References
[1] Dyson JK, et al., Novel Therapeutic Targets in Primary Biliary Cirrhosis. Nature reviews. Gastroenterology & hepatology , 2015. 12 (3) 147-158.
[2] Easl Clinical Practice Guidelines: The Diagnosis and Management of Patients with Primary Biliary Cholangitis. Journal of hepatology , 2017. 67 (1) 145-172.
[3] Beuers U, et al., Changing Nomenclature for Pbc: From ’Cirrhosis’ to ’Cholangitis’.Hepatology (Baltimore, Md.) , 2015. 62 (5) 1620-1622.
[4] Hirschfield GM, et al., Efficacy of Obeticholic Acid in Patients with Primary Biliary Cirrhosis and Inadequate Response to Ursodeoxycholic Acid.Gastroenterology , 2015. 148 (4) 751-761.e758.
[5] Nevens F, et al., A Placebo-Controlled Trial of Obeticholic Acid in Primary Biliary Cholangitis. The New England journal of medicine , 2016. 375 (7) 631-643.
[6] Yokoda RT, et al., Primary Biliary Cholangitis and Primary Sclerosing Cholangitis. The American journal of gastroenterology , 2019. 114 (10) 1593-1605.
[7] Quraishi MN, et al., The Gut-Adherent Microbiota of Psc-Ibd Is Distinct to That of Ibd.Gut , 2017. 66 (2) 386-388.
[8] Tang R, et al., Gut Microbial Profile Is Altered in Primary Biliary Cholangitis and Partially Restored after Udca Therapy. Gut , 2018. 67 (3) 534-541.
[9] Feld JJ, et al., Abnormal Intestinal Permeability in Primary Biliary Cirrhosis. Dig. Dis. Sci. , 2006. 51 (9) 1607-1613.
[10] Welcker K, et al., Increased Intestinal Permeability in Patients with Inflammatory Bowel Disease.European journal of medical research , 2004. 9 (10) 456-460.
[11] Strowig T, et al., Inflammasomes in Health and Disease. Nature , 2012. 481 (7381) 278-286.
[12] Tsochatzis EA, et al., Liver Cirrhosis. Lancet (London, England) , 2014. 383 (9930) 1749-1761.
[13] Murray PJ, et al., Protective and Pathogenic Functions of Macrophage Subsets. Nature reviews. Immunology , 2011. 11 (11) 723-737.
[14] Isaacs-Ten A, et al., Intestinal Microbiome-Macrophage Crosstalk Contributes to Cholestatic Liver Disease by Promoting Intestinal Permeability. Hepatology (Baltimore, Md.) , 2020.
[15] Ma WT, et al., Immunological Abnormalities in Patients with Primary Biliary Cholangitis.Clinical science (London, England : 1979) , 2019. 133 (6) 741-760.
[16] You Z, et al., The Immunopathology of Liver Granulomas in Primary Biliary Cirrhosis.J. Autoimmun. , 2012. 39 (3) 216-221.
[17] Leicester KL, et al., Differential Findings for Cd14-Positive Hepatic Monocytes/Macrophages in Primary Biliary Cirrhosis, Chronic Hepatitis C and Nonalcoholic Steatohepatitis. Liver international : official journal of the International Association for the Study of the Liver , 2006. 26 (5) 559-565.
[18] Sasatomi K, et al., Abnormal Accumulation of Endotoxin in Biliary Epithelial Cells in Primary Biliary Cirrhosis and Primary Sclerosing Cholangitis. Journal of hepatology , 1998. 29 (3) 409-416.
[19] Honda Y, et al., Altered Expression of Tlr Homolog Rp105 on Monocytes Hypersensitive to Lps in Patients with Primary Biliary Cirrhosis. Journal of hepatology , 2007. 47 (3) 404-411.
[20] El Kasmi KC, et al., Macrophage-Derived Il-1β/Nf-Κb Signaling Mediates Parenteral Nutrition-Associated Cholestasis. Nature communications , 2018. 9 (1) 1393.
[21] Ma C, et al., Formononetin Attenuates Atherosclerosis Via Regulating Interaction between Klf4 and Sra in Apoe Mice. Theranostics , 2020. 10 (3) 1090-1106.
[22] Yang S, et al., Tectorigenin Attenuates Diabetic Nephropathy by Improving Vascular Endothelium Dysfunction through Activating Adipor1/2 Pathway. Pharmacol. Res. , 2020. 153 104678.
[23] Pan CH, et al., Tectorigenin Inhibits Ifn-Gamma/Lps-Induced Inflammatory Responses in Murine Macrophage Raw 264.7 Cells. Archives of pharmacal research , 2008. 31 (11) 1447-1456.
[24] Gao XX, et al., The Therapeutic Effects of Tectorigenin on Chemically Induced Liver Fibrosis in Rats and an Associated Metabonomic Investigation. Archives of pharmacal research , 2012. 35 (8) 1479-1493.
[25] Lee HU, et al., Hepatoprotective Effect of Tectoridin and Tectorigenin on Tert-Butyl Hyperoxide-Induced Liver Injury. Journal of pharmacological sciences , 2005. 97 (4) 541-544.
[26] Lee HW, et al., Beta-Glucuronidase Inhibitor Tectorigenin Isolated from the Flower of Pueraria Thunbergiana Protects Carbon Tetrachloride-Induced Liver Injury. Liver international : official journal of the International Association for the Study of the Liver , 2003. 23 (4) 221-226.
[27] Fickert P, et al., Characterization of Animal Models for Primary Sclerosing Cholangitis (Psc). Journal of hepatology , 2014. 60 (6) 1290-1303.
[28] Fickert P, et al., A New Xenobiotic-Induced Mouse Model of Sclerosing Cholangitis and Biliary Fibrosis. The American journal of pathology , 2007. 171 (2) 525-536.
[29] Zhang S, et al., Rosiglitazone Alleviates Intrahepatic Cholestasis Induced by Α-Naphthylisothiocyanate in Mice: The Role of Circulating 15-Deoxy-Δ -Pgj and Nogo. Br. J. Pharmacol. , 2020. 177 (5) 1041-1060.
[30] Yang S, et al., Formononetin Ameliorates Cholestasis by Regulating Hepatic Sirt1 and Pparα.Biochem. Biophys. Res. Commun. , 2019. 512 (4) 770-778.
[31] Li QY, et al., Tectorigenin Regulates Adipogenic Differentiation and Adipocytokines Secretion Via Pparγ and Ikk/Nf-Κb Signaling. Pharm. Biol. , 2015. 53 (11) 1567-1575.
[32] Bouhlel MA, et al., Ppargamma Activation Primes Human Monocytes into Alternative M2 Macrophages with Anti-Inflammatory Properties. Cell metabolism , 2007. 6 (2) 137-143.
[33] Hou Y, et al., Pparγ Is an E3 Ligase That Induces the Degradation of Nfκb/P65. Nature communications , 2012. 3 1300.
[34] Trauner M, et al., The Rat Canalicular Conjugate Export Pump (Mrp2) Is Down-Regulated in Intrahepatic and Obstructive Cholestasis. Gastroenterology , 1997. 113 (1) 255-264.
[35] Bolder U, et al., Hepatocyte Transport of Bile Acids and Organic Anions in Endotoxemic Rats: Impaired Uptake and Secretion. Gastroenterology , 1997. 112 (1) 214-225.
[36] El Kasmi KC, et al., Phytosterols Promote Liver Injury and Kupffer Cell Activation in Parenteral Nutrition-Associated Liver Disease. Science translational medicine , 2013. 5 (206) 206ra137.
[37] Kaimal R, et al., Differential Modulation of Farnesoid X Receptor Signaling Pathway by the Thiazolidinediones. The Journal of pharmacology and experimental therapeutics , 2009. 330 (1) 125-134.
[38] Halilbasic E, et al., Nuclear Receptors as Drug Targets in Cholestatic Liver Diseases.Clinics in liver disease , 2013. 17 (2) 161-189.
[39] Harada K, et al., Biliary Innate Immunity: Function and Modulation. Mediators of inflammation , 2010. 2010.
[40] Funk C, et al., Cholestatic Potential of Troglitazone as a Possible Factor Contributing to Troglitazone-Induced Hepatotoxicity: In Vivo and in Vitro Interaction at the Canalicular Bile Salt Export Pump (Bsep) in the Rat. Mol. Pharmacol. , 2001. 59 (3) 627-635.
[41] Franca A, et al., Effects of Endotoxin on Type 3 Inositol 1,4,5-Trisphosphate Receptor in Human Cholangiocytes. Hepatology (Baltimore, Md.) , 2019. 69 (2) 817-830.
[42] Li Z, et al., Κmethane-Rich Saline Counteracts Cholestasis-Induced Liver Damage Via Regulating the Tlr4/Nf-B/Nlrp3 Inflammasome Pathway. Oxidative medicine and cellular longevity , 2019. 2019 6565283.
[43] Fiorotto R, et al., Loss of Cftr Affects Biliary Epithelium Innate Immunity and Causes Tlr4-Nf-Κb-Mediated Inflammatory Response in Mice.Gastroenterology , 2011. 141 (4) 1498-1508, 1508.e1491-1495.
[44] Miyoshi H, et al., Nf-Kappab Is Activated in Cholestasis and Functions to Reduce Liver Injury.The American journal of pathology , 2001. 158 (3) 967-975.
[45] Luedde T, et al., Ikk1 and Ikk2 Cooperate to Maintain Bile Duct Integrity in the Liver.Proceedings of the National Academy of Sciences of the United States of America , 2008. 105 (28) 9733-9738.
[46] Luedde T, et al., Nf-Κb in the Liver–Linking Injury, Fibrosis and Hepatocellular Carcinoma.Nature reviews. Gastroenterology & hepatology , 2011. 8 (2) 108-118.
[47] Ahmadian M, et al., Pparγ Signaling and Metabolism: The Good, the Bad and the Future. Nat. Med. , 2013. 19 (5) 557-566.
[48] Silva AKS, et al., Role of Peroxisome Proliferator-Activated Receptors in Non-Alcoholic Fatty Liver Disease Inflammation. Cellular and molecular life sciences : CMLS , 2018. 75 (16) 2951-2961.
[49] Strautnieks SS, et al., A Gene Encoding a Liver-Specific Abc Transporter Is Mutated in Progressive Familial Intrahepatic Cholestasis. Nat. Genet. , 1998. 20 (3) 233-238.
[50] Xiong XL, et al., Emodin Rescues Intrahepatic Cholestasis Via Stimulating Fxr/Bsep Pathway in Promoting the Canalicular Export of Accumulated Bile. Frontiers in pharmacology , 2019. 10 522.
[51] Marrone J, et al., Hepatic Gene Transfer of Human Aquaporin-1 Improves Bile Salt Secretory Failure in Rats with Estrogen-Induced Cholestasis. Hepatology (Baltimore, Md.) , 2016. 64 (2) 535-548.
[52] Funk C, et al., Troglitazone-Induced Intrahepatic Cholestasis by an Interference with the Hepatobiliary Export of Bile Acids in Male and Female Rats. Correlation with the Gender Difference in Troglitazone Sulfate Formation and the Inhibition of the Canalicular Bile Salt Export Pump (Bsep) by Troglitazone and Troglitazone Sulfate. Toxicology , 2001. 167 (1) 83-98.
[53] Han YH, et al., Rorα Induces Klf4-Mediated M2 Polarization in the Liver Macrophages That Protect against Nonalcoholic Steatohepatitis. Cell reports , 2017. 20 (1) 124-135.
[54] Gaul S, et al., Hepatocyte Pyroptosis and Release of Inflammasome Particles Induce Stellate Cell Activation and Liver Fibrosis. Journal of hepatology , 2020.