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Abstract 

 

In this study, cumulative and daily cases are estimated online using a discrete-time dynamic 

linear model (DLM) and Adaptive Kalman Filter (AKF) based on the total COVID-19 

cases between March-July 28, 2020 in USA-Florida, USA-Texas, USA-Arizona, USA-New 

York. Employing the data collected between Marc and July 28, 2020, it is showed that the 

discrete-time DLM in conjunction with AKF provides a good analysis tool for modeling the 

daily cases made using the in terms of mean square error (MSE) and 2R . After estimating 

the number of cumulative cases, the daily case number estimate was calculated. After 

calculating the daily case number estimate, the reproduction number estimate was obtained. 

The method is online. Only the data on the last day is sufficient. The AKF has never been 

considered for such an application. To the best of our knowledge, the estimation of 

COVID-19 has not been studied with this method.  
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1 INTRODUCTION 

 

In December 2019, a new coronavirus disease emerged characterized as a viral infection 

with a high level of transmission in Wuhan, China. Coronavirus 19 (COVID-19) is caused 

by the virus known as Severe Acute Respiratory Syndrome coronavirus 2 (SARS- CoV-2) 

established by the Coronaviridae Study Group of the International Committee on 

Taxonomy of Viruses (ICTV) [1]-[2]-[3]. At the same time in the academic field, several 

research papers have been published focused on modeling and estimating the possible 

number of people infected with COVID-19 in a specific period. Applied mathematical 

models, such as Gompertz and Logistic, have been used successfully to predict the number 

of infected with COVID-19 in China, as demonstrated by. Jia et al [4] where three 

mathematical models were applied, including the Gompertz model and logistic model, to 



 

estimate the progress of COVID-19 in Wuhan, China, the results of the mathematical 

models predict that the COVID-19 will be over probably in late-April, 2020 in Wuhan. Cas 

torina et al [5] developed the mathematical Gompertz and Logistic models to evaluate the 

effectiveness of containment in the epidemic spread of COVID-19 in China, South Korea, 

Italy, and Singapore, the results of the models predict the maximum number of infected 

individuals for each country studied, to maintain a strong containment policy. Roosa et al 

[6] have used Generalized Logistic Growth Model (GLM) for the data gathered between 

February 5 and February 24, 2020, for China. Roosa et al [7] have used the Generalized 

Logistic Growth Model (GLM) and Richard model for the data gathered between February 

13 and February 20, 2020 for China. Munayco et al [8] have used the Generalized Growth 

Model for the dates February 29 and March 30, 2020, for Peru. The mathematical models: 

Gompertz and Logistic, as well as the computational model: Artificial Neural Networs  

were applied to carry out the modeling of the number of cases of COVID-19 infection from 

27 of February to 8 of May in Mexico. The results show a good fit between the observed 

data and those obtained by the Gompertz, Logistic, and Artificial Neural Networks models 

[9]. Zuzana et al [10] are to model a trajectory of the number of infections for the USA by 

the Gompertz curve. Cata et al [11] employed the Gompertz growing function to analyze 

the dynamics of the 52 spreadings of Covid-19 in several countries to make short-time 

predictions. Petropoulos et al [12], focused on the cumulative daily figures aggregated 

globally of the three main variables of interest: confirmed cases, deaths, and recoveries. To 

forecast confirmed cases of COVID-19, they adopted simple time series forecasting 

approaches. 

Discrete-time linear state-space models have been employed since the 1960’s, 

mostly in the control and signal processing areas, and Kalman filtering (KF) [13-24] has 

emerged as the most commonly used tool. Kalman filter solves the problem of estimating 

the instantaneous states of a linear dynamic system perturbed by Gaussian white noise, 

using measurements that are linear functions of the system state but corrupted by additive 

white noise. The KF has been extensively employed in many areas of estimation the 

extensions and applications of discrete-time linear state-space models can be found in 

almost all disciplines. The KF has also been utilized in electrophysiological signal analysis 

and compared favorably with other approaches [25-31].  

The rest of this article is organized as follows: In section 2, the mathematical and 

computational methodologies are specified and mathematical equations of the models to be 

used in this study are given. In section 3 the modeling analysis and estimation results are 

presented. In section 4 the computation of the reproduction number with AKF is presented. 

Finally, the last section presents conclusions. 

 

 

2  MATERIALS AND METHODS 

 

In this work, KF1 has been used to estimate the trend and systematic variation (SV)  

components from the observed COVID-19 sequences. Kalman filter is a recursive estimator 

for what is called the linear quadratic Gaussian problem, which is the problem of estimating 

the instantaneous state of a linear dynamic system perturbed by Gaussian white noise, by 

                                                           
1 Kalman filter is an estimator rather than a conventional filter, however it is employed to estimate parameters from a noisy data 

sequence, hence the name filter. 



 

using measurements related to the state but corrupted by Gaussian white noise. Thus, as 

long as a correct model that belongs to the system of interest is constructed, Kalman 

filtering will be the answer to the linear estimation problem in hand. The assumption that an 

COVID-19 sequence can be considered to comprise two parts, namely the trend and SV, 

which provides the means for the system to be modeled appropriately using the AKF.  

In [32] a simple linear model was proposed to describe the time course of stochastic 

time-series. This so-called “dynamic linear model” (DLM) is defined in terms of state space 

representation through  

1t t ty e                                                           (2) 

1 2t t t te                                   (3) 

1 3t t te                                                        (4) 

where, Eq. (2) is the output (observed, COVID-19 cumulative cases) where it describes the 

measurement at time t, the added term e1t is the Gaussian measurement noise that corrupts 

the observed value of the state t. The state t is assumed to evolve in time as described by 

Eq. (3) and its value at time t depends on its value observed at (t-1) plus the value of the 

second state at time t. The noise term e2t is the process noise component corresponding to 

that state, used to model unexpected changes in the state. Eq. (4) describes the evolution of 

the second state t which depends on its previous value, e3t is the process noise component 

corresponding to the second state that is used to model the unpredicted changes in this state. 

Relating the COVID-19 model to Eqs. (2) - (4), t represents the trend that fluctuates 

around a mean and is corrupted by noise where t is the systematic variation (SV) that is 

added to the trend, i.e., the SV. Thus, through this representation both the COVID-19 trend 

and SV can be estimated from an observed real COVID-19 sequence with an appropriate 

tool, (AKF). But first, it would be useful to put these equations in vector-matrix form to 

obtain the state-space model for an COVID-19 sequence. Re-arranging Eqs. (2) - (4) would 

yield 
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where Eq. (5) is the state equation that defines the evolution of system states and Eq. (6) is 

the output equation that relates system states to the observations. In above equations, 

process noise (e2 and e3) and measurement noise (e1) sequences are assumed to be Gaussian 

and independent of each other. If we introduce general AKF representation2 at this point, it 

will be easier to see the suitability of the (AKF) approach to this specific problem. 

 

2.1 Modeling analysis and estimation results 

 

                                                           
2 Please see the Appendix for the derivation of Kalman filter equations. 



 

Lets consider a general discrete-time stochastic system represented by the state and 

measurement models given by  

1t t t t t t

t t t t

x x Bu w

y H x v

   

 
                                      (7) 

                                     (8) 

where, xt is an n1 system vector, yt is an m1 observation vector, t is an nn system 

matrix, ut is a p1 vector of the input forcing function, Bt is an np matrix, Ht is an mn 

matrix, wt an n1 vector of zero-mean white noise sequence and vt is an m1 measurement 

error vector assumed to be a zero-mean white sequence uncorrelated with the tw  sequence. 

The matrices t, Bt, Ht, Qt, Rt are assumed known at time t. The covariance matrices wt and 

vt are defined by ( )k k k klE w w Q   , ( )k k k klE v v R  , ( ) 0k kE w v  , where kl is the 

Kronecker delta function. Please note the similarity between the Eqs. 5-7 and 8, thus, 

applying the state-space representation given by the Eqs. 5 and 6 to the (AKF) would result 

in a decomposed COVID-19 sequence and estimated values of COVID-19 trend and SV 

components. This is a rather simple but very effective approach and to the authors’ best 

knowledge it has not been employed for this purpose before.  

The COVID-19 sequence has been put through the AKF that has been designed to 

model the system described by Eqs. (5) and (6). Initial values of the COVID-19 and SV 

have been arbitrarily taken as x(0) = [5 1]T. The selection of the initial values is not critical 

as the properly constructed model will yield these initial values to converge to the 

measurements. Thes standard deviation of the process noise has been chosen as 
220  while 

the measurement noise standard deviation has been set at 1.7. Here the measurement noise 

standard deviation is determined from the recorded data and it is fixed. On the other, hand 

the process noise variance is a modeling parameter and it can be thought as a parameter that 

determines the level of variation of the states, in this case, COVID-19 trend and the IV. 

Forgetting factor ( ) is 1.5. 

The daily prevalence data of COVID-19 from January 20, 2020, to July 28, 2020, 

were collected from the official website of Johns Hopkins University 

(https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html), and Excel 2019 was 

used to build a time-series database [40]. 

Actual cumulative case estimations that have been made online using AKF. The 

number of daily cases can be easily calculated with 1t t ti y y    to show the total number 

of cases up to ty , t  days. Since we have the estimates of ty , we can easily find the 

estimations of ty  with  
1

ˆ ˆ ˆ
t t ti y y   . Daily cases and estimations are given in Fig.1-Fig.4. 

According to the estimation results obtained by using the daily number of cases in the DLM  

MSE, MAPE, and R2, were calculated (see Table 1). These calculated values indicate that 

the compatibility of the model with real data is quite high. This situation tells us that 

estimating the daily number of cases via the DLM is a reliable method. As for AKF, 

utilizing only the observation in time t  and the preceding estimation is the most 

advantageous aspect of this method. 

 

 

 

 



 

Table 1. Calculated R2, MSE 

Region MSE R2 

USA-Florida 30289 0.99792  

USA-Texas 40169 0.99610 

USA-Arizona 19329 0.98807  

USA-New York 30045 0.99661 

 

These results have revealed that with the given system model and the assumptions, 

AKF could successfully be used to decompose a real COVID-19 sequence into the COVID-

19 trend and SV components and estimate these components from the observed cumulative 

COVID-19 sequence patterns. The method estimates online. Only the data on the last day is 

sufficient. To the best of our knowledge, the estimation of COVID-19 has not been studied 

with this method. 

 

2.2 Computation of the reproduction number with AKF 

 

There are variants of the reproduction number, such as the basic reproduction 

number, the effective reproduction number, the case reproduction number, and the 

instantaneous reproduction number. The instantaneous reproduction number, tR , can be 

estimated by the ratio of the number of new infections generated at time step t , ti , to the 

total infectiousness of infected individuals at time t , given by 
1

t

t s s

s

i w



 , the sum of 

infection incidence up to time step 1t  , weighted by the infectivity function sw . tR  is the 

average number of secondary cases that each infected individual would infect if the 

conditions remained as they were at time t . tR  is the only reproduction number easily 

estimated in real-time. Moreover, effective control measures undertaken at time t  are 

expected to result in a sudden decrease in tR . Hence, assessing the efficiency of control 

measures is easier by using estimates of tR . For these reasons, we focus on estimating the 

instantaneous reproduction number tR  in this article. (See Anne Cori et al. [41]). Given the 

definition of tR  stated above, the incidence of cases at time step t  is, on average, 

1

( )
t

t t t s s

s

E i R i w



  , where ( )E X denotes the expectation of a random variable X , and t si   

is the incidence at the time step t s . The instantaneous reproduction number, tR  at time t  

can be estimated as in Eq. (8). 
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




          (9) 

In equation (9), ti  stands for the number of new infections generated at time step t, whereas 

sw  is the probability distribution of the infectivity profile which is dependent on time since 

the infection of the case, s, but independent of calendar time, t . Hence, an individual will 

be most infectious at time s  when sw  is the largest. sw  is typically related to individual 



 

biological factors such as symptom severity. Effective control measures undertaken at time 

t  are expected to result in a sudden decrease in tR , whereas the other reproduction number 

variants tend to respond rather slowly. Therefore, evaluating the efficiency of control 

measures is more effective when estimates of tR  are used. in practice, sw  is approximated 

by the distribution of the serial interval. In this article, we have taken the distribution of 

sw as a uniform distribution in a ( ) 1/ 7, 1,2,...,7sf w s   form. Since ˆ( )t tE i i , Eq. (9) 

can be written in the form of  Eq. (10). 
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The value of  tR  calculated using the Eq. (10) is given in Fig.1-Fig.4. There is no need for 

any other model assumption in estimating tR  with this method by using the DLM. 

Modeling the cumulative case time-series with the DLM stochastic process and estimating 

the with AKF both estimate the number of daily cases and estimate the instantaneous 

reproduction number without any other operation. It is quite a simple method to model the 

daily case number time series with the DLM stochastic process and estimated the with 

online AKF. 

 

 

3. DISCUSSION 

 

In this study, cumulative and daily cases have been estimated online using discrete-time 

DLM  and AKF based on the total of COVID-19 cases between February and July 28, 

2020, in USA-Florida, USA-Texas, USA-Arizona, USA-New York. The cumulative case 

number was modeled with DLM, and the stochastic time series were estimated by online 

AKF. Estimation by acquired data observed between March and July 28, 2020, shows that 

employing the discrete-time DLM and AKF in terms of MSE, MAPE, and R2 provides 

efficient analysis for modeling the total case. It is proposed that the use of discrete-time 

DLM and AKF will be appropriate. After estimating the number of cumulative cases, the 

estimation of daily cases was made. After estimating the daily case number, the estimation 

of reproduction number was obtained. The DLM is an appropriate estimation method for 

the daily cases. As for AKF, utilizing only the observation in time t  and preceding the 

estimation is the most advantageous aspect of this method. Modeling the cumulative case 

time-series with the DLM stochastic process and estimating the with AKF both leads to the 

number of daily cases and the instantaneous reproduction number without any other 

operation. It is quite a simple method to model the cumulative case number time series with 

the DLM stochastic process and estimate the with online AKF. Among the studies made on 

the COVID-19 pandemic, the progress of modeling the disease is remarked primarily. The 

progress of modeling the disease is substantial for the precautions which will be taken by 

countries and interventions, and treatments to be administered. As a result of estimations by 

acquired data taken observed between Marc and July 28, 2020, it is proposed that the 

efficient analysis for modeling the total case is to be made using the discrete-time DLM and 



 

AKF in terms of MSE, and R2. It is thought that the method we have proposed will be 

suitable for the estimation of the forthcoming progress. Our suggestion is that the simplest 

method for the estimation of the reproduction number can be performed by modeling the 

daily case number time series using DLM. 

 

 

Appendix: Discerete state-space model and adaptive Kalman filter 

Let us consider a general linear discrete-time stochastic system represented by the state and 

measurement models given by 

1t t t t tx F x G w  
                                                                                               

t t t ty H x v 
                

where tx  is an n1 system vector, ty  is an m1 observation vector, tF  is an nn system 

matrix, tH  is an mn matrix, tw  an n1 vector of zero mean white noise sequence and tv  

is an m1 measurement error vector assumed to be a zero mean white sequence 

uncorrelated with the tw  sequence. The covariance matrices tw  and tw are defined by 

)QN(0, ~ ttw , )RN(0, ~ ttv . The filtering problem is the problem of determining the best 

estimate of its tx  condition, given its observations 0 1( , ,..., )t tY y y y  [13-16]. When 

0 1( , ,..., )t tY y y y  observations are given, the prediction of state tx  with  

0 1
ˆ ( , ,..., ) ( )t t t t tx E x y y y E x Y 

  
and the covariance matrix of the error with 

'ˆ ˆ( )( )t t tt t t t t t
P E x x x x Y   

   
when 1 0 1 1( , ,..., )t tY y y y   observations are given, the prediction of state tx  with 

0 1 1 11
ˆ ( , ,..., ) ( )t t t tt t
x E x y y y E x Y 

 
 

and the covariance matrix of the error are shown with 
'

11 1 1
ˆ ˆ( )( )t t tt t t t t t

P E x x x x Y   
   
  . 

 Let the initial state be assumed to have a normal distribution in the form of  

)P,N( ~ 000 xx . The optimum update equations for Kalman Filter (KF) are 

1 11
ˆ ˆ

t tt t
x F x 


                                       

' '

1 1 1 1 11 1 1t t t t tt t t t
P F P F G Q G      

 
                  

' ' 1

1 1
( )t t t t tt t t t

K P H H P H R 

 
 

            

1
[ ]t tt t t t

P I K H P


 
            

1 1
ˆ ˆ ˆ( )t t t tt t t t
x x K y H x

 
  

                                                                                 

 In the above equations / 1
ˆ
t tx   is the a priori estimation and ˆ

tx  is the a posteriori 

estimation of tx . Also, 
1t t

P


 and 
t t

P  are the covariance of a priori and a posteriori 

estimations respectively. Asymptotic distribution theory for the Kalman filter state 

estimator and Central Limit Theorem was investigated in [33-34]. In order to eliminate 



 

divergence in the KF, adaptive methods are used [35-39] forgetting factor is proposed by 

Ozbek [36], Özbek and Aliev [37]. 

 ' '

1 1 1 1 11 1 1t t t t tt t t t
P F P F G Q G       

 
        

Here, for 1  , the resulting filter is the same as the standard KF, whereas for 1  the 

filter has an adaptive nature via exponential data weighting. The idea behind using a 

forgetting factor is to emphasize the effect of current data artificially by exponentially 

weighting the observations.  

 

 

ACKNOWLEDGEMENT 

This study was carried out without any support from any institution, organization, and 

person. I would like to thank my wife Nuran Taş for her contributions throughout the study. 

 

CONFLICT OF INTEREST 

The authors declared no conflict of interest. 

 

ETHICAL APPROVAL 

This article does not contain any studies involving human participants performed by any of 

the authors. This study was in accordance with the ethical standards of the institutional 

research committee and with the 1964 Helsinki Declaration and its later amendments or 

comparable ethical standards. 

 

 

DATA AVA I L A B I LIT Y S TATEMENT 

Partial data that support the findings of this study are available in the Johns Hopkins 

University Center for Systems Science and Engineering site. However, partial data are 

available on request from the corresponding author, due to privacy restrictions. 

 

O RCI D 

Levent Özbek   https://orcid.org/0000-0003-1018-3114 

 

 

R E FE R E N C E S 

 

[1] Gorbalenya AE, Baker SC, Baric RS, et al. The species severe acute respiratory 

syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS–CoV-2. Nat 

Microbiol 2020;5:536–44. 

 

[2] Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., & Feng, Z.. Early transmission 

dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. 2020. New England 

Journal of Medicine. https://doi.org/10.1056/NEJMoa2001316. 

 

[3] World Health Organization. Novel coronavirus (2019-nCoV) situation reports.(2020); 

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/. 

 

https://orcid.org/0000-0003-1018-3114
https://doi.org/10.1056/NEJMoa2001316
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/


 

[4] L. Jia, K. Li, Y. Jiang, X. Guo, T. Zhao Prediction and analysis of coronavirus disease 

2019. 2020; arXiv preprint arXiv:2003.05447.  

 

[5] P. Castorina, A. Iorio, D. Lanteri, Data analysis on coronavirus spreading by 

macroscopic growth laws.2020; arXiv preprint arXiv:20 03.0 0507. 

 

[6] K. Roosa, Y. Lee, R. Luo, A. Kirpich, R. Rothenberg, J.M. Hyman, P. Yan, G. Chowell. 

Real-time forecasts of the COVID-19 epidemic in China from February 5th to February 

24th. 2020; Infectious Disease Modelling 5, 256-263. 

 

[7] K. Roosa, Yiseul Lee, Ruiyan Luo, Alexander Kirpich, Richard Rothenberg, James M. 

Hyman, Ping Yan and Gerardo Chowell. Short-term Forecasts of the COVID-19 Epidemic 

in Guangdong and Zhejiang, China: February 13–23. 2020; J. Clin. Med. 2020, 9, 596. 

 

[8] V. Munayco, Amna Tariq, Richard Rothenberg, Gabriela G. Soto-Cabezas, Mary F. 

Reyes, Andree Valle, Leonardo Rojas-Mezarina, Cesar Cabezas, Manuel Loayza, Gerardo 

Chowell. Peru COVID-19 working Group Early transmission dynamics of COVID-19 in a 

southern hemisphere setting: Lima-Peru: February 29 the March 30th. 2020; Infectious 

Disease Modelling, 5, 338-345. 

 

[9] O. Torrealba-Rodriguez , R.A. Conde-Gutiérrez, A.L. Hernández-Javier. Modeling and 

prediction of COVID-19 in Mexico applying mathematical and computational models. 

2020; Chaos, Solitons and Fractals 138, 109946. 

 

[10] Jiri Mazurek, Zuzana Nenickova. Predicting the number of total COVID-19 cases in 

the USA by a Gompertz curve. 2020; https://www.researchgate.net/publication/340738553 

 

[11] Mart Catal, Sergio Alonso, Enrique Alvarez-Lacalle, Daniel L´opez, Pere-Joan 

Cardona, Clara Prats. Empiric model for short-time prediction of COVID-19 spreading. 

2020; medRxiv https://doi.org/10.1101/2020.05.13.20101329   

 

[12] Fotios Petropoulos, Spyros Makridakis. Forecasting the novel coronavirus COVID-19. 

2020; PLOS ONE | https://doi.org/10.1371/journal.pone.0231236 March 31. 

 

[13] Kalman RE. A new Approach to linear Filtering and Prediction Problems, Journal of 

Basic Engineering, 1960. Vol.82, pp.35-45. 

 

[14] Bryson AE, Ho Y.C. Optimization, Estimation and Control, 1969.  Ginn and 

Company. 

 

[15] Jazwinski A H. Stochastic Processes and Filtering Theory, 1970. Academic Press. 

 

[16] Anderson BDO, Moore JB. Optimal Filtering, 1979. Prentice Hall. 

 

[17] Chui CK, Chen G. Kalman Filtering with Real-time Applications, 1991. Springer 

Verlag. 

 

https://doi.org/10.1101/2020.05.13.20101329
https://doi.org/10.1371/journal.pone.0231236%20March%2031


 

[18] Ljung L, Söderström T. Theory and Practice of Recursive Identification. 1983. The 

MIT Press. 

 

[19] Goodwin GC, Sin KSA. daptive Filtering Estimation and Control, 1985. Prentice Hall. 

 

[20] Kumar PR, Varaiya P. Stochastic Systems: Estimation, and Adaptive Control, 1986. P. 

Hall. 

 

[21] Chen G. Approximate Kalman Filtering, 1993. World Scientific. 

 

[22] Grewal S, Andrews AP. Kalman Filtering Theory and Practice, 1993. Prentice Hall. 

 

[23] Öztürk F, Özbek L. Matematiksel Modelleme ve Simülasyon, 2016. Pigeon Yay. (in 

Turkish) 

 

[24] Özbek L. Kalman Filtresi, 2018. Akademisyen Yay. (in Turkish). 

 

[25] Özbek L, Özlale Ü, Öztürk F. Employing Extended Kalman Filter in a Simple 

Macroeconomic Model, 2003, Central Bank Review 1, 53-65.  

 

[26] Ozbek L, Ozlale U. Employing The Extended Kalman Filter in Measuring The Output 

Gap. Journal Of  Economic Dynamics & Control, 2005. Volume: 29, Issue: 9, Pages: 1611-

1622. 

 

[27] Ozlale U, Ozbek L. Analyzing Time-Varying Effects of Potential Output Growth 

Shocks, Economics Letters, 2008. Volume: 98, Issue: 3, Pages: 294-300. 

 

[28] Erdogdu OS, Ozbek L. Industrialization in Animal Agriculture: A Kalman Filter 

Analysis, Journal of Modern Applied Statistical Methods, 2009. Vol. 8, No. 1, 243-252.  

 

[29] Özbek L, Özlale U. Energy Analysis Of Real Oil Prices Via Trend-Cycle 

Decomposition, Policy, 2010. Volume: 38, Issue: 7, Pages: 3676-3683. 

 

[30] Özbek L, Babacan EK. Estimatıon of Time Varying Parameters in an Optimal Control 

Problem, Commun. Fac. Sci. Univ. Ank. Series A1, 2015. Volume 64, Number 2, Pages 

111-121.  

 

[31] Özbek L, Efe M, Babacan EK, Yazıhan N. Online Estimation of Capillary 

Permeability And Contrast Agent Concentration in Rat Tumors, Hacettepe Journal of 

Mathematics and Statistics, 2010. Volume: 39, Issue: 2, Pages: 283-293. 

 

[32] Harrison PJ, Stevens CF. A Bayesian forecasting (with discussion)”, 1976. J. Roy. 

Stat. Soc., Ser B, 38: 205-247. 

 

[33] Spall JC, Wall KD. Asymptotic distribution theory for the Kalman filter state 

estimator. Commun. Stat. Theory and Methods, 1984. 13(16):1981–2003. 

 



 

[34] Aliev FA, Ozbek L. Evaluation Of Convergence Rate in The Central Limit Theorem 

For The Kalman Filter.  IEEE Transactions On Automatic Control, 1999. Volume: 44, 

Issue: 10, Pages: 1905-1909. 

 

[35] Xia Q, Rao M, Ying, Shen X. Adaptive Fading Kalman Filter with an Applications. 

Automatica, 1994. Vol.30, No: 8; 1333-1338. 

 

[36] Özbek, L. A Study on Adaptive Kalman Filter, 1997. ISI’97, Bulletin of the 

International Statistical Institute, Proceedings Book 2, 299-300, İstanbul. 1997. 

 

[37] Özbek L, Aliev FA. Comments on Adaptive Fading Kalman Filter with an 

Application. Automatica, 1998. Vol.34, No:12, 1663-1664. 

 

[38] Efe M, Özbek L. Fading Kalman Filter for Manoeuvring Target Tracking. Journal of 

the Turkish Statistical Assocation, 1999. Vol.2, Number 3, pp.193-206. 

 

[39] Ozbek L, Efe M. An Adaptive Extended Kalman Filter with Application to 

Compartment Models.  Communications In Statistics-Simulation And Computation, 2004. 

Volume: 33, Issue: 1, Pages: 145-158.  

 

[40] Johns Hopkins University Center for Systems Science and Engineering, 2019. 

ttps://github.com/CSSEGISandData/COVID-19.  

 

[41] Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework and software to 

estimate time-varying reproduction numbers during epidemics. 2013. Am J Epidemiol. 

178(9):1505-12.  

 



 

0 20 40 60 80 100 120
0

5000

10000

March 8 - July 28 2020

USA - Newyork: Daily cases observed and estimated

 

 

Observed

AKF estimation

0 20 40 60 80 100 120
0

1

2

3

4

March 8 - July 28 2020

USA- Newyork: R(t) The instantaneous reproduction number

 
Figure-1. New York: Daily cases observed and estimated, the instantaneous reproduction 

number estimation. 
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Figure-2. Florida: Daily cases observed and estimated, the instantaneous reproduction 

number estimation. 
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Figure-3. Arizona: Daily cases observed and estimated, the instantaneous reproduction 

number estimation. 
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Figure-4. Texas: Daily cases observed and estimated, the instantaneous reproduction 

number estimation. 

 


