Literature:
Ackermann, F., & Stanislas, T. (2020). The Plasma Membrane—An
Integrating Compartment for Mechano-Signaling. Plants ,9 (4), 505. https://doi.org/10.3390/plants9040505
Ali, G. S., Golovkin, M., & Reddy, A. S. N. (2003). Nuclear
localization and in vivo dynamics of a plant-specific
serine/arginine-rich protein. The Plant Journal , 36 (6),
883–893. https://doi.org/10.1046/j.1365-313X.2003.01932.x
Andreeva, Z., Ho, A. Y. Y., Barthet, M. M., Potocký, M., Bezvoda, R.,
Žárský, V., & Marc, J. (2009). Phospholipase D family interactions with
the cytoskeleton: Isoform delta promotes plasma membrane anchoring of
cortical microtubules. Functional Plant Biology , 36 (7),
600. https://doi.org/10.1071/FP09024
Ballweg, S., Sezgin, E., Doktorova, M., Covino, R., Reinhard, J.,
Wunnicke, D., Hänelt, I., Levental, I., Hummer, G., & Ernst, R. (2020).
Regulation of lipid saturation without sensing membrane fluidity.Nature Communications , 11 (1).
https://doi.org/10.1038/s41467-020-14528-1
Balogh, G., Péter, M., Glatz, A., Gombos, I., Török, Z., Horváth, I.,
Harwood, J. L., & Vígh, L. (2013). Key role of lipids in heat stress
management. FEBS Letters , 587 (13), 1970–1980.
https://doi.org/10.1016/j.febslet.2013.05.016
Bavi, N., Nikolaev, Y. A., Bavi, O., Ridone, P., Martinac, A. D.,
Nakayama, Y., Cox, C. D., & Martinac, B. (2017). Principles of
Mechanosensing at the Membrane Interface. In R. M. Epand & J.-M.
Ruysschaert (Eds.), The Biophysics of Cell Membranes (Vol. 19,
pp. 85–119). Springer Singapore.
https://doi.org/10.1007/978-981-10-6244-5_4
Benítez-Angeles, M., Morales-Lázaro, S. L., Juárez-González, E., &
Rosenbaum, T. (2020). TRPV1: Structure, Endogenous Agonists, and
Mechanisms. International Journal of Molecular Sciences ,21 (10), 3421. https://doi.org/10.3390/ijms21103421
Benn, G., Bjornson, M., Ke, H., De Souza, A., Balmond, E. I., Shaw, J.
T., & Dehesh, K. (2016). Plastidial metabolite MEcPP induces a
transcriptionally centered stress-response hub via the transcription
factor CAMTA3. Proceedings of the National Academy of Sciences ,113 (31), 8855–8860. https://doi.org/10.1073/pnas.1602582113
Box, M. S., Huang, B. E., Domijan, M., Jaeger, K. E., Khattak, A. K.,
Yoo, S. J., Sedivy, E. L., Jones, D. M., Hearn, T. J., Webb, A. A. R.,
Grant, A., Locke, J. C. W., & Wigge, P. A. (2015). ELF3 Controls
Thermoresponsive Growth in Arabidopsis. Current Biology ,25 (2), 194–199. https://doi.org/10.1016/j.cub.2014.10.076
Casal, J. J., & Balasubramanian, S. (2019). Thermomorphogenesis.Annual Review of Plant Biology , 70 (1), 321–346.
https://doi.org/10.1146/annurev-arplant-050718-095919
Chakrabortee, S., Kayatekin, C., Newby, G. A., Mendillo, M. L.,
Lancaster, A., & Lindquist, S. (2016). Luminidependens (LD) is an
Arabidopsis protein with prion behavior. Proceedings of the
National Academy of Sciences , 113 (21), 6065–6070.
https://doi.org/10.1073/pnas.1604478113
Chung, B. Y. W., Balcerowicz, M., Di Antonio, M., Jaeger, K. E., Geng,
F., Franaszek, K., Marriott, P., Brierley, I., Firth, A. E., & Wigge,
P. A. (2020). An RNA thermoswitch regulates daytime growth in
Arabidopsis. Nature Plants .
https://doi.org/10.1038/s41477-020-0633-3
Collado, J., Kalemanov, M., Campelo, F., Bourgoint, C., Thomas, F.,
Loewith, R., Martínez-Sánchez, A., Baumeister, W., Stefan, C. J., &
Fernández-Busnadiego, R. (2019). Tricalbin-Mediated Contact Sites
Control ER Curvature to Maintain Plasma Membrane Integrity.Developmental Cell , 51 (4), 476-487.e7.
https://doi.org/10.1016/j.devcel.2019.10.018
Cortijo, S., Charoensawan, V., Brestovitsky, A., Buning, R., Ravarani,
C., Rhodes, D., van Noort, J., Jaeger, K. E., & Wigge, P. A. (2017).
Transcriptional Regulation of the Ambient Temperature Response by H2A.Z
Nucleosomes and HSF1 Transcription Factors in Arabidopsis.Molecular Plant , 10 (10), 1258–1273.
https://doi.org/10.1016/j.molp.2017.08.014
Covino, R., Ballweg, S., Stordeur, C., Michaelis, J. B., Puth, K.,
Wernig, F., Bahrami, A., Ernst, A. M., Hummer, G., & Ernst, R. (2016).
A Eukaryotic Sensor for Membrane Lipid Saturation. Molecular
Cell , 63 (1), 49–59.
https://doi.org/10.1016/j.molcel.2016.05.015
Crawford, A. J., McLachlan, D. H., Hetherington, A. M., & Franklin, K.
A. (2012). High temperature exposure increases plant cooling capacity.Current Biology , 22 (10), R396–R397.
https://doi.org/10.1016/j.cub.2012.03.044
Cybulski, L. E., Martín, M., Mansilla, M. C., Fernández, A., & de
Mendoza, D. (2010). Membrane Thickness Cue for Cold Sensing in a
Bacterium. Current Biology , 20 (17), 1539–1544.
https://doi.org/10.1016/j.cub.2010.06.074
Deng, Y., Humbert, S., Liu, J.-X., Srivastava, R., Rothstein, S. J., &
Howell, S. H. (2011). Heat induces the splicing by IRE1 of a mRNA
encoding a transcription factor involved in the unfolded protein
response in Arabidopsis. Proceedings of the National Academy of
Sciences , 108 (17), 7247–7252.
https://doi.org/10.1073/pnas.1102117108
Dietrich, P., Moeder, W., & Yoshioka, K. (2020). Plant Cyclic
Nucleotide-Gated Channels: New Insights on their Functions and
Regulation. Plant Physiology , pp.00425.2020.
https://doi.org/10.1104/pp.20.00425
Ding, Y., Shi, Y., & Yang, S. (2020). Molecular Regulation of Plant
Responses to Environmental Temperatures. Molecular Plant ,13 (4), 544–564. https://doi.org/10.1016/j.molp.2020.02.004
Edwards, K. D., Lynn, J. R., Gyula, P., Nagy, F., & Millar, A. J.
(2005). Natural Allelic Variation in the Temperature-Compensation
Mechanisms of the Arabidopsis thaliana Circadian Clock.Genetics , 170 (1), 387–400.
https://doi.org/10.1534/genetics.104.035238
Ernst, R., Ballweg, S., & Levental, I. (2018). Cellular mechanisms of
physicochemical membrane homeostasis. Current Opinion in Cell
Biology , 53 , 44–51. https://doi.org/10.1016/j.ceb.2018.04.013
Ezer, D., Jung, J.-H., Lan, H., Biswas, S., Gregoire, L., Box, M. S.,
Charoensawan, V., Cortijo, S., Lai, X., Stöckle, D., Zubieta, C.,
Jaeger, K. E., & Wigge, P. A. (2017). The evening complex coordinates
environmental and endogenous signals in Arabidopsis. Nature
Plants , 3 (7). https://doi.org/10.1038/nplants.2017.87
Falcone, D. L., Ogas, J. P., & Somerville, C. R. (2004). Regulation of
membrane fatty acid composition by temperature in mutants of Arabidopsis
with alterations in membrane lipid composition. BMC Plant
Biology , 4 (1), 17. https://doi.org/10.1186/1471-2229-4-17
Findlay, K. M. W., & Jenkins, G. I. (2016). Regulation of UVR8
photoreceptor dimer/monomer photo-equilibrium in Arabidopsis plants
grown under photoperiodic conditions: UVR8 photo-equilibrium.Plant, Cell & Environment , 39 (8), 1706–1714.
https://doi.org/10.1111/pce.12724
Finka, A., Cuendet, A. F. H., Maathuis, F. J. M., Saidi, Y., &
Goloubinoff, P. (2012). Plasma Membrane Cyclic Nucleotide Gated Calcium
Channels Control Land Plant Thermal Sensing and Acquired
Thermotolerance. The Plant Cell , 24 (8), 3333–3348.
https://doi.org/10.1105/tpc.112.095844
Fiorucci, A.-S., Galvão, V. C., Ince, Y. Ç., Boccaccini, A., Goyal, A.,
Allenbach Petrolati, L., Trevisan, M., & Fankhauser, C. (2020).
PHYTOCHROME INTERACTING FACTOR 7 is important for early responses to
elevated temperature in Arabidopsis seedlings. New Phytologist ,226 (1), 50–58. https://doi.org/10.1111/nph.16316
Fujii, Y., Tanaka, H., Konno, N., Ogasawara, Y., Hamashima, N., Tamura,
S., Hasegawa, S., Hayasaki, Y., Okajima, K., & Kodama, Y. (2017).
Phototropin perceives temperature based on the lifetime of its
photoactivated state. Proceedings of the National Academy of
Sciences , 114 (34), 9206–9211.
https://doi.org/10.1073/pnas.1704462114
Furt, F., König, S., Bessoule, J.-J., Sargueil, F., Zallot, R.,
Stanislas, T., Noirot, E., Lherminier, J., Simon-Plas, F., Heilmann, I.,
& Mongrand, S. (2010). Polyphosphoinositides Are Enriched in Plant
Membrane Rafts and Form Microdomains in the Plasma Membrane. Plant
Physiology , 152 (4), 2173–2187.
https://doi.org/10.1104/pp.109.149823
Gao, F., Han, X., Wu, J., Zheng, S., Shang, Z., Sun, D., Zhou, R., &
Li, B. (2012). A heat-activated calcium-permeable channel - Arabidopsis
cyclic nucleotide-gated ion channel 6 - is involved in heat shock
responses: CNGC6 is a heat-activated calcium channel. The Plant
Journal , 70 (6), 1056–1069.
https://doi.org/10.1111/j.1365-313X.2012.04969.x
Gao, K., Liu, Y.-L., Li, B., Zhou, R.-G., Sun, D.-Y., & Zheng, S.-Z.
(2014). Arabidopsis thaliana Phosphoinositide-Specific Phospholipase C
Isoform 3 (AtPLC3) and AtPLC9 have an Additive Effect on
Thermotolerance. Plant and Cell Physiology , 55 (11),
1873–1883. https://doi.org/10.1093/pcp/pcu116
Garab, G., Ughy, B., Waard, P. de, Akhtar, P., Javornik, U., Kotakis,
C., Šket, P., Karlický, V., Materová, Z., Špunda, V., Plavec, J., van
Amerongen, H., Vígh, L., As, H. V., & Lambrev, P. H. (2017). Lipid
polymorphism in chloroplast thylakoid membranes – as revealed by
31P-NMR and time-resolved merocyanine fluorescence spectroscopy.Scientific Reports , 7 (1).
https://doi.org/10.1038/s41598-017-13574-y
Gilroy, S., Białasek, M., Suzuki, N., Górecka, M., Devireddy, A. R.,
Karpiński, S., & Mittler, R. (2016). ROS, Calcium, and Electric
Signals: Key Mediators of Rapid Systemic Signaling in Plants.Plant Physiology , 171 (3), 1606–1615.
https://doi.org/10.1104/pp.16.00434
Guo, L., Devaiah, S. P., Narasimhan, R., Pan, X., Zhang, Y., Zhang, W.,
& Wang, X. (2012). Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenases
Interact with Phospholipase Dδ to Transduce Hydrogen Peroxide Signals in
the Arabidopsis Response to Stress. The Plant Cell ,24 (5), 2200–2212. https://doi.org/10.1105/tpc.111.094946
Hahm, J., Kim, K., Qiu, Y., & Chen, M. (2020). Increasing ambient
temperature progressively disassembles Arabidopsis phytochrome B from
individual photobodies with distinct thermostabilities. Nature
Communications , 11 (1).
https://doi.org/10.1038/s41467-020-15526-z
Halbleib, K., Pesek, K., Covino, R., Hofbauer, H. F., Wunnicke, D.,
Hänelt, I., Hummer, G., & Ernst, R. (2017). Activation of the Unfolded
Protein Response by Lipid Bilayer Stress. Molecular Cell ,67 (4), 673-684.e8. https://doi.org/10.1016/j.molcel.2017.06.012
Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect
on plant growth and development. Weather and Climate Extremes ,10 , 4–10. https://doi.org/10.1016/j.wace.2015.08.001
Hayes, S. (2020). Interaction of Light and Temperature Signalling in
Plants. In ELS (1st ed.). Wiley.
https://doi.org/10.1002/047001590X
Heckathorn, S. A., Downs, C. A., Sharkey, T. D., & Coleman, J. S.
(1998). The Small, Methionine-Rich Chloroplast Heat-Shock Protein
Protects Photosystem II Electron Transport during Heat Stress.Plant Physiology , 116 (1), 439–444.
https://doi.org/10.1104/pp.116.1.439
Higashi, Y., Okazaki, Y., Myouga, F., Shinozaki, K., & Saito, K.
(2015). Landscape of the lipidome and transcriptome under heat stress in
Arabidopsis thaliana. Scientific Reports , 5 (1).
https://doi.org/10.1038/srep10533
Horvath, I., Glatz, A., Varvasovszki, V., Torok, Z., Pali, T., Balogh,
G., Kovacs, E., Nadasdi, L., Benko, S., Joo, F., & Vigh, L. (1998).
Membrane physical state controls the signaling mechanism of the heat
shock response in Synechocystis PCC 6803: Identification of hsp17 as a
“fluidity gene.” Proceedings of the National Academy of
Sciences , 95 (7), 3513–3518.
https://doi.org/10.1073/pnas.95.7.3513
Hou, Q., Ufer, G., & Bartels, D. (2015). Lipid signalling in plant
responses to abiotic stress. Plant Cell Environ .
https://doi.org/10.1111/pce.12666
Howarth, C. J., & Ougham, H. J. (1993). Gene expression under
temperature stress*. New Phytologist , 125 (1), 1–26.
https://doi.org/10.1111/j.1469-8137.1993.tb03862.x
Huang, H., Alvarez, S., Bindbeutel, R., Shen, Z., Naldrett, M. J.,
Evans, B. S., Briggs, S. P., Hicks, L. M., Kay, S. A., & Nusinow, D. A.
(2016). Identification of Evening Complex Associated Proteins inArabidopsis by Affinity Purification and Mass Spectrometry.Molecular & Cellular Proteomics , 15 (1), 201–217.
https://doi.org/10.1074/mcp.M115.054064
Jahns, P., Latowski, D., & Strzalka, K. (2009). Mechanism and
regulation of the violaxanthin cycle: The role of antenna proteins and
membrane lipids. Biochimica et Biophysica Acta (BBA) -
Bioenergetics , 1787 (1), 3–14.
https://doi.org/10.1016/j.bbabio.2008.09.013
Jaillais, Y., & Ott, T. (2020). The Nanoscale Organization of the
Plasma Membrane and Its Importance in Signaling: A Proteolipid
Perspective. Plant Physiology , 182 (4), 1682–1696.
https://doi.org/10.1104/pp.19.01349
Janda, M., Lamparová, L., Zubíková, A., Burketová, L., Martinec, J., &
Krčková, Z. (2019). Temporary heat stress suppresses PAMP‐triggered
immunity and resistance to bacteria in Arabidopsis thaliana .Molecular Plant Pathology , 20 (7), 1005–1012.
https://doi.org/10.1111/mpp.12799
Jung, J.-H., Barbosa, A. D., Hutin, S., Kumita, J. R., Gao, M., Derwort,
D., Silva, C. S., Lai, X., Pierre, E., Geng, F., Kim, S.-B., Baek, S.,
Zubieta, C., Jaeger, K. E., & Wigge, P. A. (2020). A prion-like domain
in ELF3 functions as a thermosensor in Arabidopsis. Nature .
https://doi.org/10.1038/s41586-020-2644-7
Jung, J.-H., Domijan, M., Klose, C., Biswas, S., Ezer, D., Gao, M.,
Khattak, A. K., Box, M. S., Charoensawan, V., Cortijo, S., Kumar, M.,
Grant, A., Locke, J. C. W., Schäfer, E., Jaeger, K. E., & Wigge, P. A.
(2016). Phytochromes function as thermosensors in Arabidopsis .Science , 354 (6314), 886–889.
https://doi.org/10.1126/science.aaf6005
Kang, Y., Khan, S., & Ma, X. (2009). Climate change impacts on crop
yield, crop water productivity and food security – A review.Progress in Natural Science , 19 (12), 1665–1674.
https://doi.org/10.1016/j.pnsc.2009.08.001
Kim, C. (2020). High Ambient Temperature Accelerates Leaf Senescence via
PHYTOCHROME-INTERACTING FACTOR 4 and 5 in Arabidopsis. Molecules
and Cells , 43 (7). https://doi.org/10.14348/MOLCELLS.2020.0117
Kim, S.-C., Guo, L., & Wang, X. (2020). Nuclear moonlighting of
cytosolic glyceraldehyde-3-phosphate dehydrogenase regulates Arabidopsis
response to heat stress. Nature Communications , 11 (1).
https://doi.org/10.1038/s41467-020-17311-4
Koini, M. A., Alvey, L., Allen, T., Tilley, C. A., Harberd, N. P.,
Whitelam, G. C., & Franklin, K. A. (2009). High Temperature-Mediated
Adaptations in Plant Architecture Require the bHLH Transcription Factor
PIF4. Current Biology , 19 (5), 408–413.
https://doi.org/10.1016/j.cub.2009.01.046
Kostaki, K.-I., Coupel-Ledru, A., Bonnell, V. C., Gustavsson, M., Sun,
P., McLaughlin, F. J., Fraser, D. P., McLachlan, D. H., Hetherington, A.
M., Dodd, A. N., & Franklin, K. A. (2020). Guard Cells Integrate Light
and Temperature Signals to Control Stomatal Aperture. Plant
Physiology , 182 (3), 1404–1419.
https://doi.org/10.1104/pp.19.01528
Krumova, S. B., Dijkema, C., de Waard, P., Van As, H., Garab, G., & van
Amerongen, H. (2008). Phase behavior of phosphatidylglycerol in spinach
thylakoid membranes as revealed by 31P-NMR. Biochimica et
Biophysica Acta (BBA) - Biomembranes , 1778 (4), 997–1003.
https://doi.org/10.1016/j.bbamem.2008.01.004
Kumar, S. V., & Wigge, P. A. (2010). H2A.Z-Containing Nucleosomes
Mediate the Thermosensory Response in Arabidopsis. Cell ,140 (1), 136–147. https://doi.org/10.1016/j.cell.2009.11.006
Latowski, D., Kruk, J., Burda, K., Skrzynecka-Jaskier, M.,
Kostecka-Gugała, A., & Strzałka, K. (2002). Kinetics of violaxanthin
de-epoxidation by violaxanthin de-epoxidase, a xanthophyll cycle enzyme,
is regulated by membrane fluidity in model lipid bilayers: Violaxanthin
de-epoxidation in liposomes. European Journal of Biochemistry ,269 (18), 4656–4665.
https://doi.org/10.1046/j.1432-1033.2002.03166.x
Lee, S., Lee, H.-J., Huh, S. U., Paek, K.-H., Ha, J.-H., & Park, C.-M.
(2014). The Arabidopsis NAC transcription factor NTL4 participates in a
positive feedback loop that induces programmed cell death under heat
stress conditions. Plant Science , 227 , 76–83.
https://doi.org/10.1016/j.plantsci.2014.07.003
Legris, M., Klose, C., Burgie, E. S., Rojas, C. C. R., Neme, M.,
Hiltbrunner, A., Wigge, P. A., Schäfer, E., Vierstra, R. D., & Casal,
J. J. (2016). Phytochrome B integrates light and temperature signals inArabidopsis . Science , 354 (6314), 897–900.
https://doi.org/10.1126/science.aaf5656
Lenzoni, G., & Knight, M. R. (2019). Increases in Absolute Temperature
Stimulate Free Calcium Concentration Elevations in the Chloroplast.Plant and Cell Physiology , 60 (3), 538–548.
https://doi.org/10.1093/pcp/pcy227
Liang, M., Li, H., Zhou, F., Li, H., Liu, J., Hao, Y., Wang, Y., Zhao,
H., & Han, S. (2015). Subcellular Distribution of NTL Transcription
Factors in Arabidopsis thaliana : Subcellular Distribution of
AtNTLs. Traffic , 16 (10), 1062–1074.
https://doi.org/10.1111/tra.12311
Liao, C., Zheng, Y., & Guo, Y. (2017). MYB30 transcription factor
regulates oxidative and heat stress responses through ANNEXIN-mediated
cytosolic calcium signaling in Arabidopsis . New
Phytologist , 216 (1), 163–177. https://doi.org/10.1111/nph.14679
Liu, H., & Charng, Y. (2013). Common and Distinct Functions of
Arabidopsis Class A1 and A2 Heat Shock Factors in Diverse Abiotic Stress
Responses and Development. Plant Physiology , 163 (1),
276–290. https://doi.org/10.1104/pp.113.221168
Liu, H.-T., Li, B., Shang, Z.-L., Li, X.-Z., Mu, R.-L., Sun, D.-Y., &
Zhou, R.-G. (2003). Calmodulin Is Involved in Heat Shock Signal
Transduction in Wheat. Plant Physiology , 132 (3),
1186–1195. https://doi.org/10.1104/pp.102.018564
Liu, H.-T., Li, G.-L., Chang, H., Sun, D.-Y., Zhou, R.-G., & Li, B.
(2007). Calmodulin-binding protein phosphatase PP7 is involved in
thermotolerance in Arabidopsis. Plant, Cell & Environment ,30 (2), 156–164. https://doi.org/10.1111/j.1365-3040.2006.01613.x
Liu, X., Lyu, Y., Yang, W., Yang, Z., Lu, S., & Liu, J. (2020). A
membrane‐associated NAC transcription factor OsNTL3 is involved in
thermotolerance in rice. Plant Biotechnology Journal ,18 (5), 1317–1329. https://doi.org/10.1111/pbi.13297
Lobell, D. B., & Field, C. B. (2007). Global scale climate–crop yield
relationships and the impacts of recent warming. Environmental
Research Letters , 2 (1), 014002.
https://doi.org/10.1088/1748-9326/2/1/014002
Los, D. A., & Murata, N. (2004). Membrane fluidity and its roles in the
perception of environmental signals. Biochimica et Biophysica Acta
(BBA) - Biomembranes , 1666 (1–2), 142–157.
https://doi.org/10.1016/j.bbamem.2004.08.002
Matsuda, O., Sakamoto, H., Hashimoto, T., & Iba, K. (2005). A
Temperature-sensitive Mechanism That Regulates Post-translational
Stability of a Plastidial ω-3 Fatty Acid Desaturase (FAD8) inArabidopsis Leaf Tissues. Journal of Biological Chemistry ,280 (5), 3597–3604. https://doi.org/10.1074/jbc.M407226200
McLoughlin, F., Arisz, S. A., Dekker, H. L., Kramer, G., de Koster, C.
G., Haring, M. A., Munnik, T., & Testerink, C. (2013). Identification
of novel candidate phosphatidic acid-binding proteins involved in the
salt-stress response of Arabidopsis thaliana roots. Biochem J ,450 (3), 573–581. https://doi.org/10.1042/BJ20121639
Miller, G., Schlauch, K., Tam, R., Cortes, D., Torres, M. A., Shulaev,
V., Dangl, J. L., & Mittler, R. (2009). The Plant NADPH Oxidase RBOHD
Mediates Rapid Systemic Signaling in Response to Diverse Stimuli.Science Signaling , 2 (84), ra45–ra45.
https://doi.org/10.1126/scisignal.2000448
Mishkind, M., Vermeer, J. E. M., Darwish, E., & Munnik, T. (2009). Heat
stress activates phospholipase D and triggers PIP 2accumulation at the plasma membrane and nucleus. The Plant
Journal , 60 (1), 10–21.
https://doi.org/10.1111/j.1365-313X.2009.03933.x
Mori, K., Renhu, N., Naito, M., Nakamura, A., Shiba, H., Yamamoto, T.,
Suzaki, T., Iida, H., & Miura, K. (2018). Ca2+-permeable
mechanosensitive channels MCA1 and MCA2 mediate cold-induced cytosolic
Ca2+ increase and cold tolerance in Arabidopsis. Scientific
Reports , 8 (1). https://doi.org/10.1038/s41598-017-17483-y
Munnik, T. (2014). PI-PLC: Phosphoinositide-Phospholipase C in Plant
Signaling. In Xuemin Wang (Ed.), Phospholipases in Plant
Signaling (Vol. 20, pp. 27–54). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-42011-5_2
Murakami, Y. (2000). Trienoic Fatty Acids and Plant Tolerance of High
Temperature. Science , 287 (5452), 476–479.
https://doi.org/10.1126/science.287.5452.476
Nawkar, G. M., Kang, C. H., Maibam, P., Park, J. H., Jung, Y. J., Chae,
H. B., Chi, Y. H., Jung, I. J., Kim, W. Y., Yun, D.-J., & Lee, S. Y.
(2017). HY5, a positive regulator of light signaling, negatively
controls the unfolded protein response in Arabidopsis .Proceedings of the National Academy of Sciences , 114 (8),
2084–2089. https://doi.org/10.1073/pnas.1609844114
Nickels, J. D., Smith, M. D., Alsop, R. J., Himbert, S., Yahya, A.,
Cordner, D., Zolnierczuk, P., Stanley, C. B., Katsaras, J., Cheng, X.,
& Rheinstädter, M. C. (2019). Lipid Rafts: Buffers of Cell Membrane
Physical Properties. The Journal of Physical Chemistry B ,123 (9), 2050–2056. https://doi.org/10.1021/acs.jpcb.8b12126
Nieto, C., López-Salmerón, V., Davière, J.-M., & Prat, S. (2015).
ELF3-PIF4 Interaction Regulates Plant Growth Independently of the
Evening Complex. Current Biology , 25 (2), 187–193.
https://doi.org/10.1016/j.cub.2014.10.070
Niu, Y., & Xiang, Y. (2018). An Overview of Biomembrane Functions in
Plant Responses to High-Temperature Stress. Frontiers in Plant
Science , 9 . https://doi.org/10.3389/fpls.2018.00915
Nusinow, D. A., Helfer, A., Hamilton, E. E., King, J. J., Imaizumi, T.,
Schultz, T. F., Farré, E. M., & Kay, S. A. (2011). The ELF4–ELF3–LUX
complex links the circadian clock to diurnal control of hypocotyl
growth. Nature , 475 (7356), 398–402.
https://doi.org/10.1038/nature10182
O’Quin, J. B., Bourassa, L., Zhang, D., Shockey, J. M., Gidda, S. K.,
Fosnot, S., Chapman, K. D., Mullen, R. T., & Dyer, J. M. (2010).
Temperature-sensitive Post-translational Regulation of Plant Omega-3
Fatty-acid Desaturases Is Mediated by the Endoplasmic
Reticulum-associated Degradation Pathway. Journal of Biological
Chemistry , 285 (28), 21781–21796.
https://doi.org/10.1074/jbc.M110.135236
Park, Y.-J., Lee, H.-J., Ha, J.-H., Kim, J. Y., & Park, C.-M. (2017).
COP1 conveys warm temperature information to hypocotyl
thermomorphogenesis. New Phytologist , 215 (1), 269–280.
https://doi.org/10.1111/nph.14581
Park, Y.-J., & Park, C.-M. (2019). Physicochemical modeling of the
phytochrome-mediated photothermal sensing. Scientific Reports ,9 (1). https://doi.org/10.1038/s41598-019-47019-5
Pokotylo, I., Pejchar, P., Potocký, M., Kocourková, D., Krčková, Z.,
Ruelland, E., Kravets, V., & Martinec, J. (2013). The plant
non-specific phospholipase C gene family. Novel competitors in lipid
signalling. Progress in Lipid Research , 52 (1), 62–79.
https://doi.org/10.1016/j.plipres.2012.09.001
Prager-Khoutorsky, M., Khoutorsky, A., & Bourque, C. W. (2014). Unique
Interweaved Microtubule Scaffold Mediates Osmosensory Transduction via
Physical Interaction with TRPV1. Neuron , 83 (4), 866–878.
https://doi.org/10.1016/j.neuron.2014.07.023
Pudasaini, A., Shim, J. S., Song, Y. H., Shi, H., Kiba, T., Somers, D.
E., Imaizumi, T., & Zoltowski, B. D. (2017). Kinetics of the LOV domain
of ZEITLUPE determine its circadian function in Arabidopsis.ELife , 6 . https://doi.org/10.7554/eLife.21646
Quint, M., Delker, C., Franklin, K. A., Wigge, P. A., Halliday, K. J.,
& van Zanten, M. (2016). Molecular and genetic control of plant
thermomorphogenesis. Nature Plants , 2 (1).
https://doi.org/10.1038/nplants.2015.190
Reddy, A. S. N., Day, I. S., Göhring, J., & Barta, A. (2012).
Localization and Dynamics of Nuclear Speckles in Plants. Plant
Physiology , 158 (1), 67–77.
https://doi.org/10.1104/pp.111.186700
Riback, J. A., Katanski, C. D., Kear-Scott, J. L., Pilipenko, E. V.,
Rojek, A. E., Sosnick, T. R., & Drummond, D. A. (2017).
Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned
Response. Cell , 168 (6), 1028-1040.e19.
https://doi.org/10.1016/j.cell.2017.02.027
Richards, S. L., Laohavisit, A., Mortimer, J. C., Shabala, L.,
Swarbreck, S. M., Shabala, S., & Davies, J. M. (2014). Annexin 1
regulates the H 2 O 2 -induced calcium
signature in Arabidopsis thaliana roots. The Plant
Journal , 77 (1), 136–145. https://doi.org/10.1111/tpj.12372
Rivasseau, C., Seemann, M., Boisson, A.-M., Streb, P., Gout, E., Douce,
R., Rohmer, M., & Bligny, R. (2009). Accumulation of 2- C-methyl-d-erythritol 2,4-cyclodiphosphate in illuminated plant leaves at
supraoptimal temperatures reveals a bottleneck of the prokaryotic
methylerythritol 4-phosphate pathway of isoprenoid biosynthesis.Plant, Cell & Environment , 32 (1), 82–92.
https://doi.org/10.1111/j.1365-3040.2008.01903.x
Ruiz-Lopez, N., Pérez-Sancho, J., del Valle, A. E., Haslam, R. P.,
Vanneste, S., Catalá, R., Perea-Resa, C., Van Damme, D.,
García-Hernández, S., Albert, A., Vallarino, J., Lin, J., Friml, J.,
Macho, A. P., Salinas, J., Rosado, A., Napier, J. A., Amorim-Silva, V.,
& Botella, M. A. (2020). Synaptotagmins Maintain Diacylglycerol
Homeostasis at Endoplasmic Reticulum-Plasma Membrane Contact Sites
during Abiotic Stress [Preprint]. Molecular Biology.
https://doi.org/10.1101/2020.07.28.222919
Rütgers, M., Muranaka, L. S., Mühlhaus, T., Sommer, F., Thoms, S.,
Schurig, J., Willmund, F., Schulz-Raffelt, M., & Schroda, M. (2017).
Substrates of the chloroplast small heat shock proteins 22E/F point to
thermolability as a regulative switch for heat acclimation in
Chlamydomonas reinhardtii. Plant Molecular Biology , 95 (6),
579–591. https://doi.org/10.1007/s11103-017-0672-y
Rütgers, M., Muranaka, L. S., Schulz-Raffelt, M., Thoms, S., Schurig,
J., Willmund, F., & Schroda, M. (2017). Not changes in membrane
fluidity but proteotoxic stress triggers heat shock protein expression
in Chlamydomonas reinhardtii . Plant, Cell & Environment ,40 (12), 2987–3001. https://doi.org/10.1111/pce.13060
Saenz, J. P., Sezgin, E., Schwille, P., & Simons, K. (2012). Functional
convergence of hopanoids and sterols in membrane ordering.Proceedings of the National Academy of Sciences , 109 (35),
14236–14240. https://doi.org/10.1073/pnas.1212141109
Saidi, Y., Finka, A., & Goloubinoff, P. (2011). Heat perception and
signalling in plants: A tortuous path to thermotolerance: Minireview.New Phytologist , 190 (3), 556–565.
https://doi.org/10.1111/j.1469-8137.2010.03571.x
Saidi, Y., Finka, A., Muriset, M., Bromberg, Z., Weiss, Y. G., Maathuis,
F. J. M., & Goloubinoff, P. (2009). The Heat Shock Response in Moss
Plants Is Regulated by Specific Calcium-Permeable Channels in the Plasma
Membrane. The Plant Cell , 21 (9), 2829–2843.
https://doi.org/10.1105/tpc.108.065318
Sangwan, V., Orvar, B. L., Beyerly, J., Hirt, H., & Dhindsa, R. S.
(2002). Opposite changes in membrane fluidity mimic cold and heat stress
activation of distinct plant MAP kinase pathways. The Plant
Journal , 31 (5), 629–638.
https://doi.org/10.1046/j.1365-313X.2002.01384.x
Schaller, S., Latowski, D., Jemioła-Rzemińska, M., Wilhelm, C.,
Strzałka, K., & Goss, R. (2010). The main thylakoid membrane lipid
monogalactosyldiacylglycerol (MGDG) promotes the de-epoxidation of
violaxanthin associated with the light-harvesting complex of photosystem
II (LHCII). Biochimica et Biophysica Acta (BBA) - Bioenergetics ,1797 (3), 414–424. https://doi.org/10.1016/j.bbabio.2009.12.011
Shiva, S., Samarakoon, T., Lowe, K. A., Roach, C., Vu, H. S., Colter,
M., Porras, H., Hwang, C., Roth, M. R., Tamura, P., Li, M., Schrick, K.,
Shah, J., Wang, X., Wang, H., & Welti, R. (2020). Leaf Lipid
Alterations in Response to Heat Stress of Arabidopsis thaliana.Plants , 9 (7), 845. https://doi.org/10.3390/plants9070845
Silva, C. S., Nayak, A., Lai, X., Hutin, S., Hugouvieux, V., Jung,
J.-H., López-Vidriero, I., Franco-Zorrilla, J. M., Panigrahi, K. C. S.,
Nanao, M. H., Wigge, P. A., & Zubieta, C. (2020). Molecular mechanisms
of Evening Complex activity in Arabidopsis . Proceedings of
the National Academy of Sciences , 117 (12), 6901–6909.
https://doi.org/10.1073/pnas.1920972117
Song, P., Jia, Q., Chen, L., Jin, X., Su, Y., Zhang, W., & Zhang, Q.
(2020). Involvement of Phospholipase D δ in Regulation of
ROS-mediated Microtubule Organization and Stomatal Movement upon Heat
Shock . 35.
Sun, A.-Z., & Guo, F.-Q. (2016). Chloroplast Retrograde Regulation of
Heat Stress Responses in Plants. Frontiers in Plant Science ,7 . https://doi.org/10.3389/fpls.2016.00398
Suri, S. S., & Dhindsa, R. S. (2007). A heat-activated MAP kinase
(HAMK) as a mediator of heat shock response in tobacco cells: HAMK in
heat-shock response. Plant, Cell & Environment , 31 (2),
218–226. https://doi.org/10.1111/j.1365-3040.2007.01754.x
Suzuki, N., Koussevitzky, S., Mittler, R., & Miller, G. (2012). ROS and
redox signalling in the response of plants to abiotic stress: ROS and
redox signalling in plants. Plant, Cell & Environment ,35 (2), 259–270. https://doi.org/10.1111/j.1365-3040.2011.02336.x
Tang, G.-Q., Novitzky, W. P., Carol Griffin, H., Huber, S. C., & Dewey,
R. E. (2005). Oleate desaturase enzymes of soybean: Evidence of
regulation through differential stability and phosphorylation: Stability
and phosphorylation of FAD2 enzymes. The Plant Journal ,44 (3), 433–446. https://doi.org/10.1111/j.1365-313X.2005.02535.x
Theis, J., Gupta, T. K., Klingler, J., Wan, W., Albert, S., Keller, S.,
Engel, B. D., & Schroda, M. (2019). VIPP1 rods engulf membranes
containing phosphatidylinositol phosphates. Scientific Reports ,9 (1). https://doi.org/10.1038/s41598-019-44259-3
Thomas, L., Marondedze, C., Ederli, L., Pasqualini, S., & Gehring, C.
(2013). Proteomic signatures implicate cAMP in light and temperature
responses in Arabidopsis thaliana. Journal of Proteomics ,83 , 47–59. https://doi.org/10.1016/j.jprot.2013.02.032
Török, Z., Crul, T., Maresca, B., Schütz, G. J., Viana, F., Dindia, L.,
Piotto, S., Brameshuber, M., Balogh, G., Péter, M., Porta, A., Trapani,
A., Gombos, I., Glatz, A., Gungor, B., Peksel, B., Vigh, L., Csoboz, B.,
Horváth, I., … Vigh, L. (2014). Plasma membranes as heat stress
sensors: From lipid-controlled molecular switches to therapeutic
applications. Biochimica et Biophysica Acta (BBA) - Biomembranes ,1838 (6), 1594–1618. https://doi.org/10.1016/j.bbamem.2013.12.015
van der Woude, L. C., Perrella, G., Snoek, B. L., van Hoogdalem, M.,
Novák, O., van Verk, M. C., van Kooten, H. N., Zorn, L. E., Tonckens,
R., Dongus, J. A., Praat, M., Stouten, E. A., Proveniers, M. C. G.,
Vellutini, E., Patitaki, E., Shapulatov, U., Kohlen, W.,
Balasubramanian, S., Ljung, K., … van Zanten, M. (2019). HISTONE
DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis inArabidopsis thaliana by mediating H2A.Z depletion.Proceedings of the National Academy of Sciences , 116 (50),
25343–25354. https://doi.org/10.1073/pnas.1911694116
Voitsekhovskaja, O. V. (2019). Phytochromes and Other (Photo)Receptors
of Information in Plants. Russian Journal of Plant Physiology ,66 (3), 351–364. https://doi.org/10.1134/S1021443719030154
Volkov, R. A., Panchuk, I. I., Mullineaux, P. M., & Schöffl, F. (2006).
Heat stress-induced H2O2 is required for effective expression of heat
shock genes in Arabidopsis. Plant Molecular Biology ,61 (4–5), 733–746. https://doi.org/10.1007/s11103-006-0045-4
Vu, L. D., Gevaert, K., & De Smet, I. (2019). Feeling the Heat:
Searching for Plant Thermosensors. Trends in Plant Science ,24 (3), 210–219. https://doi.org/10.1016/j.tplants.2018.11.004
Walley, J., Xiao, Y., Wang, J.-Z., Baidoo, E. E., Keasling, J. D., Shen,
Z., Briggs, S. P., & Dehesh, K. (2015). Plastid-produced
interorgannellar stress signal MEcPP potentiates induction of the
unfolded protein response in endoplasmic reticulum. Proceedings of
the National Academy of Sciences , 112 (19), 6212–6217.
https://doi.org/10.1073/pnas.1504828112
Wang, R., Zhang, Y., Kieffer, M., Yu, H., Kepinski, S., & Estelle, M.
(2016). HSP90 regulates temperature-dependent seedling growth in
Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1.Nature Communications , 7 (1).
https://doi.org/10.1038/ncomms10269
Wang, Xu, Ma, X., Wang, H., Li, B., Clark, G., Guo, Y., Roux, S., Sun,
D., & Tang, W. (2015). Proteomic Study of Microsomal Proteins Reveals a
Key Role for Arabidopsis Annexin 1 in Mediating Heat
Stress-Induced Increase in Intracellular Calcium Levels. Molecular
& Cellular Proteomics , 14 (3), 686–694.
https://doi.org/10.1074/mcp.M114.042697
Wolf, S., Marani, A., & Rudich, J. (1991). Effect of Temperature on
Carbohydrate Metabolism in Potato Plants. Journal of Experimental
Botany , 42 (5), 619–625. https://doi.org/10.1093/jxb/42.5.619
Wu, H.-C., Bulgakov, V. P., & Jinn, T.-L. (2018). Pectin
Methylesterases: Cell Wall Remodeling Proteins Are Required for Plant
Response to Heat Stress. Frontiers in Plant Science , 9 .
https://doi.org/10.3389/fpls.2018.01612
Xiao, Y., Savchenko, T., Baidoo, E. E. K., Chehab, W. E., Hayden, D. M.,
Tolstikov, V., Corwin, J. A., Kliebenstein, D. J., Keasling, J. D., &
Dehesh, K. (2012). Retrograde Signaling by the Plastidial Metabolite
MEcPP Regulates Expression of Nuclear Stress-Response Genes.Cell , 149 (7), 1525–1535.
https://doi.org/10.1016/j.cell.2012.04.038
Xu, Q., Paulsen, A. Q., Guikema, J. A., & Paulsen, G. M. (1995).
Functional and ultrastructural injury to photosynthesis in wheat by high
temperature during maturation. Environmental and Experimental
Botany , 35 (1), 43–54.
https://doi.org/10.1016/0098-8472(94)00030-9
Yadav, D., Boyidi, P., Ahmed, I., & Kirti, P. B. (2018). Plant annexins
and their involvement in stress responses. Environmental and
Experimental Botany , 155 , 293–306.
https://doi.org/10.1016/j.envexpbot.2018.07.002
Yan, Q., Huang, Q., Chen, J., Li, J., Liu, Z., Yang, Y., Li, X., &
Wang, J. (2017). SYTA has positive effects on the heat resistance of
Arabidopsis. Plant Growth Regulation , 81 (3), 467–476.
https://doi.org/10.1007/s10725-016-0224-5
Yang, Z.-T., Lu, S.-J., Wang, M.-J., Bi, D.-L., Sun, L., Zhou, S.-F.,
Song, Z.-T., & Liu, J.-X. (2014). A plasma membrane-tethered
transcription factor, NAC062/ANAC062/NTL6, mediates the unfolded protein
response in Arabidopsis. The Plant Journal , 79 (6),
1033–1043. https://doi.org/10.1111/tpj.12604
Zhang, L., Kondo, H., Kamikubo, H., Kataoka, M., & Sakamoto, W. (2016).
VIPP1 Has a Disordered C-Terminal Tail Necessary for Protecting
Photosynthetic Membranes against Stress. Plant Physiology ,171 (3), 1983–1995. https://doi.org/10.1104/pp.16.00532
Zhang, S.-S., Yang, H., Ding, L., Song, Z.-T., Ma, H., Chang, F., &
Liu, J.-X. (2017). Tissue-Specific Transcriptomics Reveals an Important
Role of the Unfolded Protein Response in Maintaining Fertility upon Heat
Stress in Arabidopsis. The Plant Cell , 29 (5), 1007–1023.
https://doi.org/10.1105/tpc.16.00916
Zheng, S.-Z., Liu, Y.-L., Li, B., Shang, Z.- lin, Zhou, R.-G., & Sun,
D.-Y. (2012). Phosphoinositide-specific phospholipase C9 is involved in
the thermotolerance of Arabidopsis: AtPLC9 plays a role in
thermotolerance. The Plant Journal , 69 (4), 689–700.
https://doi.org/10.1111/j.1365-313X.2011.04823.x