loss of
Cftr Affects Biliary Epithelium Innate Immunity and Causes
Tlr4-Nf-Κb-Mediated Inflammatory Response in Mice.Gastroenterology , 2011. 141 (4) 1498-1508, 1508.e1491-1495.
[44] Miyoshi H, et al., Nf-Kappab
Is Activated in Cholestasis and Functions to Reduce Liver Injury.The American journal of pathology , 2001. 158 (3) 967-975.
[45] Luedde T, et al., Ikk1 and
Ikk2 Cooperate to Maintain Bile Duct Integrity in the Liver.Proceedings of the National Academy of Sciences of the United
States of America , 2008. 105 (28) 9733-9738.
[46] Luedde T, et al., Nf-Κb in
the Liver–Linking Injury, Fibrosis and Hepatocellular Carcinoma.Nature reviews. Gastroenterology & hepatology , 2011. 8 (2)
108-118.
[47] Ahmadian M, et al., Pparγ
Signaling and Metabolism: The Good, the Bad and the Future. Nat.
Med. , 2013. 19 (5) 557-566.
[48] Silva AKS, et al., Role of
Peroxisome Proliferator-Activated Receptors in Non-Alcoholic Fatty Liver
Disease Inflammation. Cellular and molecular life sciences :
CMLS , 2018. 75 (16) 2951-2961.
[49] Strautnieks SS, et al., A
Gene Encoding a Liver-Specific Abc Transporter Is Mutated in Progressive
Familial Intrahepatic Cholestasis. Nat. Genet. , 1998. 20 (3)
233-238.
[50] Xiong XL, et al., Emodin
Rescues Intrahepatic Cholestasis Via Stimulating Fxr/Bsep Pathway in
Promoting the Canalicular Export of Accumulated Bile. Frontiers in
pharmacology , 2019. 10 522.
[51] Marrone J, et al., Hepatic
Gene Transfer of Human Aquaporin-1 Improves Bile Salt Secretory Failure
in Rats with Estrogen-Induced Cholestasis. Hepatology (Baltimore,
Md.) , 2016. 64 (2) 535-548.
[52] Funk C, et al.,
Troglitazone-Induced Intrahepatic Cholestasis by an Interference with
the Hepatobiliary Export of Bile Acids in Male and Female Rats.
Correlation with the Gender Difference in Troglitazone Sulfate Formation
and the Inhibition of the Canalicular Bile Salt Export Pump (Bsep) by
Troglitazone and Troglitazone Sulfate. Toxicology , 2001. 167 (1)
83-98.
[53] Han YH, et al., Rorα Induces
Klf4-Mediated M2 Polarization in the Liver Macrophages That Protect
against Nonalcoholic Steatohepatitis. Cell reports , 2017. 20 (1)
124-135.
[54] Gaul S, et al., Hepatocyte
Pyroptosis and Release of Inflammasome Particles Induce Stellate Cell
Activation and Liver Fibrosis. Journal of hepatology , 2020.