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Abstract 20 

Spectrum scarcity has necessitated the migration of radio frequencies from the lower to the 21 

higher frequencies. This has resulted in radio propagation challenges due to the adverse 22 

environmental elements otherwise unexperienced at lower frequencies.  A re-design and re-23 

evaluation of the performance of traditional lower frequency technologies and algorithms for 24 

implementation at higher frequencies especially for non-uniform linear antenna arrays are 25 

therefore necessary. Specifically, the performance of Direction of Arrival (DOA) algorithms for 26 

non-linear antenna arrays on weather impacted environments needs to be quantified and new 27 

algorithms developed to counteract the migration challenges. This work investigates the 28 

performance of Minimum Variance Distortionless Response (MVDR), Multiple Signal 29 

Classification (MUSIC) and the proposed Advanced-MUSIC (A-MUSIC) non-uniform linear 30 

array (NLA) algorithms on a weather-impacted wireless channel. The results indicate that the 31 

developed NLA achieves better DOA estimation than the conventional NLA albeit at a reduced 32 

performance for both, in a weather-impacted scenario. 33 

1 Introduction 34 

Direction of Arrival (DOA) estimation is critical in antenna design for emphasizing the desired 35 

signal and minimizing interference. Smart antenna systems utilize DOA algorithms to estimate 36 

the beamforming vectors, to track and identify the antenna beam, making DOA estimation 37 

critical in smart antenna design and beamforming (Krim et al., 1996). The accurate estimation of 38 

the DOA of the transmitted signals at the adaptive array antenna results in improved performance 39 

in the recovery of the transmitted signal and suppression of other interfering signals. The 40 

motivation for adopting Non-Uniform Linear Arrays (NLA) as opposed to the Uniform Linear 41 

Arrays (ULA) include the following (El kassis, et al., 2010; Saric et al., 2010): Firstly, the failure 42 

of any antenna sensor element(s) renders ULA to become NLA in harsh applications field and 43 

this could lead to data loss. Secondly, physical and geographical conditions may prohibit the 44 

construction of uniformly spaced sensors leading to NLA. Thirdly, the need to reduce the 45 

number of sensors to decrease the production cost and minimize the impact on performance, and 46 

finally the need to increase the aperture of an antenna using the same number of sensors in order 47 

to obtain better performance, among others. NLA allow better resolution for the same number of 48 

array elements compared to the ULA. Generally, NLA have larger antenna aperture, smaller 49 

main lobe width resulting in better performance in angle resolution, estimation precision, and 50 

other aspects. Therefore, the performance of NLA is of paramount importance especially with 51 

the migration to higher frequencies that are more susceptible to the adverse weather 52 

environmental factors.   53 

 54 

Estimation accuracy of a given array depends upon characteristics of the array geometry and the 55 

employed estimation algorithm; therefore, accurate DOS algorithms are required. DOA 56 

estimation for NLA is more critical. Their uneven number of source and receiver antennas leads 57 

to different degrees of freedom and irregular geometry. This results in different antenna sensor 58 

separation and aperture sizes. Furthermore, the migration to higher frequencies makes it worse 59 

due to the adverse effect of weather elements at these frequencies. New geometries requiring 60 

different degrees of freedom for NLA have been proposed (Vaidyanathan et al., 2011; Tan et al., 61 

2014). They involve the studying of the covariance matrix of the received signals among 62 

different sensors. Sparse arrays can be considered as a ULA where some sensors are omitted or 63 

irregular linear arrays where the inter-sensor separations are chosen in an arbitrary way (Choi et 64 
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al., 2010). The irregular spacing results in difficulties in covariance between the various elements 65 

because of the mutual coupling. These factors make DOA estimation for NLA challenging. 66 

NLAs give similar performance to ULA with a smaller number of physical elements. Co-prime 67 

array (Vaidyanathan et al., 2011; Tan et al., 2014) and array interpolation (Bronez et al., 1988; 68 

Friedlander et al., 1993) have become the most popular algorithms for evaluating NLA. A co-69 

prime array comprises of two spatially under-sampled ULAs with co-prime spatial sampling 70 

rates (Vaidyanathan et al., 2011; Pal et al., 2011). Array interpolation maps the covariance 71 

matrix of a real array to a virtual array and enables the reduction of DOA estimation problems in 72 

NLA to much simpler virtual ULA problems. Both these algorithms are investigated in this work 73 

for NLA in a weather-impacted environment. 74 

 75 

The most popular DOA algorithms used include the Minimum Variance Distortionless Response 76 

(MVDR) algorithm that enforces a unit response at the direction of the desired signal and places 77 

nulls in the directions of the interferences (Yu et al., 2015). The Multiple Signal Classification 78 

(MUSIC) algorithm and its variants is applied directly to the NLA geometry resulting in high 79 

computational complexity due to the multiple search for the maximum (Abramovich et al., 80 

1999). This work proposes the Advanced-MUSIC (A-MUSIC) DOA algorithm that employs 81 

forward-backward averaging preprocessing technique on the cross correlation of array output to 82 

improve the performance of the DOA techniques for NLAs. The application of these techniques 83 

in a weather impacted radio propagation scenario for NLA is challenging and is the focus of this 84 

work.   85 

 86 

The increasing demand on mobile broadband services has led to the scarcity of radio spectrum 87 

due to spectrum exhaustion (Zhang et al., 2015). This has led to migration to higher frequency 88 

millimetre-wave (mmW) bands, which range from 30 GHz to 300 GHz, for mmW 89 

communication with additional large bandwidths. Apart from the merits of increased bandwidth 90 

and high frequency reuse packing due to shorter wavelengths, mmW communication possesses 91 

its own challenges including large path loss suffered by mmW signals and the effect of the 92 

weather effectors to signals in this band.  Rainfall is a common weather phenomenon that affects 93 

signal transmission at this band.  In link budget design at lower frequencies, rainfall is 94 

considered as a fixed propagation attenuation taken into account in the planning (Pi et al., 2011). 95 

The signal suffers from absorption from the rain causing signal attenuation. Apart from 96 

attenuation, the signals undergo scattering when transmitted through rain leading to both 97 

amplitude attenuation and phase fluctuation (Ishimaru et al., 2004). Rain attenuation and 98 

scattering are a function of the rain rate, polarization, physical size of drops and operating 99 

frequency (Agber et al., 2013; Calla et al., 1990). Rainfall attenuation, frequency attenuation and 100 

phase distortion affect the received signal. It is therefore mandatory for DOA algorithms to 101 

consider weather effects for the systems. This has rarely been done in literature and therefore, 102 

addressed in this work. 103 

 104 

The performance of the DOA algorithms for NLA in weather affected channels needs to be 105 

evaluated. Moreover, better DOA algorithms design is required to mitigate against the weather 106 

effects. This work investigates and compares the performance of the NLA DOA algorithms on a 107 

rainfall-impacted network and develops a hybrid algorithm to combat the weather effects. We 108 

employ realistic markovian rainfall channel model to accurately capture the rainfall variations in 109 

the following cases: widespread, shower and thunderstorm rain events.  110 
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 111 

The structure of this paper is organized as follows. Section 2 presents the NLA system model. 112 

Section 3 presents the evaluation of NLA as co-prime array or with array interpolation. In section 113 

4, the weather impacted propagation channel is modelled. The proposed method for efficiently 114 

estimating the DOA and other conventional and subspace DOA estimation algorithms are 115 

presented in section 5. In section 6, the performance measures and overall performance 116 

evaluation algorithm are presented. The simulation results and discussion are presented in 117 

section 7 and the main conclusions drawn from them summarized in section 8. 118 

 119 

Notation: The bold upper- and lower-case letters represent the matrices and column vectors, 120 

respectively. 𝐼  is an identity matrix. The following superscripts (∙)∗ ,(∙)𝐻,(∙)−1 and (∙)𝑇 121 

represent optimality, Hermitian, inverse and transpose operators, respectively and 𝐸{∙} is the 122 

mathematical expectation. 𝑑 is the spacing difference between array elements, 𝑐 is the speed of 123 

light and 𝜆 is the wavelength. 124 

2 System model 125 

The system model consists of a source transmitting a signal  𝑠(𝑡)  that traverses through a 126 

weather-impacted environment to impinge on the antenna elements at an angle 𝜃. Assuming 127 

there are K uncorrelated narrowband plane-wave signals. The signals 𝑥(𝑡) induced on the 128 

antenna arrays are multiplied by adjustable complex weights 𝑤 and then summed to form the 129 

system output 𝑦(𝑡).  130 

 131 

 132 
 133 

Figure 1: Non-uniform linear array 134 

 135 
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A sparse NLA is considered with L existing elements. The sensors are separated with a distance 136 

𝑑𝑖, a multiple of a half wavelength from each other. As shown in Fig.1, the array has 137 

configuration, 𝐷 = [𝑑1, 𝑑2, … , 𝑑𝐿−1] such that 𝑑 = 𝜆 2⁄  ∗ [0, 𝑑2, … , 𝑑𝐿−1]. The system is 138 

assumed to be confined to an azimuth-only system with isotropic sensors.   139 

 140 

The received signal on the 𝑙𝑡ℎ element at the 𝑡𝑡ℎ snapshot is expressed as   141 

 142 

𝑥𝑙(𝑡) = ∑ 𝛼𝑖𝑠𝑖(𝑡) 𝑎𝑖(𝜃𝑖 + ∆𝜃𝑖) + 𝑣𝑖(𝑡)𝐾
𝑖=1   for 𝑖 = 1,2, … 𝐾,                                                       143 

(1) 144 

 145 

where 𝛼𝑖 is the rainfall attenuation, 𝜃𝑖 the angle of arrival,  ∆𝜃𝑖 the rainfall angle deviation, 𝑠𝑖(𝑡) 146 

is signal associated with the 𝑖𝑡ℎ  wave front and 𝑣𝑖(𝑡) is the additive white Gaussian noise at the 147 

𝑙𝑡ℎ  element. The total received signal vector 𝑋 is expressed as: 148 

 149 

𝑋 = 𝐴(𝜃)𝑆̃(𝑡) + 𝑉(𝑡),                                                                                                                   150 

(2) 151 

 152 

where  153 

                        𝑋 = [𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝐾(𝑡)]𝑇, 154 

 155 

         𝐴(𝜃) = [𝑎1(𝜃1), 𝑎2(𝜃2), … , 𝑎𝐾(𝜃𝐾)]
𝑇
, 156 

 157 

                        𝑆̃(𝑡) = [𝑠̃1(𝑡), 𝑠̃2(𝑡), … , 𝑠̃𝐾(𝑡)]𝑇, 158 

 159 

                       𝑉(𝑡) = [𝑣1(𝑡), 𝑣2(𝑡), … , 𝑣𝐾(𝑡)]𝑇,                                                                          (3) 160 

 161 

where 𝑠̃𝑖(𝑡) = 𝛼𝑖𝑠𝑖(𝑡) and 𝜃𝑖 = 𝜃𝑖 + ∆𝜃𝑖. The modelling and investigation of the rainfall 162 

attenuation 𝛼𝑖 and angle deviation ∆𝜃𝑖 due to the weather impacted rainfall channel for NLA is 163 

the key focus on this work. 164 

3 NLA methods 165 

3.1 Co-prime Array Scheme 166 

The NLA with L elements is divided into a co-prime array comprising of two spatially under 167 

sampled ULAs with co-prime spatial sampling rates (Vaidyanathan et al., 2011; Pal et al., 2011). 168 

This work utilizes the extended co-prime array configuration proposed in (Pal et al., 2011). In 169 

this configuration, the array is a union of two ULAs, one with N sensors and spacing 𝑀𝑑 and the 170 

other with sensors 2𝑀 − 1 and spacing 𝑁𝑑 as shown in the Fig. 2, where 𝑑 = 𝜆 2⁄  to avoid 171 

spatial aliasing. The total number of physical elements is L= 2𝑀 + 𝑁 – 1. 172 

 173 
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 174 
 175 

Figure 2: Co-prime array 176 

 177 

Denote 𝑑𝑖 = 𝜆 2⁄  ∗ [0, 𝑑2, … , 𝑑𝐿−1] as the positions of the array sensors where 𝑖 = 1, … , 2𝑀 +178 

𝑁 − 1, the first sensor is assumed as the reference, i.e., 𝑑1 = 0. From equation (1) the data vector 179 

received at the co-prime array is expressed as  180 

 181 

𝑥𝑙(𝑡) = ∑ 𝛼𝑖𝑠𝑖(𝑡) 𝑎𝑖(𝜃𝑖 + ∆𝜃𝑖) + 𝑣𝑖(𝑡)𝐾
𝑖=1 ,                                                                                  (4) 182 

 183 

where 184 

 185 

𝑎𝑖(𝜃𝑖) = [1, 𝑒
2𝜋𝑑2

𝜆
sin(𝜃̂𝑖), … , 𝑒

2𝜋𝑑2𝐿

𝜆
sin(𝜃̂𝑖)]𝑇,                                                                                 (5) 186 

 187 

is the steering vector of the array corresponding to 𝜃𝑖. The elements of the noise vector 𝑣(𝑡) are 188 

assumed to be independent and identically distributed (𝑖. 𝑖. 𝑑) random variables with a complex 189 

Gaussian distribution. The received signal vectors are similarly defined as in equation (2) and 190 

(3). The covariance matrix of data vector 𝑥𝑙(𝑡) is obtained as (Zhang et al., 2014) 191 

 192 

𝜎(𝑥, 𝑥) = 𝐸[𝑥𝑙(𝑡) 𝑥𝑙
𝐻(𝑡)] = 𝐴𝜎(𝑠, 𝑠)𝐴𝐻 + 𝜗2𝐼 

             = ∑ 𝜌𝑖
2𝑎(𝜃𝑖)𝑎𝐻(𝜃𝑖)𝐾

𝑖=1 + 𝜗2𝐼,                                                                                       (6) 193 

 194 

where 𝜎(𝑠, 𝑠) = 𝐸[𝑠𝑙(𝑡)𝑠𝑙
𝐻(𝑡)] = 𝑑𝑖𝑎𝑔([𝜌1

2, … , 𝜌𝐼
2]) is the source covariance matrix, 𝑑𝑖𝑎𝑔(∙) 195 

denotes a diagonal matrix that uses the elements of a vector as its diagonal elements, 𝜌𝑖
2 denotes 196 

the input signal power of the 𝑖𝑡ℎ signal, 𝜗2denotes the noise variance and 𝐼 is the identity matrix. 197 

In practice, the exact covariance matrix 𝜎(𝑥, 𝑥) is approximated by its sample estimate 𝜎̂(𝑥, 𝑥) 198 

using the available 𝑍 snapshots, given by  199 

 200 

𝜎̂(𝑥, 𝑥) =
1

𝑍
∑ 𝑥𝑙(𝑡) 𝑥𝑙

𝐻(𝑡)𝑍
𝑗=1 .                                                                                                     (7) 201 

 202 

The sample covariance matrix 𝜎̂(𝑥, 𝑥) approaches the theoretical version 𝜎(𝑥, 𝑥) as the number 203 

of snapshots tends to infinity. The covariance matrix is utilised by the applied coprime DOA 204 

algorithms of section 5.  205 

3.2 Modified Array Interpolation Scheme 206 

The implemented interpolation considers an interpolation sector [𝜃𝑏, 𝜃𝑓 ] with the source DOA’s 207 

assumed to be inside the sector 𝜃 ∈ [𝜃𝑏, 𝜃𝑓 ]. The interpolation sector is uniformly divided into 208 
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∆𝜃 intervals such that 𝜃𝑖 = 𝑖∆𝜃, 𝑖 = 0 𝑡𝑜⌊(𝜃𝑓 − 𝜃𝑏) ∆𝜃⁄ ⌋. With  𝐴(𝜃) and 𝐴̅(𝜃) the manifold 209 

matrices of ULA and NLA respectively, the mapping matrix of the conventional interpolation 210 

array B is given by (Tuncer et al., 2007; Li et al., 2014) 211 

 212 

𝐵 = (𝐴(𝜃)𝐴(𝜃)𝐻)−1𝐴(𝜃)𝐴̅(𝜃̂)𝐻,                                                                                                 (8) 213 

 214 

Then an interpolation matrix B is designed to satisfy the least squares problem i.e. 215 

  216 

min𝐵‖𝐵𝐻𝐴(𝜃) − 𝐴̅(𝜃)‖
𝐹

2
,                                                                                                               217 

(9) 218 

 219 

where ‖ ∙ ‖𝐹 denotes the Frobenius norm of a matrix. The finite interpolation points results in 220 

interpolation mapping errors making the estimations not statistically optimal (Belloni et al., 221 

2007). To alleviate this, the new transformation matrix 𝐺 is reconstructed by projecting the 222 

transformational matrix with the sample array covariance matrix 223 

 224 

𝐺 = (𝐵̅𝐻𝐵̅)−1/2𝐵̅𝐻,                                                                                     (10) 225 

 226 

where 𝐵̅ = 𝜎̂(𝑥, 𝑥)𝐵. The real antenna array steering vector 𝑎(𝜃) and the virtual array steering 227 

vector 𝑎̅(𝜃) have the following relationship, 𝐺𝑎(𝜃) = (𝐵̅𝐻𝐵̅)−
1

2𝑎̅(𝜃) = 𝑎̂̅(𝜃).  As a result of 228 

noise pre-whitening for cases where background noise becomes non-Gaussian after virtual 229 

transformation. The covariance matrix of the virtual antenna can be computed by using the 230 

transformation matrix 𝐺 as (Li et al., 2014) as 231 

 232 

𝜎̂̅(𝑥, 𝑥) = 𝐺𝜎(𝑥, 𝑥)𝐺𝐻 = 𝐴̂̅𝜎(𝑠, 𝑠)𝐴̂̅𝐻 + 𝜗2𝐼,                                                                             (11) 233 

 234 

with 𝜎̂̅(𝑥, 𝑥) the covariance matrix and array manifold 𝐴̂̅ are the pre-whitened values of the 235 

virtual antenna array and  𝜎(𝑠, 𝑠) = 𝐸[𝑠𝑙(𝑡)𝑠𝑙
𝐻(𝑡)]. The covariance matrix is utilised by the 236 

applied DOA algorithms of section 5.  237 

 238 

4 Weather channel parameter modelling  239 

4.1 Rainfall modelling 240 

The signal attenuation magnitude largely depends on the rain intensity. Based on its intensity, 241 

rain event may be classified into drizzle (D), widespread (W), shower (S) and thunderstorm (T). 242 

Table 1 presents the rain intensities of the four classes of rain. The rainfall is modelled by four or 243 

fewer states of a Markov Chain, R, given by 244 

R =  {D, W, S, T}.                                                                                 (12) 245 

Table 1. Rain Rate Categories 246 

Description Rain Rate (𝒓) Steady state 
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mm\hr prob. 𝜋𝑛 

Drizzle 1-5 𝜋𝐷 

Widespread 5-10 𝜋𝑊 

Shower 10-40 𝜋𝑆 

Thunderstorm >40 𝜋𝑇 

 247 

Practical rainfall, widespread, shower and thunderstorm events consist of a mix of the different 248 

rain events (Alonge et al., 2015). This work utilizes Markov models developed from actual rain 249 

data to model practical rain events, with the state transition diagram and state transition 250 

probabilities as given below: 251 

i) Widespread rainfall: Consists of drizzle and widespread events. The markovian transition 252 

among states in this event is shown in Fig. 3, with the transition probabilities, 𝑃𝑖,𝑗
𝑊,  form state 𝑖  253 

to 𝑗, with 𝑖, 𝑗 ∈ 𝑅 given by equation (13) 254 

 255 

Figure 3: Widespread rainfall. 256 

𝑃𝑖,𝑗
𝑊 = [

𝑃𝐷𝐷 𝑃𝐷𝑊

𝑃𝑊𝐷 𝑃𝑊𝑊
],                                                                                                      (13) 257 

where  𝑃𝐷𝑊 is the transition from drizzle to widespread, 𝑃𝑊𝐷 is the transition from widespread to 258 

drizzle, 𝑃𝐷𝐷 is the no transition from drizzle and  𝑃𝑊𝑊 is the no transition from widespread. 259 

ii) Shower rainfall consists of drizzle, widespread and shower events. The markovian transition 260 

among states in this event is shown in Fig. 4, with the transition probabilities, 𝑃𝑖,𝑗
𝑆 ,  form state 𝑖  261 

to 𝑗, with 𝑖, 𝑗 ∈ 𝑅 given by equation (14) 262 

𝑃𝑖,𝑗
𝑆 = [

𝑃𝐷𝐷 𝑃𝐷𝑊 𝑃𝐷𝑆

𝑃𝑊𝐷 𝑃𝑊𝑊 𝑃𝑊𝑆

𝑃𝑆𝐷 𝑃𝑆𝑊 𝑃𝑆𝑆

],                                                                                                      (14) 263 

where   𝑃𝐷𝑆 is the transition from drizzle to shower, 𝑃𝑊𝑆 is the transition from widespread to 264 

shower, 𝑃𝑆𝐷 is the transition from shower to drizzle, 𝑃𝑆𝑊 is the transition from shower  to 265 

widespread and 𝑃𝑆𝑆 is the no transition from shower. 266 
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 267 

Figure 4: Shower rainfall 268 

iii) Thunderstorm rainfall consists of drizzle, widespread, shower and thunderstorm events. The 269 

markovian transition among states in this event is shown in Fig. 5, with the transition 270 

probabilities, 𝑃𝑖,𝑗
𝑇 ,  form state 𝑖  to 𝑗, with 𝑖, 𝑗 ∈ 𝑅 given by equation (15) 271 

 272 

Figure 5: Thunderstorm rainfall 273 

𝑃𝑖,𝑗
𝑇 = [

𝑃𝐷𝐷 𝑃𝐷𝑊 𝑃𝐷𝑆

𝑃𝑊𝐷

𝑃𝑆𝐷

𝑃𝑇𝐷

𝑃𝑊𝑊

𝑃𝑆𝑊

𝑃𝑇𝑊

𝑃𝑊𝑆

𝑃𝑆𝑆

𝑃𝑇𝑆

𝑃𝐷𝑇

𝑃𝑊𝑇

𝑃𝑆𝑇

𝑃𝑇𝑇

],                                                                                              (15) 274 

where   𝑃𝐷𝑇 is the transition from drizzle to thunderstorm, 𝑃𝑊𝑇 is the transition from widespread 275 

to thunderstorm, 𝑃𝑆𝑇 is the transition from shower to thunderstorm, 𝑃𝑇𝐷 is the transition from 276 

thunderstorm to drizzle, 𝑃𝑇𝑊 is the transition from thunderstorm to widespread, 𝑃𝑇𝑆 is the 277 

transition from thunderstorm to shower and 𝑃𝑇𝑇 is the no transition from thunderstorm.  278 

The transition probabilities used are practically obtained as in (Alonge et al., 2015). The steady 279 

state probability of an event 𝑛, 𝜋𝑛 = {𝜋𝐷, 𝜋𝑊, 𝜋𝑆,𝜋𝑇}, is solved by the standard Markov chain 280 

solution methods. The expected rate for a rainfall occurrence is derived from the probabilities as  281 
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 𝐸[𝑟] = ∑ 𝑟𝑛𝜋𝑛𝑛 ,                                                                                                                   (16) 282 

where    𝑟𝑛   is the mean rain event and 𝜋𝑛 is the steady state probability of the 𝑛𝑡ℎ state of the 283 

Markov model. The actual rain rate 𝑟 is computed from a lognormal distribution with the given 284 

mean (Kedem et al., 1987; Cho et al., 2004).                                285 

4.2 Attenuation model 286 

We consider a radio propagation environment where the signal is affected by attenuation due to 287 

the weather-impacted factors. The total attenuation 𝐴𝑇 is given by 288 

 289 

𝐴𝑇 = 𝛼𝑟 + 𝐿𝑓𝑠,                                                                                        (17) 290 

where 𝛼𝑟 is the rain attenuation. The ITU rainfall model (I.T.U et al., 2005) is used for 291 

attenuation as   292 

𝛼𝑟 = 𝑐𝑟𝑎,                                                                                                                                    (18) 293 

where 𝑟 is the expected rain rate. The parameter c and exponent 𝑎 depend on the frequency, 294 

f(GHz), the polarization state, and the elevation angle of the signal path.  Free space loss 295 

attenuation, 𝐿𝑓𝑠 is given by 296 

 297 

𝐿𝑓𝑠 = 20 ∗ log10 (
4𝜋𝑑

𝜆
) ,                                                                                     (19) 298 

 299 

where  𝜆 is the signal wavelength in metres and 𝑑 is the distance from the transmitter.      300 

4.3 Angle deviation model 301 

The weather factors result in the delay and scattering of the transmitted signal leading to a phase 302 

angle change, the angle deviation. The angle deviation, ∆𝜃𝑖, is modelled as a normal distributed 303 

random variable with a mean 𝜇𝜃 bounded as follows 304 

 305 

∆𝜃𝑚𝑖𝑛 ≤ ∆𝜃𝑖 ≤ ∆𝜃𝑚𝑎𝑥,                                                                            (20) 306 

 307 

where ∆𝜃𝑚𝑖𝑛 and ∆𝜃𝑚𝑎𝑥 are the minimum and maximum angle deviations respectively. The 308 

mean 𝜇𝜃 is derived from the normalized rain rate 309 

 310 

𝜇𝜃 = 𝑟 𝑟𝑚𝑎𝑥⁄ ,                                                                                                                           (21)   311 

  312 

and 𝑟𝑚𝑎𝑥 is the maximum rain rate. The assumption is reasonable as the heavier the rain, the 313 

more the scattering. The standard deviation is kept constant.  314 
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5 DOA Estimation Algorithms 315 

5.1 MVDR Algorithm 316 

5.1.1 MVDR Co-prime NLA 317 

The MVDR algorithm minimizes the output power and constrains the gain in the direction of 318 

desired signal to unity as follows (Yu et al., 2015), 319 

 320 

𝑚𝑖𝑛𝐸{|𝑦𝑖(𝑡)|2} = 𝑚𝑖𝑛 𝑤𝐻𝜎̂(𝑥, 𝑥)𝑤 ,                                                                                        (22) 321 

 322 

subject to 𝑤. 𝑎(𝜃) = 1, where 𝑦𝑖(𝑡) is the output of the array system and is given by  323 

 324 

𝑦𝑖(𝑡) = 𝑤𝐻𝜎̂(𝑥, 𝑥)𝑤.                                                                                                                  (23) 325 

 326 

The weight vector 𝑤 is given by 327 

 328 

𝑤 =  
(𝜎̂(𝑥,𝑥))−1𝑎(𝜃̂)

𝑎𝐻(𝜃̂)(𝜎̂(𝑥,𝑥))−1𝑎(𝜃̂)
 ,                                                                                                              (24) 329 

 330 

where 𝜎̂(𝑥, 𝑥)is covariance matrix of the received signal for the 𝐿 number of elements given by 331 

equation (7). H is the Hermitian matrix and 𝑎(𝜃) is the steering vector. The MVDR spatial 332 

spectrum is defined by  333 

 334 

𝑃𝑀𝑉𝐷𝑅_𝐶𝑜−𝑃𝑟𝑖𝑚𝑒 =
1

𝑎𝐻(𝜃̂)(𝜎̂(𝑥,𝑥))−1𝑎(𝜃̂)
.                                                                                         (25) 335 

The computational steps of MVDR algorithm using co-prime array are summarized in Algorithm 336 

1. 337 

 338 

 

Algorithm 1: MVDR Algorithm using Co-prime array 

1. Input: 𝑥 = {𝑥𝑖(𝑡)} = 𝑓(𝛼𝑖 , 𝜃𝑖), 𝑀, 𝑁, 𝐿, 𝐾, 𝑑, 𝜆, 𝑍 and 𝜇 ← Step size 

2. Compute covariance matrix 𝜎̂(𝑥, 𝑥)equation (7)  

3. Compute the weight vector 𝑤, equation (24) 

4. Compute the output array system 𝑦𝑖(𝑡), equation (23)  

5. while 𝑤. 𝑎(𝜃) ≠ 1 

    do Minimize the output power, equation (22),  

    Subject to 𝑤. 𝑎(𝜃) = 1,  

6. Compute MVDR spectrum for co-prime array, equation (25)  

5.1.2 MVDR Interpolation NLA 339 

The spectrum of MVDR by array interpolation is given by (Friedlander et al., 1992) 340 

 341 

𝑃𝑀𝑉𝐷𝑅_𝐴𝐼 =
1

𝑎𝐻(𝜃̂)(𝜎̂̅(𝑥,𝑥))−1𝑎(𝜃̂)
,                                                                                                    (26)   342 

 343 
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where 𝑎(𝜃) is the steering vector and 𝜎̂̅(𝑥, 𝑥)  is the covariance matrix of the virtual antenna 344 

derived in equation (11). The computational steps of MVDR array interpolation algorithm are 345 

summarized in Algorithm 2. 346 

 347 

 

Algorithm 2: MVDR Algorithm using array interpolation 

1. Input: 𝑥 = {𝑥𝑖(𝑡)} = 𝑓(𝛼𝑖 , 𝜃𝑖), 𝑀, 𝑁, 𝐿, 𝐾, 𝑑, 𝜆, 𝑍 and 𝜇 ← Step size 

2. Determine the ULA array manifold 𝐴(𝜃) 

3. Compute the real array covariance matrix 𝜎̂(𝑥, 𝑥) equation (7) 

4. Compute the virtual array manifold 𝐴̅(𝜃̂) and the mapping matrix of the 

conventional interpolation array 𝐵 using (8) and the least squares problem (9). 

5. Compute transformation matrix 𝑇 in equation (10). 

6. Compute the covariance matrix 𝜎̂̅(𝑥, 𝑥) in equation (11) of the virtual array 

using the transformation matrix 𝑇 in step 5. 

7. Compute the weight vector 𝑤, equation (24), but using variance of step 6-

𝜎̂̅(𝑥, 𝑥).  

8. Compute the output array system 𝑦𝑖(𝑡), equation (23)  

9. while 𝑤. 𝑎(𝜃) ≠ 1 

    do Minimize the output power, equation (22),  

    Subject to 𝑤. 𝑎(𝜃) = 1,  

10. Compute MVDR array interpolation spectrum for NLA, equation (26) 

5.2 MUSIC Algorithm 348 

5.2.1 MUSIC Co-prime NLA 349 

For MUSIC, an estimate 𝜎(𝑥, 𝑥) of the covariance matrix is obtained and its eigenvectors 350 

decomposed into orthogonal signal and noise subspace (Tan et al., 2014; Li et al., 2019), where 351 

the DOA is estimated from one of these subspaces. The algorithm searches through the set off all 352 

possible steering vectors to find the ones orthogonal to the noise subspace. The diagonal 353 

covariance matrix 𝜎̂(𝑥, 𝑥)given by equation (7) is vectorized into  354 

 355 

𝜎̂(𝑥, 𝑥) = 𝑄Λ𝑄𝐻,                                                                                                                         (27) 356 

 357 

where 𝑄 is a unitary matrix containing the eigenvectors and a diagonal matrix 358 

Λ = 𝑑𝑖𝑎𝑔{𝜆1, 𝜆2 … 𝜆𝐾}, of real eigenvalue ordered as 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐾 ≥ 0. The vector that is 359 

orthogonal to A is the eigenvector of R having the eigenvalues of Λ. The MUSIC spatial 360 

spectrum is defined by  361 

 362 

𝑃𝑀𝑈𝑆𝐼𝐶𝐶𝑜−𝑃𝑟𝑖𝑚𝑒(θ̂) =
1

aH(𝜃̂)QnQn
Ha(𝜃̂)

,                                                                                          (28)       363 

                                               364 

where 𝑎(𝜃) is the steering vector corresponding to one of the incoming signals and Qn is the 365 

noise subspace of the eigenvectors. The MUSIC technique for co-prime array is summarized in 366 

Algorithm 3. 367 

 368 
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Algorithm 3:  MUSIC Algorithm using co-prime 

1. Input: 𝑥 = {𝑥𝑖(𝑡)} = 𝑓(𝛼𝑖 , 𝜃𝑖), 𝑀, 𝑁, 𝐿, 𝐾, 𝑑, 𝜆, 𝑍 and 𝜇 ← Step size 

2. Compute covariance matrix 𝜎̂(𝑥, 𝑥)equation (7) 

3. Decompose 𝜎̂(𝑥, 𝑥)into eigenvectors and eigenvalues in equation (27) 

4. Rearrange the eigenvectors and eigenvalues into the signal subspace and noise 

subspace 

5. Compute the co-prime array MUSIC spectrum equation (28) by spanning θ̂ to 

acquire estimates of the angle of arrival 

6. Determine the substantial peaks of 𝑃𝑀𝑈𝑆𝐼𝐶𝐶𝑜−𝑃𝑟𝑖𝑚𝑒(θ̂)to acquire estimates of 

the angle of arrival 

5.2.2 MUSIC Interpolation NLA 369 

The autocorrelation matrix is decomposed into signal and noise subspaces. From (11) the 370 

covariance matrix 𝜎̂̅(𝑥, 𝑥) is decomposed as (Li et al., 2014): 371 

 372 

𝜎̂̅(𝑥, 𝑥) = 𝑈𝑆∑𝑆𝑈𝑆
𝐻 + 𝑈𝑁∑𝑁𝑈𝑁

𝐻,                                                                                                 (29) 373 

 374 

where 𝑈𝑆 represents the signal subspace, 𝑈𝑁 represents the noise subspace; 375 

∑𝑆 = 𝑑𝑖𝑎𝑔{𝜆1, 𝜆2, … , 𝜆𝑀} is the signal eigenvalue; ∑𝑁 = 𝑑𝑖𝑎𝑔{𝜆𝑀+1, 𝜆𝑀+2, … , 𝜆𝑁}is the noise 376 

eigenvalue. The noise subspace ∑𝑁 is orthogonal to all 𝑀 signal steering vectors. The spectrum 377 

of the MUSIC, algorithm is given by 378 

 379 

𝑃𝑀𝑈𝑆𝐼𝐶_𝐴𝐼(θ̂) =
1

𝑎𝐻(𝜃̂)𝑈𝑁𝑈𝑁
𝐻𝑎(𝜃̂)

=
1

‖𝑈𝑁
𝐻𝑎(𝜃̂)‖

.                                                                                      380 

(30) 381 

 382 

If 𝜃 is equal to DOA, the noise subspace 𝑈𝑁 is orthogonal to the signal steering vectors and 383 

‖𝑈𝑁
𝐻𝑎(𝜃)‖ becomes zero when 𝜃 is a signal direction and the denominator is identical to zero. It 384 

is obvious that in practice, 𝑈𝑁
𝐻𝑎(𝜃) ≠ 0 due to finite samples. If this happens, the performance 385 

of MUSIC algorithm will not be optimal.  386 

 387 

The MUSIC technique using array interpolation is summarized in Algorithm 4. 388 

 389 

 

Algorithm 4:  MUSIC  Algorithm using array interpolation 
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1. Input: 𝑥 = {𝑥𝑖(𝑡)} = 𝑓(𝛼𝑖 , 𝜃𝑖), 𝑀, 𝑁, 𝐿, 𝐾, 𝑑, 𝜆, 𝑍 and 𝜇 ← Step size  

2. Determine the ULA array manifold 𝐴(𝜃) 

3. Compute the real array covariance matrix 𝜎̂(𝑥, 𝑥) equation (7) 

4. Compute the virtual array manifold 𝐴̅(𝜃̂) and the mapping matrix of the 

conventional interpolation array 𝐵 using (8) and the least squares problem (9). 

5. Compute transformation matrix 𝐺 in equation (10). 

6. Compute the covariance matrix 𝜎̂̅(𝑥, 𝑥) in equation (11) of the virtual array 

using the transformation matrix 𝐺 in step 5. 

7. Decompose 𝜎̂̅(𝑥, 𝑥) into eigenvectors and eigenvalues in equation (29) 

8. Rearrange the eigenvectors and eigenvalues into the signal subspace and noise 

subspace. 

9. Compute MUSIC array interpolation spectrum for NLA, equation (30) by 

spanning θ̂ to acquire estimates of the angle of arrival 

10. Determine the substantial peaks of 𝑃𝑀𝑈𝑆𝐼𝐶_𝐴𝐼(θ̂)to acquire estimates of the 

angle of arrival. 

5.3 A-MUSIC Algorithm 390 

5.3.1 A-MUSIC Co-prime NLA 391 

The existing MVDR and MUSIC algorithms are adversely affected by the low SNR in rain-392 

impacted systems and need modifications. The A-MUSIC algorithm (Nxumalo et al., 2019) 393 

repeatedly reconstructs the covariance matrix to obtain two noise and signal subspaces 394 

continuously that are averaged for several iterations mitigating against the low SNR effects. 395 

From (7), the covariance matrix 𝜎̃(𝑥, 𝑥) is reconstructed as  396 

 397 

𝜎̃(𝑥, 𝑥) = 𝜎̂(𝑥, 𝑥) + 𝐽𝜎̂(𝑥, 𝑥)∗𝐽,                                                                                                  (31)       398 

 399 

where 𝐽 is MATLAB constructions given as 𝐽 = 𝑓𝑙𝑖𝑝𝑙𝑟(𝑒𝑦𝑒(𝐿))  which returns columns flipped 400 

in the left-right direction and 𝐿 is the number of elements. The eigen decomposition on 401 

reconstructed covariance matrix 𝜎̃(𝑥, 𝑥) is 402 

 403 

𝜎̃(𝑥, 𝑥) = 𝑄̂Λ𝑄̂𝐻 = 𝑄𝑆1Λ𝑆1𝑄𝑆1
𝐻 + 𝑄𝑁1Λ𝑁1𝑄𝑁1

𝐻 ,                                                                         (32) 404 

 405 

where 𝜎̃(𝑥, 𝑥) is divided into signal subspace 𝑄𝑆 and noise subspace 𝑄𝑁. Using low rank of 406 

matrix instead of full rank matrix, 𝜎̃(𝑥, 𝑥) can be reconstructed into  𝜔𝑥 as      407 

                                                                                                                                                                                                                            408 

𝜔𝑥 = 𝑄𝑆2Λ𝑆2𝑄𝑆2
𝐻 + 𝑄𝑁2Λ𝑁2𝑄𝑁2

𝐻 .                                                                                                (33) 409 

 410 

The average signal subspace, signal eigenvalue, noise subspace, and the noise eigenvalue are 411 

given by 412 

 413 

𝑄𝑆 =
(𝑄𝑆1+𝑄𝑆2)

2
 ,  𝑄𝑁 =

(𝑄𝑁1+𝑄𝑁2)

2
,  414 

 415 
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Λ𝑆 =
(Λ𝑆1+Λ𝑆2)

2
,Λ𝑁 =

(Λ𝑁1+Λ𝑁2)

2
                                                                                                   (34) 416 

 417 

The A-MUSIC spectrum is then defined by  418 

 419 

𝑃𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑−𝑀𝑈𝑆𝐼𝐶(𝜃) =
𝑎𝐻(𝜃̂)[

(𝜎̆(𝑠,𝑠)𝜎̆(𝑠,𝑠)𝐻)

𝐾
]𝑎(𝜃̂)

𝑎𝐻(𝜃̂)𝜎̆(𝑛,𝑛)𝑎(𝜃̂)
 ,                                                                           (35)      420 

   421 

where 𝜎̆(𝑠, 𝑠) = 𝑄𝑆Λ𝑆
−1𝑄𝑆

𝐻, and 𝜎̆(𝑛, 𝑛) = 𝑄𝑁Λ𝑁
−1𝑄𝑁

𝐻 are signal and noise subspace covariance 422 

matrix. The A-MUSIC technique using co-prime array is summarized in algorithm 5. 423 

 424 

 

Algorithm 5: Proposed A-MUSIC Algorithm using co-prime array 

1. Input: 𝑥 = {𝑥𝑖(𝑡)} = 𝑓(𝛼𝑖 , 𝜃𝑖), 𝑀, 𝑁, 𝐿, 𝐾, 𝑑, 𝜆, 𝑍 and 𝜇 ← Step size 

2. Compute the covariance matrix 𝜎̂(𝑥, 𝑥),  equation (7) 

3. Compute reconstructed covariance matrix 𝜎̃(𝑥, 𝑥),  equation (31) 

4. Compute the eigen decomposition on reconstructed covariance matrix 𝜎̃(𝑥, 𝑥),  
equation (32)  

5. Compute reconstructed covariance matrix 𝜔𝑥 in equation (33) 

6. Compute the average signal subspace, noise subspace, signal eigenvalues, and 

the noise eigenvalue, 𝑄𝑆, 𝑄𝑁, Λ𝑆, Λ𝑁 in equation (34) 

7. Determine signal and noise subspace averaged covariance matrix 𝜎̆(𝑠, 𝑠), 
𝜎̆(𝑛, 𝑛) 

8. Compute the spectrum function, equation (35) spanning 𝜃. 

5.3.2 A-MUSIC Interpolation NLA 425 

In A-MUSIC array interpolation, we reconstruct the decomposed autocorrelation matrix into 426 

signal and noise subspaces. Using equation (11), the reconstructed covariance matrix 𝜎⃗(𝑥, 𝑥) can 427 

be written as  428 

 429 

𝜎⃗(𝑥, 𝑥) = 𝜎̂̅(𝑥, 𝑥) + 𝐽𝜎̂̅(𝑥, 𝑥)∗𝐽,                                                                                                  (36) 430 

 431 

with 𝜎̂̅(𝑥, 𝑥) the covariance matrix of equation (29). The eigen decomposition on reconstructed 432 

covariance matrix 𝜎⃗(𝑥, 𝑥) is 433 

 434 

𝜎⃗(𝑥, 𝑥) = Φ̂ΠΦ̂𝐻 = Φ𝑆1Π𝑆1Φ𝑆1
𝐻 + Φ𝑁1Π𝑁1Φ𝑁1

𝐻 ,                                                                      (37) 435 

 436 

where 𝜎⃗(𝑥, 𝑥) is divided into signal subspace Φ𝑆 and noise subspace Φ𝑁. Using low rank of 437 

matrix instead of full rank matrix, 𝜎⃗(𝑥, 𝑥) can be reconstructed into  𝜛𝑥 as  438 

                                                                                                                                                                                                                                               439 

𝜛𝑥 = Φ𝑆2Π𝑆2Φ𝑆2
𝐻 + Φ𝑁2Π𝑁2Φ𝑁2

𝐻 .                                                                                              (38) 440 

 441 

The average signal subspace, signal eigenvalue, noise subspace, and the noise eigenvalue are 442 

given by 443 

 444 
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Φ𝑆 =
(Φ𝑆1+Φ𝑆2)

2
 ,  Φ𝑁 =

(Φ𝑁1+Φ𝑁2)

2
,  445 

 446 

Π𝑆 =
(Π𝑆1+Π𝑆2)

2
,Π𝑁 =

(Π𝑁1+Π𝑁2)

2
                                                                                                  (39) 447 

 448 

The A-MUSIC spectrum is then defined by  449 

 450 

𝑃𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑−𝑀𝑈𝑆𝐼𝐶(𝜃) =
𝑎𝐻(𝜃)[

(𝜎⃗⃗⃗(𝑠,𝑠)𝜎⃗⃗⃗(𝑠,𝑠)𝐻)

𝐼
]𝑎(𝜃̂)

𝑎𝐻(𝜃̂) 𝜎⃗⃗⃗(𝑛,𝑛)𝑎(𝜃̂)
,                                                                            (40)                 451 

 452 

where 𝜎⃗(𝑠, 𝑠) = Φ𝑆Π𝑆
−1Φ𝑆

𝐻, and 𝜎⃗(𝑛, 𝑛)  = Φ𝑁Π𝑁
−1Φ𝑁

𝐻 are signal and noise subspace covariance 453 

matrix. The A-MUSIC technique is summarized in Algorithm 6. 454 

 455 

 

Algorithm 6: Proposed A-MUSIC Algorithm using array interpolation 

1. Input: 𝑥 = {𝑥𝑖(𝑡)} = 𝑓(𝛼𝑖 , 𝜃𝑖), 𝑀, 𝑁, 𝐿, 𝐾, 𝑑, 𝜆, 𝑍 and 𝜇 ← Step size 

2. Determine the ULA array manifold 𝐴(𝜃) 

3. Compute the real array covariance matrix 𝜎̂(𝑥, 𝑥) equation (7) 

4. Compute the virtual array manifold 𝐴̅(𝜃̂) and the mapping matrix of the 

conventional interpolation array 𝐵 using (8) and the least squares problem (9). 

5. Compute transformation matrix 𝐺 in equation (10). 

6. Compute the covariance matrix 𝜎̂̅(𝑥, 𝑥) in equation (11) of the virtual array 

using the transformation matrix 𝐺 in step 5. 

7. Compute reconstructed covariance matrix 𝜎⃗(𝑥, 𝑥) equation (36) 

8. Decompose 𝜎⃗(𝑥, 𝑥) into eigenvectors and eigenvalues, equation (37) 

9. Compute the average signal subspace, noise subspace, signal eigenvalues, and 

the noise eigenvalue Φ𝑆, Φ𝑁, Π𝑆, Π𝑁, equation (39) 

10. Determine signal and noise subspace averaged covariance matrix 𝜎⃗(𝑠, 𝑠), 

𝜎⃗(𝑛, 𝑛) 

11. Compute the spectrum function 𝑃𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑−𝑀𝑈𝑆𝐼𝐶(𝜃) spanning 𝜃 equation 

(40). 

6 Performance Measures 456 

6.1 Root Mean Square Error (RMSE) 457 

The performance of the DOA estimation algorithms is evaluated in terms of algorithms spectrum 458 

functions, equations (25), (26), (28), (30), (35) and (40), the Root Mean Square Error (RMSE) 459 

and the signal to noise ratios.  The RMSE is given by 460 

 461 

𝑅𝑀𝑆𝐸 = √
1

𝑍∗𝐾
∑ ∑ (𝜃̃𝑖𝑗 − 𝜃𝑖)2𝐾

𝑖=1
𝑍
𝑗=1  ,                                                                                        (41)  462 

 463 
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where 𝑍 is the number of simulation trials, 𝐾 is the narrowband electromagnetic wave sources 464 

impinging upon the array and the estimate of the 𝑖𝑡ℎ angle of arrival in the 𝑗𝑡ℎ trial is 𝜃̃𝑖𝑗. Where 465 

utilised, the signal to noise ratio (SNR) is given by  466 

 467 

𝑆𝑁𝑅 = 20 log10 (
𝑥

𝑣
) ,                                                                                                                  (42) 468 

where 𝑥 is the received signal strength in dB and 𝑣 is the noise strength in dB. The overall 469 

performance evaluation is done as in algorithm 7. 470 

 471 

 

Algorithm 7: System Algorithm 

1.  Choose an event 

2. Compute expected rain rate, equation (16) 

Compute the actual rain rate 𝑟 from lognormal distribution with given mean 

3.     for 𝑖 number of antennas < 𝐿𝑚𝑎𝑥 

4.            Compute the rain attenuation 𝛼𝑟, total attenuation 𝐴𝑇  

              and angle 𝜃𝑖. 

               Determine the angle deviation ∆𝜃𝑖, equation (20) and the  

               mean 𝜇𝜃. 

5.     end for 

6.  Determine the received signal 𝑥𝑖(𝑡). 

7. Compute DOA, algorithms 1, 2, 3, 4, 5 and 6. 

6.2 Cramer Rao Bound (CRB) 472 

To validate our DOA estimators, the Cramer Rao Bound (CRB) which shows the limit that can 473 

be achieved by an unbiased estimator is applied. The general CRB formula for the case of 474 

multiple DOA parameters per source and spatially uncorrelated white noise is developed in 475 

(Nehorai et al., 1994). The following compact matrix expression for the stochastic CRB was 476 

derived in (Stoica et al., 1990) and is applied in our case with the few required modification, 477 

 478 

𝐶𝑅𝐵 =
𝜎2

2𝑇
(𝑅𝑒{𝐻 ⊙ 𝐺𝑇})−1,                                                                                                      (42) 479 

 480 

where 𝑇 is the number of data snapshots, 𝐻 = 𝐷𝐻[𝐼 − 𝐴(𝐴𝐻𝐴)−1𝐴𝐻]𝐷, 481 

𝐺 = 𝜎(𝑠, 𝑠)𝐴𝐻(𝜎(𝑥, 𝑥))−1𝐴𝜎(𝑠, 𝑠), 𝐷 = [𝑑(𝜃1), … , 𝑑(𝜃𝐾)], 𝑑(𝜃𝑖) =
𝑑𝑎(𝜃)

𝑑𝜃
⁄ |𝜃=𝜃𝑖

,  482 

𝜎(𝑥, 𝑥) = 𝐸[𝑥(𝑡)𝑥𝐻(𝑡)] = 𝐴𝜎(𝑠, 𝑠)𝐴𝐻 + 𝜗2𝐼,  𝜎(𝑠, 𝑠) = 𝐸[𝑠(𝑡)𝑠𝐻(𝑡)], 𝐼 is the identity matrix, 483 

𝜗2 is the noise variance, and 𝐸{⋅} denotes the expectation. 484 

6.3 DOA Estimation Algorithm complexity 485 

The complexity of MVDR and MUSIC algorithm has been derived and shown in Table 2 (Meng 486 

et al., 2019). For A-MUSIC, there are three major computational steps needed to estimate the 487 

DOA. The complexity of the first step is the covariance function and reconstruction of the 488 

covariance matrix, 𝒪(𝐿2𝐾). The second step is the eigenvalue decomposition operation, which 489 

has a complexity of 𝒪(𝐿3). The third step is obtaining the spatial pseudo spectrum, which has a 490 
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complexity of 𝒪(𝐽𝜃 . 𝐽∆𝜃(𝐿 + 1)(𝐿 − 𝐾)/2), with J being the number of spectral points of the 491 

total angular field of view. Therefore, the total complexity of A-MUSIC is given by 𝒪(𝐿2𝐾 +492 

𝐿3) + 𝒪(𝐽𝜃 . 𝐽∆𝜃(𝐿 + 1)(𝐿 − 𝐾)/2). 493 

 494 

Note that the complexity of deriving the covariance matrix for co-prime and array interpolation, 495 

and the complexity of deriving the weather effectors is same for all the algorithms and is not 496 

included in the derivation. 497 

 498 

Table 2. Computational Complexities of DOA Estimation Algorithms. 499 

 500 

 

DOA algorithm 

 

Computational Complexity 

 

MVDR 𝒪(𝐿2𝐾 + 𝐿3 + (2𝐿2 + 3𝐿)) 

MUSIC 𝒪(𝐿2𝐾 + 𝐿3 + 𝐽𝐿) 

A-MUSIC 𝒪(𝐿2𝐾 + 𝐿3) + 𝒪(𝐽𝜃. 𝐽∆𝜃(𝐿 + 1)(𝐿 − 𝐾)/2) 

7 Simulation Results 501 

 502 

An investigation into the performance of MVDR, MUSIC and the proposed A-MUSIC DOA 503 

algorithms for NLA is presented in this section. The performance investigation is based on co-504 

prime array and array interpolation methods of a pair of sparse NLAs for different number of 505 

array elements, rain rates and SNR. The developed results are for a case where signals impinge 506 

on the NLA sensors from the same signal source. It is assumed that the signals are mutually 507 

independent and that noise is additive white Gaussian noise (AWGN) with a zero mean. Unless 508 

explicitly stated, the simulation parameters are as in Table 3. 509 

 510 

Table 3. Simulation parameters 511 

 512 

MVDR, MUSIC AND A-MUSIC 

Simulation parameters Values 

Input 𝜃 50, 250, 450, 650 

Number of elements L 10 

Spacing difference   𝑑 = 𝜆
2⁄ ∗ [0, 3,5,6,9,10,12,15,20,25] 

Signal-to-noise ratio SNR = 20dB 

Number of Snapshots Z = 300 

Rain rate in (mm/hr) 

[no rain, drizzle rain, widespread 

rain, shower rain, thunderstorm] 

[0, 2.5, 6, 15, 40] 

𝑎 at f = 80 GHz 0.7103 

k at f = 80 GHz 1.16995 

∆𝜃𝑚𝑖𝑛, ∆𝜃𝑚𝑎𝑥 [00 − 600] 
M, N,   3, 5 

 513 

 514 

The results of Fig. 6(a)-6(d) and Fig. 7(a)-6(d)  show co-prime array and array interpolation 515 

based spatial output spectrum of the MVDR, MUSIC and the proposed A-MUSIC for different 516 
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rain rates;  no rain, widespread, shower and thunderstorm rain conditions. Note that without rain, 517 

the spectrum results for MVDR and MUSIC are similar to the ones in (Tan et al., 2014, Li et al., 518 

2019) respectively. From the results, the following can be observed, the accuracy of DOA 519 

estimation reduces with increasing rain rate due to the high signal distortion at higher rain rates. 520 

The performance of the A-MUSIC is better than MUSIC followed by MVDR. This is because of 521 

the multiple averaging nature of the A-MUSIC algorithm. It can further be observed that at 522 

higher rain rates in the thunderstorm events, MVDR and MUSIC do not estimate the direction of 523 

arrival accurately. 524 

 525 

 526 
Figure 6: (a) DOA estimation attenuation using Co-prime array with no rain 527 

 528 

 529 
Figure 6: (b) DOA estimation attenuation using Co-prime array for widespread rainfall 530 

 531 
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 532 
 533 

Figure 6: (c) DOA estimation attenuation using Co-prime array for shower rainfall 534 

 535 

 536 

 537 
 538 

Figure 6: (d) DOA estimation attenuation using Co-prime array for thunderstorm rainfall 539 
 540 
 541 

 542 
 543 

Figure 7: (a) DOA estimation attenuation using array interpolation with no rain 544 

 545 
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 546 
 547 

Figure 7: (b) DOA estimation attenuation using array interpolation for widespread rainfall 548 

 549 

 550 

 551 
 552 

Figure 7: (c) DOA estimation attenuation using array interpolation for shower rainfall 553 

 554 

 555 
 556 

Figure 7: (d) DOA estimation attenuation using array interpolation for thunderstorm rainfall 557 

 558 
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The results of Fig. 8(a)-8(c) represent the RMSE value vs rain rate comparison of co-prime array 559 

and array interpolation of DOA algorithms for different number of elements. As expected, the 560 

RMSE increases with increasing rain rates while the error reduces with an increase in the number 561 

of antenna elements. A noticeable difference in performance is when the rain rate exceeds 10 562 

mm/hr.  It can also be observed that the co-prime array configuration results in a higher error 563 

than the array interpolation method.  564 

 565 

 566 
Figure 8(a): MVDR RMSE vs rain rate for coprime and array interpolation at L=7, 10, 20 567 

 568 

 569 
Figure 8(b): MUSIC RMSE vs rain rate for coprime and array interpolation at L=7, 10, 20 570 

 571 

 572 
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 573 
Figure 8(c): A-MUSIC RMSE vs rain rate for coprime and array interpolation at L=7, 10, 20 574 

 575 

The results of Fig. 9(a)–(c) represent a comparison of the three DOA algorithms for different rain 576 

rates at different antenna elements. As observed above, the RMSE increases with increase in 577 

rainfall and reduction in number of antenna elements. The proposed A-MUSIC performs better 578 

than MUSIC and MVDR in that order. This can be attributed to the repeated reconstruction of 579 

the covariance matrix to obtain two noise and signal subspaces continuously that are averaged 580 

for several iterations. 581 

 582 

 583 

  584 

 585 

 586 
(a) 587 
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 588 
(b) 589 

 590 
(c) 591 

 592 

Figure 9: DOA estimation attenuation error comparison. (a) DOA estimation attenuation error 593 

comparison for L = 7. (b) DOA estimation attenuation error comparison for L = 10. (c) DOA 594 

estimation attenuation error comparison for L = 20. 595 

 596 

The performance of the system is investigated further at different SNR conditions for a co-prime 597 

configuration in Fig. 10 and array interpolation in Fig. 11. At r = 10 mm/hr. It is observed that as 598 

the SNR increases, the RMSE decreases. The A-MUSIC co-prime array-based algorithm 599 

outperforms the MVDR and MUSIC algorithm, and its performance trend is within the CRB 600 

bounds. This demonstrates that the proposed method can still achieve satisfactory performance at 601 

lower SNR conditions.  602 

  603 
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 604 
Figure 10: DOA estimation using co-prime array error comparison vs SNR 605 

 606 

 607 
Figure 11: DOA estimation using array interpolation error comparison vs SNR 608 

 609 

In Fig. 12, the systems error performance at various number of snapshots is presented for 610 

condition where r = 10 mm/hr and SNR = 20dB. As expected, the RMSE decreases as we 611 

increase the number of trials from 100 to 500. Therefore, this shows that by increasing the 612 

number of simulation trials, the algorithm’s performance can be greatly improved. Furthermore, 613 

one can intuitively observe that the performance of the proposed A-MUSIC surpasses the 614 

classical MUSIC and the MVDR estimator over the range of the number of snapshots simulated. 615 

 616 
Figure 12: DOA estimation CRB error comparison vs number of snapshots 617 
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 618 

 619 
Figure 13: Comparison of computational complexity 620 

In Fig. 13, the computational complexity of A-MUSIC and the other DOA estimation algorithms 621 

is compared at different antenna elements. Although A-MUSIC algorithm have high 622 

performance in estimating the DOA, its computational complexity is high compared to MVDR 623 

and MUSIC estimations. This is because of the multiple averaging nature of A-MUSIC 624 

algorithm.  625 

8 Conclusions 626 

This work has investigated and evaluated the performance of DOA algorithms for non-uniform 627 

linear arrays (NLA) in weather-impacted environment. The investigation is conducted with no 628 

rain, widespread, shower and thunderstorm rainfall events. From the investigation, the 629 

algorithm’s performance accuracy significantly reduce from no rain condition to thunderstorm 630 

rainfall condition with MUSIC performing better than MVDR. In terms of RMSE, the 631 

algorithm’s performance decline as the SNR values and number of snapshots are increased. The 632 

work develops an A-MUSIC algorithm for the weather impacted conditions in NLA. The 633 

performance of the developed A MUSIC is superior to the existing algorithm in terms of 634 

accuracy and RMSE parameters. This work opens further investigation of performance of DOA 635 

algorithms in weather-impacted environment and the need for a re-design of the existing 636 

algorithms. The accuracy of the investigated algorithms needs to be validated further while 637 

considering other statistical, analytical and computational measures.  638 
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