Reference
Altınbas, S., Holmes, J. A., & Altınbas, A. (2020). Hepatitis C Virus Infection in Pregnancy: An Update. Gastroenterol Nurs, 43 (1), 12-21. doi:10.1097/sga.0000000000000404
Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., & Hilgenfeld, R. (2003). Coronavirus main proteinase (3CLpro) Structure: Basis for design of anti-SARS drugs. Science, 300 (5626), 1763-1767. doi:10.1126/science.1085658
Arabi, Y. M., Hajeer, A. H., Luke, T., Raviprakash, K., Balkhy, H., Johani, S., . . . Alahmadi, M. (2016). Feasibility of Using Convalescent Plasma Immunotherapy for MERS-CoV Infection, Saudi Arabia. Emerg Infect Dis, 22 (9), 1554-1561. doi:10.3201/eid2209.151164
Arentz, M., Yim, E., Klaff, L., Lokhandwala, S., Riedo, F. X., Chong, M., & Lee, M. (2020). Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. Jama, 323 (16), 1612-1614. doi:10.1001/jama.2020.4326
Auyeung, T. W., Lee, J. S., Lai, W. K., Choi, C. H., Lee, H. K., Lee, J. S., . . . Yeung, Y. M. (2005). The use of corticosteroid as treatment in SARS was associated with adverse outcomes: a retrospective cohort study.J Infect, 51 (2), 98-102. doi:10.1016/j.jinf.2004.09.008
Bao, L., Deng, W., Gao, H., Xiao, C., Liu, J., Xue, J., . . . Qin, C. (2020). Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. bioRxiv , 2020.2003.2013.990226. doi:10.1101/2020.03.13.990226
Bloch, E. M., Shoham, S., Casadevall, A., Sachais, B. S., Shaz, B., Winters, J. L., . . . Tobian, A. A. (2020). Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest, 130 (6), 2757-2765. doi:10.1172/jci138745
Booth, C. M., Matukas, L. M., Tomlinson, G. A., Rachlis, A. R., Rose, D. B., Dwosh, H. A., . . . Detsky, A. S. (2003). Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. Jama, 289 (21), 2801-2809. doi:10.1001/jama.289.21.JOC30885
Callaway, E. (2020). The race for coronavirus vaccines: a graphical guide. Nature, 580 (7805), 576-577. doi:10.1038/d41586-020-01221-y
Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., . . . Wang, C. (2020). A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med, 382 (19), 1787-1799. doi:10.1056/NEJMoa2001282
Casadevall, A., & Pirofski, L. A. (2020). The convalescent sera option for containing COVID-19. J Clin Invest, 130 (4), 1545-1548. doi:10.1172/jci138003
Cavalli, G., De Luca, G., Campochiaro, C., Della-Torre, E., Ripa, M., Canetti, D., . . . Dagna, L. (2020). Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study.Lancet Rheumatol, 2 (6), e325-e331. doi:10.1016/s2665-9913(20)30127-2
Chan, J. F., Kok, K. H., Zhu, Z., Chu, H., To, K. K., Yuan, S., & Yuen, K. Y. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect, 9 (1), 221-236. doi:10.1080/22221751.2020.1719902
Chan, J. F., Yao, Y., Yeung, M. L., Deng, W., Bao, L., Jia, L., . . . Yuen, K. Y. (2015). Treatment With Lopinavir/Ritonavir or Interferon-β1b Improves Outcome of MERS-CoV Infection in a Nonhuman Primate Model of Common Marmoset. J Infect Dis, 212 (12), 1904-1913. doi:10.1093/infdis/jiv392
Chang, C. H., Chen, K. Y., Lai, M. Y., & Chan, K. A. (2002). Meta-analysis: ribavirin-induced haemolytic anaemia in patients with chronic hepatitis C. Aliment Pharmacol Ther, 16 (9), 1623-1632. doi:10.1046/j.1365-2036.2002.01326.x
Chang, D., Lin, M., Wei, L., Xie, L., Zhu, G., Dela Cruz, C. S., & Sharma, L. (2020). Epidemiologic and Clinical Characteristics of Novel Coronavirus Infections Involving 13 Patients Outside Wuhan, China.Jama, 323 (11), 1092-1093. doi:10.1001/jama.2020.1623
Channappanavar, R., & Perlman, S. (2017). Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol, 39 (5), 529-539. doi:10.1007/s00281-017-0629-x
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., . . . Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study.Lancet, 395 (10223), 507-513. doi:10.1016/s0140-6736(20)30211-7
Chen, R. C., Tang, X. P., Tan, S. Y., Liang, B. L., Wan, Z. Y., Fang, J. Q., & Zhong, N. (2006). Treatment of severe acute respiratory syndrome with glucosteroids: the Guangzhou experience. Chest, 129 (6), 1441-1452. doi:10.1378/chest.129.6.1441
Cheng, Y., Wong, R., Soo, Y. O. Y., Wong, W. S., Lee, C. K., Ng, M. H. L., . . . Cheng, G. (2005). Use of convalescent plasma therapy in SARS patients in Hong Kong. European Journal of Clinical Microbiology and Infectious Diseases, 24 (1), 44-46. doi:10.1007/s10096-004-1271-9
Chu, C. M., Cheng, V. C., Hung, I. F., Wong, M. M., Chan, K. H., Chan, K. S., . . . Yuen, K. Y. (2004). Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings.Thorax, 59 (3), 252-256. doi:10.1136/thorax.2003.012658
Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 (COVID-19) in the United States. (2020).Nat Med . doi:10.1038/s41591-020-0877-5
ClinicalTrails.gov. (2020). Efficacy and Safety of IFN-α2β in the Treatment of Novel Coronavirus Patients.
Colson, P., Rolain, J.-M., Lagier, J.-C., Brouqui, P., & Raoult, D. (2020). Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. International Journal of Antimicrobial Agents, 55 (4), 105932. doi:https://doi.org/10.1016/j.ijantimicag.2020.105932
Commission, N. H. (2020). Diagnosis and treatment protocol for novel
coronavirus pneumonia.
Coughlin, M., Lou, G., Martinez, O., Masterman, S. K., Olsen, O. A., Moksa, A. A., . . . Prabhakar, B. S. (2007). Generation and characterization of human monoclonal neutralizing antibodies with distinct binding and sequence features against SARS coronavirus using XenoMouse. Virology, 361 (1), 93-102. doi:10.1016/j.virol.2006.09.029
Coutard, B., Valle, C., de Lamballerie, X., Canard, B., Seidah, N. G., & Decroly, E. (2020). The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res, 176 , 104742. doi:10.1016/j.antiviral.2020.104742
Cristiani, L., Mancino, E., Matera, L., Nenna, R., Pierangeli, A., Scagnolari, C., & Midulla, F. (2020). Will children reveal their secret? The coronavirus dilemma. Eur Respir J, 55 (4). doi:10.1183/13993003.00749-2020
Croxtall, J. D., & Perry, C. M. (2010). Lopinavir/Ritonavir.Drugs, 70 (14), 1885-1915. doi:10.2165/11204950-000000000-00000
D’Alessandro, S., Scaccabarozzi, D., Signorini, L., Perego, F., Ilboudo, D. P., Ferrante, P., & Delbue, S. (2020). The Use of Antimalarial Drugs against Viral Infection. Microorganisms, 8 (1). doi:10.3390/microorganisms8010085
Davey, R. T., Jr., Dodd, L., Proschan, M. A., Neaton, J., Neuhaus Nordwall, J., Koopmeiners, J. S., . . . Malvy, D. (2016). A Randomized, Controlled Trial of ZMapp for Ebola Virus Infection. N Engl J Med, 375 (15), 1448-1456. doi:10.1056/NEJMoa1604330
de Olano, J., Howland, M. A., Su, M. K., Hoffman, R. S., & Biary, R. (2019). Toxicokinetics of hydroxychloroquine following a massive overdose. Am J Emerg Med, 37 (12), 2264.e2265-2264.e2268. doi:10.1016/j.ajem.2019.158387
Deng, L., Li, C., Zeng, Q., Liu, X., Li, X., Zhang, H., . . . Xia, J. (2020). Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. J Infect, 81 (1), e1-e5. doi:10.1016/j.jinf.2020.03.002
Dhama, K., Sharun, K., Tiwari, R., Dadar, M., Malik, Y. S., Singh, K. P., & Chaicumpa, W. (2020). COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum Vaccin Immunother , 1-7. doi:10.1080/21645515.2020.1735227
Ding, Y., Zeng, L., Li, R., Chen, Q., Zhou, B., Chen, Q., . . . Zhang, F. (2017). The Chinese prescription lianhuaqingwen capsule exerts anti-influenza activity through the inhibition of viral propagation and impacts immune function. BMC Complement Altern Med, 17 (1), 130. doi:10.1186/s12906-017-1585-7
Duan, J., Yan, X., Guo, X., Cao, W., Han, W., Qi, C., . . . Jin, G. (2005). A human SARS-CoV neutralizing antibody against epitope on S2 protein. Biochem Biophys Res Commun, 333 (1), 186-193. doi:10.1016/j.bbrc.2005.05.089
Duan, K., Liu, B., Li, C., Zhang, H., Yu, T., Qu, J., . . . Yang, X. (2020). Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A, 117 (17), 9490-9496. doi:10.1073/pnas.2004168117
Duan, Y. J., Liu, Q., Zhao, S. Q., Huang, F., Ren, L., Liu, L., & Zhou, Y. W. (2020). Trial of Chloroquines in the Treatment of COVID-19 and Its Research Progress in Forensic Toxicology. Fa Yi Xue Za Zhi, 36 (2), 157-163. doi:10.12116/j.issn.1004-5619.2020.02.002
[Expert consensus on chloroquine phosphate for the treatment of novel coronavirus pneumonia]. (2020). Zhonghua Jie He He Hu Xi Za Zhi, 43 (3), 185-188. doi:10.3760/cma.j.issn.1001-0939.2020.03.009
Falzarano, D., de Wit, E., Martellaro, C., Callison, J., Munster, V. J., & Feldmann, H. (2013). Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. Sci Rep, 3 , 1686. doi:10.1038/srep01686
Gajic, O., Rana, R., Winters, J. L., Yilmaz, M., Mendez, J. L., Rickman, O. B., . . . Moore, S. B. (2007). Transfusion-related acute lung injury in the critically ill: prospective nested case-control study. Am J Respir Crit Care Med, 176 (9), 886-891. doi:10.1164/rccm.200702-271OC
Gao, J., Tian, Z., & Yang, X. (2020). Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends, 14 (1), 72-73. doi:10.5582/bst.2020.01047
Gao, Q. (2020). [Pharmacological characteristics of chloroquine and suggestions for its use in treatment of coronavirus disease 2019 (COVID-19)]. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi, 32 (2), 119-122. doi:10.16250/j.32.1374.2020092
Gautret, P., Lagier, J. C., Parola, P., Hoang, V. T., Meddeb, L., Mailhe, M., . . . Raoult, D. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents , 105949. doi:10.1016/j.ijantimicag.2020.105949
Ge, X.-Y., Li, J.-L., Yang, X.-L., Chmura, A. A., Zhu, G., Epstein, J. H., . . . Shi, Z.-L. (2013). Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503 (7477), 535-538. doi:10.1038/nature12711
Götz, V., Magar, L., Dornfeld, D., Giese, S., Pohlmann, A., Höper, D., . . . Schwemmle, M. (2016). Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import.Scientific Reports, 6 (1), 23138. doi:10.1038/srep23138
Graham, R. L., Donaldson, E. F., & Baric, R. S. (2013). A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol, 11 (12), 836-848. doi:10.1038/nrmicro3143
Greenough, T. C., Babcock, G. J., Roberts, A., Hernandez, H. J., Thomas, W. D., Jr., Coccia, J. A., . . . Ambrosino, D. M. (2005). Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice. J Infect Dis, 191 (4), 507-514. doi:10.1086/427242
Guan, W.-j., Ni, Z.-y., Hu, Y., Liang, W.-h., Ou, C.-q., He, J.-x., . . . Zhong, N.-s. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine, 382 (18), 1708-1720. doi:10.1056/NEJMoa2002032
Guan, W.-J., Ni, Z.-Y., Hu, Y., Liang, W.-H., Ou, C.-Q., He, J.-X., . . . China Medical Treatment Expert Group for, C. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. The New England journal of medicine . doi:10.1056/NEJMoa2002032
Guo, T., Fan, Y., Chen, M., Wu, X., Zhang, L., He, T., . . . Lu, Z. (2020). Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol . doi:10.1001/jamacardio.2020.1017
Ho, J. C., Ooi, G. C., Mok, T. Y., Chan, J. W., Hung, I., Lam, B., . . . Tsang, K. W. (2003). High-dose pulse versus nonpulse corticosteroid regimens in severe acute respiratory syndrome. Am J Respir Crit Care Med, 168 (12), 1449-1456. doi:10.1164/rccm.200306-766OC
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., . . . Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181 (2), 271-280.e278. doi:10.1016/j.cell.2020.02.052
Holshue, M. L., DeBolt, C., Lindquist, S., Lofy, K. H., Wiesman, J., Bruce, H., . . . Pillai, S. K. (2020). First Case of 2019 Novel Coronavirus in the United States. N Engl J Med, 382 (10), 929-936. doi:10.1056/NEJMoa2001191
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., . . . Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395 (10223), 497-506. doi:10.1016/s0140-6736(20)30183-5
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., . . . Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395 (10223), 497-506. doi:https://doi.org/10.1016/S0140-6736(20)30183-5
Hung, I. F., To, K. K., Lee, C. K., Lee, K. L., Chan, K., Yan, W. W., . . . Yuen, K. Y. (2011). Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Dis, 52 (4), 447-456. doi:10.1093/cid/ciq106
Imai, Y., Kuba, K., Rao, S., Huan, Y., Guo, F., Guan, B., . . . Penninger, J. M. (2005). Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, 436 (7047), 112-116. doi:10.1038/nature03712
Jahrling, P. B., Frame, J. D., Rhoderick, J. B., & Monson, M. H. (1985). Endemic Lassa fever in Liberia. IV. Selection of optimally effective plasma for treatment by passive immunization. Trans R Soc Trop Med Hyg, 79 (3), 380-384. doi:10.1016/0035-9203(85)90388-8
Jahrling, P. B., & Peters, C. J. (1984). Passive antibody therapy of Lassa fever in cynomolgus monkeys: importance of neutralizing antibody and Lassa virus strain. Infect Immun, 44 (2), 528-533.
Jaillon, S., Berthenet, K., & Garlanda, C. (2019). Sexual Dimorphism in Innate Immunity. Clinical Reviews in Allergy & Immunology, 56 (3), 308-321. doi:10.1007/s12016-017-8648-x
Jordan, P., Brookes, J. G., Nikolic, G., & Le Couteur, D. G. (1999). Hydroxychloroquine overdose: toxicokinetics and management. J Toxicol Clin Toxicol, 37 (7), 861-864. doi:10.1081/clt-100102466
Jordan, P. C., Stevens, S. K., & Deval, J. (2018). Nucleosides for the treatment of respiratory RNA virus infections. Antivir Chem Chemother, 26 , 2040206618764483. doi:10.1177/2040206618764483
Kadam, R. U., & Wilson, I. A. (2017). Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proc Natl Acad Sci U S A, 114 (2), 206-214. doi:10.1073/pnas.1617020114
Kalil, A. C. (2020). Treating COVID-19-Off-Label Drug Use, Compassionate Use, and Randomized Clinical Trials During Pandemics. Jama . doi:10.1001/jama.2020.4742
Keyaerts, E., Li, S., Vijgen, L., Rysman, E., Verbeeck, J., Van Ranst, M., & Maes, P. (2009). Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrob Agents Chemother, 53 (8), 3416-3421. doi:10.1128/aac.01509-08
Khamitov, R. A., Loginova, S., Shchukina, V. N., Borisevich, S. V., Maksimov, V. A., & Shuster, A. M. (2008). [Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures]. Vopr Virusol, 53 (4), 9-13.
Kim, J. Y., Choe, P. G., Oh, Y., Oh, K. J., Kim, J., Park, S. J., . . . Oh, M. D. (2020). The First Case of 2019 Novel Coronavirus Pneumonia Imported into Korea from Wuhan, China: Implication for Infection Prevention and Control Measures. J Korean Med Sci, 35 (5), e61. doi:10.3346/jkms.2020.35.e61
Klasse, P. J. (2014). Neutralization of Virus Infectivity by Antibodies: Old Problems in New Perspectives. Adv Biol, 2014 . doi:10.1155/2014/157895
Knowles, S. R., Phillips, E. J., Dresser, L., & Matukas, L. (2003). Common adverse events associated with the use of ribavirin for severe acute respiratory syndrome in Canada. Clin Infect Dis, 37 (8), 1139-1142. doi:10.1086/378304
Ko, J. H., Seok, H., Cho, S. Y., Ha, Y. E., Baek, J. Y., Kim, S. H., . . . Peck, K. R. (2018). Challenges of convalescent plasma infusion therapy in Middle East respiratory coronavirus infection: a single centre experience. Antivir Ther, 23 (7), 617-622. doi:10.3851/imp3243
Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., Guan, B., . . . Penninger, J. M. (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med, 11 (8), 875-879. doi:10.1038/nm1267
Kwiek, J. J., Haystead, T. A., & Rudolph, J. (2004). Kinetic mechanism of quinone oxidoreductase 2 and its inhibition by the antimalarial quinolines. Biochemistry, 43 (15), 4538-4547. doi:10.1021/bi035923w
Lam, T. T., Jia, N., Zhang, Y. W., Shum, M. H., Jiang, J. F., Zhu, H. C., . . . Cao, W. C. (2020). Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature . doi:10.1038/s41586-020-2169-0
Le, R. Q., Li, L., Yuan, W., Shord, S. S., Nie, L., Habtemariam, B. A., . . . Pazdur, R. (2018). FDA Approval Summary: Tocilizumab for Treatment of Chimeric Antigen Receptor T Cell-Induced Severe or Life-Threatening Cytokine Release Syndrome. Oncologist, 23 (8), 943-947. doi:10.1634/theoncologist.2018-0028
Leider, J. P., Brunker, P. A., & Ness, P. M. (2010). Convalescent transfusion for pandemic influenza: preparing blood banks for a new plasma product? Transfusion, 50 (6), 1384-1398. doi:10.1111/j.1537-2995.2010.02590.x
Li, G., & De Clercq, E. (2020). Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov, 19 (3), 149-150. doi:10.1038/d41573-020-00016-0
Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., . . . Feng, Z. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. The New England journal of medicine , 10.1056/NEJMoa2001316. doi:10.1056/NEJMoa2001316
Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., . . . Feng, Z. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med, 382 (13), 1199-1207. doi:10.1056/NEJMoa2001316
Lim, J., Jeon, S., Shin, H. Y., Kim, M. J., Seong, Y. M., Lee, W. J., . . . Park, S. J. (2020). Case of the Index Patient Who Caused Tertiary Transmission of COVID-19 Infection in Korea: the Application of Lopinavir/Ritonavir for the Treatment of COVID-19 Infected Pneumonia Monitored by Quantitative RT-PCR. J Korean Med Sci, 35 (6), e79. doi:10.3346/jkms.2020.35.e79
Liu, J., Cao, R., Xu, M., Wang, X., Zhang, H., Hu, H., . . . Wang, M. (2020). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov, 6 , 16. doi:10.1038/s41421-020-0156-0
Lu, H. (2020). Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends, 14 (1), 69-71. doi:10.5582/bst.2020.01020
Lukassen, S., Chua, R. L., Trefzer, T., Kahn, N. C., Schneider, M. A., Muley, T., . . . Eils, R. (2020). SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells.Embo j, 39 (10), e105114. doi:10.15252/embj.20105114
Luke, T. C., Kilbane, E. M., Jackson, J. L., & Hoffman, S. L. (2006). Meta-analysis: convalescent blood products for Spanish influenza pneumonia: a future H5N1 treatment? Ann Intern Med, 145 (8), 599-609. doi:10.7326/0003-4819-145-8-200610170-00139
Mao, L., Jin, H., Wang, M., Hu, Y., Chen, S., He, Q., . . . Hu, B. (2020). Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol, 77 (6), 1-9. doi:10.1001/jamaneurol.2020.1127
Michele, C., Maria Anna Rachele De, G., & Giovanni Nicola, R. (2020). SARS-CoV-2: Recent Reports on Antiviral Therapies Based on Lopi- navir/Ritonavir, Darunavir/Umifenovir, Hydroxychloroquine, Remde- sivir, Favipiravir and Other Drugs for the Treatment of the New Coronavirus.Current Medicinal Chemistry, 27 , 1-6. doi:http://dx.doi.org/10.2174/0929867327666200416131117
Morra, M. E., Van Thanh, L., Kamel, M. G., Ghazy, A. A., Altibi, A. M. A., Dat, L. M., . . . Huy, N. T. (2018). Clinical outcomes of current medical approaches for Middle East respiratory syndrome: A systematic review and meta-analysis. Rev Med Virol, 28 (3), e1977. doi:10.1002/rmv.1977
Mulangu, S., Dodd, L. E., Davey, R. T., Jr., Tshiani Mbaya, O., Proschan, M., Mukadi, D., . . . Nordwall, J. (2019). A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics. N Engl J Med, 381 (24), 2293-2303. doi:10.1056/NEJMoa1910993
Nicol, M. R., Joshi, A., Rizk, M. L., Sabato, P. E., Savic, R. M., Wesche, D., . . . Cook, J. (2020). Pharmacokinetics and Pharmacological Properties of Chloroquine and Hydroxychloroquine in the Context of COVID-19 Infection. Clin Pharmacol Ther . doi:10.1002/cpt.1993
Nutho, B., Mahalapbutr, P., Hengphasatporn, K., Pattaranggoon, N. C., Simanon, N., Shigeta, Y., . . . Rungrotmongkol, T. (2020). Why Are Lopinavir and Ritonavir Effective against the Newly Emerged Coronavirus 2019? Atomistic Insights into the Inhibitory Mechanisms.Biochemistry, 59 (18), 1769-1779. doi:10.1021/acs.biochem.0c00160
Openshaw, P. J., & Tregoning, J. S. (2005). Immune responses and disease enhancement during respiratory syncytial virus infection.Clin Microbiol Rev, 18 (3), 541-555. doi:10.1128/cmr.18.3.541-555.2005
Park, W. B., Perera, R. A., Choe, P. G., Lau, E. H., Choi, S. J., Chun, J. Y., . . . Oh, M. D. (2015). Kinetics of Serologic Responses to MERS Coronavirus Infection in Humans, South Korea. Emerg Infect Dis, 21 (12), 2186-2189. doi:10.3201/eid2112.151421
Phan, L. T., Nguyen, T. V., Luong, Q. C., Nguyen, T. V., Nguyen, H. T., Le, H. Q., . . . Pham, Q. D. (2020). Importation and Human-to-Human Transmission of a Novel Coronavirus in Vietnam. New England Journal of Medicine, 382 (9), 872-874. doi:10.1056/NEJMc2001272
Porche, D. J. (2001). Lopinavir/ritonavir. J Assoc Nurses AIDS Care, 12 (2), 101-104. doi:10.1016/s1055-3290(06)60137-4
Ren, J. L., Zhang, A. H., & Wang, X. J. (2020). Traditional Chinese medicine for COVID-19 treatment. Pharmacol Res, 155 , 104743. doi:10.1016/j.phrs.2020.104743
Rojas, M., Rodríguez, Y., Monsalve, D. M., Acosta-Ampudia, Y., Camacho, B., Gallo, J. E., . . . Anaya, J. M. (2020). Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev, 19 (7), 102554. doi:10.1016/j.autrev.2020.102554
Rothe, C., Schunk, M., Sothmann, P., Bretzel, G., Froeschl, G., Wallrauch, C., . . . Hoelscher, M. (2020). Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. New England Journal of Medicine, 382 (10), 970-971. doi:10.1056/NEJMc2001468
Russell, C. D., Millar, J. E., & Baillie, J. K. (2020). Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet, 395 (10223), 473-475. doi:10.1016/s0140-6736(20)30317-2
Salata, C., Calistri, A., Parolin, C., Baritussio, A., & Palù, G. (2017). Antiviral activity of cationic amphiphilic drugs. Expert Rev Anti Infect Ther, 15 (5), 483-492. doi:10.1080/14787210.2017.1305888
Sanders, J. M., Monogue, M. L., Jodlowski, T. Z., & Cutrell, J. B. (2020). Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. Jama . doi:10.1001/jama.2020.6019
Savarino, A., Boelaert, J. R., Cassone, A., Majori, G., & Cauda, R. (2003). Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis, 3 (11), 722-727. doi:10.1016/s1473-3099(03)00806-5
Savarino, A., Di Trani, L., Donatelli, I., Cauda, R., & Cassone, A. (2006). New insights into the antiviral effects of chloroquine.Lancet Infect Dis, 6 (2), 67-69. doi:10.1016/s1473-3099(06)70361-9
Scott, J. D. (2005). Simplifying the treatment of HIV infection with ritonavir-boosted protease inhibitors in antiretroviral-experienced patients. Am J Health Syst Pharm, 62 (8), 809-815. doi:10.1093/ajhp/62.8.809
Sheahan, T. P., Sims, A. C., Leist, S. R., Schäfer, A., Won, J., Brown, A. J., . . . Baric, R. S. (2020). Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun, 11 (1), 222. doi:10.1038/s41467-019-13940-6
Shen, C., Wang, Z., Zhao, F., Yang, Y., Li, J., Yuan, J., . . . Liu, L. (2020). Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. Jama, 323 (16), 1582-1589. doi:10.1001/jama.2020.4783
Sheppard, M., Laskou, F., Stapleton, P. P., Hadavi, S., & Dasgupta, B. (2017). Tocilizumab (Actemra). Hum Vaccin Immunother, 13 (9), 1972-1988. doi:10.1080/21645515.2017.1316909
Siegel, D., Hui, H. C., Doerffler, E., Clarke, M. O., Chun, K., Zhang, L., . . . Mackman, R. L. (2017). Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo[2,1-f][triazin-4-amino] Adenine C-Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses. J Med Chem, 60 (5), 1648-1661. doi:10.1021/acs.jmedchem.6b01594
Smith, A. I., & Turner, A. J. (2004). What’s new in the renin-angiotensin system? Cell Mol Life Sci, 61 (21), 2675-2676. doi:10.1007/s00018-004-4319-1
Stockman, L. J., Bellamy, R., & Garner, P. (2006). SARS: Systematic Review of Treatment Effects. PLOS Medicine, 3 (9), e343. doi:10.1371/journal.pmed.0030343
Sui, J., Li, W., Murakami, A., Tamin, A., Matthews, L. J., Wong, S. K., . . . Marasco, W. A. (2004). Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci U S A, 101 (8), 2536-2541. doi:10.1073/pnas.0307140101
Sullivan, H. C., & Roback, J. D. (2020). Convalescent Plasma: Therapeutic Hope or Hopeless Strategy in the SARS-CoV-2 Pandemic.Transfus Med Rev . doi:10.1016/j.tmrv.2020.04.001
Sung, J. J., Wu, A., Joynt, G. M., Yuen, K. Y., Lee, N., Chan, P. K., . . . Hui, D. S. (2004). Severe acute respiratory syndrome: report of treatment and outcome after a major outbreak. Thorax, 59 (5), 414-420. doi:10.1136/thx.2003.014076
Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., . . . Du, L. (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol, 17 (6), 613-620. doi:10.1038/s41423-020-0400-4
Tan, E. L., Ooi, E. E., Lin, C. Y., Tan, H. C., Ling, A. E., Lim, B., & Stanton, L. W. (2004). Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs. Emerg Infect Dis, 10 (4), 581-586. doi:10.3201/eid1004.030458
ter Meulen, J., van den Brink, E. N., Poon, L. L., Marissen, W. E., Leung, C. S., Cox, F., . . . Goudsmit, J. (2006). Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med, 3 (7), e237. doi:10.1371/journal.pmed.0030237
Thanh Le, T., Andreadakis, Z., Kumar, A., Gómez Román, R., Tollefsen, S., Saville, M., & Mayhew, S. (2020). The COVID-19 vaccine development landscape. Nat Rev Drug Discov, 19 (5), 305-306. doi:10.1038/d41573-020-00073-5
Tian, X., Li, C., Huang, A., Xia, S., Lu, S., Shi, Z., . . . Ying, T. (2020). Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerging Microbes & Infections, 9 (1), 382-385. doi:10.1080/22221751.2020.1729069
Tian, X., Li, C., Huang, A., Xia, S., Lu, S., Shi, Z., . . . Ying, T. (2020). Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect, 9 (1), 382-385. doi:10.1080/22221751.2020.1729069
Treatment Plan Edition 5 revision edition. (2020).
van den Brink, E. N., Ter Meulen, J., Cox, F., Jongeneelen, M. A., Thijsse, A., Throsby, M., . . . Goudsmit, J. (2005). Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus. J Virol, 79 (3), 1635-1644. doi:10.1128/jvi.79.3.1635-1644.2005
Vincent, M. J., Bergeron, E., Benjannet, S., Erickson, B. R., Rollin, P. E., Ksiazek, T. G., . . . Nichol, S. T. (2005). Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J, 2 , 69. doi:10.1186/1743-422x-2-69
Viswanathan, T., Arya, S., Chan, S. H., Qi, S., Dai, N., Misra, A., . . . Gupta, Y. K. (2020). Structural basis of RNA cap modification by SARS-CoV-2. Nature Communications, 11 (1), 3718. doi:10.1038/s41467-020-17496-8
Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., . . . Peng, Z. (2020). Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. Jama, 323 (11), 1061-1069. doi:10.1001/jama.2020.1585
Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., . . . Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res, 30 (3), 269-271. doi:10.1038/s41422-020-0282-0
Wang, Z., Chen, X., Lu, Y., Chen, F., & Zhang, W. (2020). Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci Trends, 14 (1), 64-68. doi:10.5582/bst.2020.01030
Wong, S. K., Li, W., Moore, M. J., Choe, H., & Farzan, M. (2004). A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem, 279 (5), 3197-3201. doi:10.1074/jbc.C300520200
Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., . . . McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367 (6483), 1260-1263. doi:10.1126/science.abb2507
Wu, C., Chen, X., Cai, Y., Xia, J., Zhou, X., Xu, S., . . . Song, Y. (2020). Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med . doi:10.1001/jamainternmed.2020.0994
Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., . . . Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579 (7798), 265-269. doi:10.1038/s41586-020-2008-3
Wu, Z., & McGoogan, J. M. (2020). Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. Jama . doi:10.1001/jama.2020.2648
Xu, X., Han, M., Li, T., Sun, W., Wang, D., Fu, B., . . . Wei, H. (2020). Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A, 117 (20), 10970-10975. doi:10.1073/pnas.2005615117
Xu, X. W., Wu, X. X., Jiang, X. G., Xu, K. J., Ying, L. J., Ma, C. L., . . . Li, L. J. (2020). Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. Bmj, 368 , m606. doi:10.1136/bmj.m606
Yang, J., Wang, W., Chen, Z., Lu, S., Yang, F., Bi, Z., . . . Wei, X. (2020). A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature . doi:10.1038/s41586-020-2599-8
Yang, X. H., Deng, W., Tong, Z., Liu, Y. X., Zhang, L. F., Zhu, H., . . . Qin, C. (2007). Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comp Med, 57 (5), 450-459.
Yanturali, S., Aksay, E., Demir, O. F., & Atilla, R. (2004). Massive hydroxychloroquine overdose. Acta Anaesthesiol Scand, 48 (3), 379-381. doi:10.1111/j.0001-5172.2004.0302.x
Yao, X., Ye, F., Zhang, M., Cui, C., Huang, B., Niu, P., . . . Liu, D. (2020). In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis . doi:10.1093/cid/ciaa237
Yeh, K. M., Chiueh, T. S., Siu, L. K., Lin, J. C., Chan, P. K., Peng, M. Y., . . . Chang, F. Y. (2005). Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J Antimicrob Chemother, 56 (5), 919-922. doi:10.1093/jac/dki346
Young, B. E., Ong, S. W. X., Kalimuddin, S., Low, J. G., Tan, S. Y., Loh, J., . . . Lye, D. C. (2020). Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. Jama, 323 (15), 1488-1494. doi:10.1001/jama.2020.3204
Yusuf, I. H., Sharma, S., Luqmani, R., & Downes, S. M. (2017). Hydroxychloroquine retinopathy. Eye (Lond), 31 (6), 828-845. doi:10.1038/eye.2016.298
Zhang, C., Wu, Z., Li, J. W., Zhao, H., & Wang, G. Q. (2020). Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents, 55 (5), 105954. doi:10.1016/j.ijantimicag.2020.105954
Zhang, J., Zhou, L., Yang, Y., Peng, W., Wang, W., & Chen, X. (2020). Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. Lancet Respir Med, 8 (3), e11-e12. doi:10.1016/s2213-2600(20)30071-0
Zhong, N. (2004). Management and prevention of SARS in China.Philos Trans R Soc Lond B Biol Sci, 359 (1447), 1115-1116. doi:10.1098/rstb.2004.1491
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., . . . Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.Lancet, 395 (10229), 1054-1062. doi:10.1016/s0140-6736(20)30566-3
Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., . . . Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature , 10.1038/s41586-41020-42012-41587. doi:10.1038/s41586-020-2012-7
Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., . . . Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579 (7798), 270-273. doi:10.1038/s41586-020-2012-7
Zhou, Y., Fu, B., Zheng, X., Wang, D., Zhao, C., Qi, Y., . . . Wei, H. (2020). Aberrant pathogenic GM-CSF + T cells and inflammatory CD14 + CD16 + monocytes in severe pulmonary syndrome patients of a new coronavirus .
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., . . . Tan, W. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019.N Engl J Med, 382 (8), 727-733. doi:10.1056/NEJMoa2001017
Zhu, Z., Chakraborti, S., He, Y., Roberts, A., Sheahan, T., Xiao, X., . . . Dimitrov, D. S. (2007). Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proc Natl Acad Sci U S A, 104 (29), 12123-12128. doi:10.1073/pnas.0701000104
Figure legends:
Figure 1. Infection Mechanism of SARS-CoV-2. The infection mechanism of coronaviruses starts from attachment and entry. Binding and viral entry via membrane infusion rely on interactions between the Spike protein and its ACE2 receptor. Then, cleavage of S protein by a protease enzyme (TMPRSS-2) facilitates the entry. Once enter the cell successfully, the RNA from virus begins its translation and proteolysis. The virus then synthesizes RNA via its RNA-dependent RNA polymerase. Following replication and RNA synthesis, Structural proteins are synthesized leading to completion of assembly and release of viral particles. Following release, virus is ingested by antigen-presenting-cell (APCs), which can activate T-helper cells via viral peptide. And T-helper cells enable other immune response. B cells produce antibodies that can block the virus from infecting cells. In addition to this cellular immune response, cytotoxic T cells identify and destroy virus-infected cells.
Figure 2. Four types of vaccines are used against coronaviruses via immune response. Vaccines can be prophylactic or therapeutic in clinical practice and are able to be broadly divided into virus vaccines (weakened virus and inactivated virus), viral-vector vaccines (replicating viral vector and non-replicating viral vector), nucleic acid vaccines (DNA vaccines and RNA vaccines), and protein-based vaccines (protein subunits and virus like particles), which rely on different viruses or viral parts. 1. A virus is conventionally weakened for a vaccine by being passed through animal or human cells until it picks up mutations that make it less able to cause disease. However, only under the precisely controlled and characterized conditions can live attenuated (weakened virus) vaccines provide the required protective immunity to avoid obvious disease symptoms in the host animal. 2. In inactivated vaccines, the virus is rendered uninfectious using chemicals, such as formaldehyde, or heat. Making them, however, requires starting with large quantities of infectious virus. And inactivated vaccines must be totally innocuous and non-infective. Inactivated vaccines have certain restrictions on the way of presentation, resulting in a limited immune response, which requires adjuvants or immunostimulants to enhance the response. 3. DNA vaccines are generated by inserting a gene encoding for the antigens into a bacteria-derived plasmid, which needs to be controlled by a powerful promoter (in most cases a CMV-promoter). DNA vaccines can affect not only humoral immunity but also cellular immunity. The limitation of DNA vaccines is lower immunogenicity profiles, which impede the desired clinical application. 4. RNA vaccine is often encased in a lipid coat so it can enter cells. The three major challenges in the delivery of RNA vaccines is instability due to RNase-mediated degradation and high molecular weight. 5. Replicating vaccines tend to be safe and provoke a strong immune response. Ebola vaccine is an example of a viral-vector vaccine that replicates within cells. 6. For non-replicating vaccines, booster shots can be needed to induce long-lasting immunity. 7. Protein subunit-based vaccines are typically used via combined adjuvants or delivery systems to elicit a protective effect, and most of them are focusing on the virus’s spike protein or a key part of it called the receptor binding domain. 8. Virus like particle (VLP) vaccines utilize empty virus shells for mimicking the coronavirus structure, but they show non-infectious ability because they lack genetic material. VLP vaccines can trigger a strong immune response while can be difficult to manufacture.