6. References
Adriano, D. C., Wenzel, W. W.,
Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural
remediation in environmental cleanup. Geoderma , 122 ,
121–142.
doi: 10.1016/j.geoderma.2004.01.003
Aguilar, J., Dorronsoro, C.,
Fernández, E., Fernández, J., García, I., Martín, F., & Simón, M.
(2004a). Soil pollution by a pyrite mine spill in Spain: evolution in
time. Environmental Pollution , 132 , 395–401.
doi: 10.1016/j.envpol.2004.05.028
Aguilar, J., Bouza, P.,
Dorronsoro, C., Fernández, E., Fernández, J., García, I., Martín, F., &
Simón, M. (2004b). Application of remediation techniques for
immobilization of metals in soils contaminated by a pyrite tailing spill
in Spain. Soil Use and Management , 20 , 451–453.
doi: 10.1111/j.1475-2743.2004.tb00396.x
Álvarez, J. M., López-Valdivia, L. M.,
Novillo, J., Obrador, A., & Rico, M. I. (2006). Comparison of EDTA and
sequential extraction tests for phytoavailability prediction of
manganese and zinc in agricultural alkaline soils. Geoderma ,132 , 450–463.
doi: 10.1016/j.geoderma.2005.06.009
Barahona, E. (1984).Determinación de carbonatos totales y caliza activa. Grupo de
trabajo de normalización de métodos analíticos . In: I Congreso Nacional
de la Ciencia del Suelo. Sociedad Española de la Ciencia del Suelo.
Madrid, Spain, pp. 53–67.
Bernard, O., & Oluranti, O. (2017).
Microbial and plant-assisted bioremediation of heavy metal polluted
environments: a review. International Journal of Environmental
Research and Public Health , 14 , 1504.
doi: 10.3390/ijerph14121504
BOJA (Boletín Oficial de la Junta de
Andalucía). (2015). Decreto 18/2015, de 27 de enero, por el que se
aprueba el reglamento que regula el régimen aplicable a los suelos
contaminados . Consejería de Medio Ambiente y Ordenación del Territorio.
Junta de Andalucía, Spain, pp. 28–64.
Cabrera, F., Clemente, L., Díaz
Barrientos, E., López, R., & Murillo, J. M. (1999). Heavy metal
pollution of soils affected by the Guadiamar toxic flood. Science
of the Total Environment , 242 , 117–129.
doi: 10.1016/S0048-9697(99)00379-4
Clemente,
R., Dickinson, N. M., & Lepp, N. W. (2008). Mobility of metals and
metalloids in a multi-element contaminated soil 20 years after cessation
of the pollution source activity. Environmental Pollution ,155 , 254–261.
doi 10.1016/j.envpol.2007.11.024
CMA (Consejería de Medio Ambiente).
(1999). Los criterios y estándares para declarar un suelo
contaminado en Andalucía y la metodología y técnicas de toma de muestra
y análisis para su investigación . Junta de Andalucía, Sevilla, Spain.
CMA (Consejería de Medio Ambiente).
(2003). Ciencia y restauración del río Guadiamar. PICOVER
1998-2002 . Junta de Andalucía, Sevilla, Spain.
García, I., Diez, M., Martín, F.,
Simón, M., & Dorronsoro, C. (2009). Mobility of arsenic and heavy
metals in a sandy-loam textured and carbonated soil. Pedosphere ,19 , 166–175.
doi: 10.1016/S1002-0160(09)60106-5
García-Carmona, M.,
Romero-Freire, A, Sierra Aragón, M, Martínez Garzón, F. J., & Martín
Peinado, F. J. (2017). Evaluation of remediation techniques in soils
affected by residual contamination with heavy metals and arsenic.Journal of Environmental Management , 191 , 228–236.
doi: 10.1016/j.jenvman.2016.12.041
García-Carmona, M.,
Romero-Freire, A, Sierra Aragón, M, & Martín Peinado, F. J. (2019).
Effectiveness of ecotoxicological tests in relation to physicochemical
properties of Zn and Cu polluted Mediterranean soils. Geoderma ,338 , 259–268.
doi: 10.1016/j.geoderma.2018.12.016
IUSS (International Union of Soil
Sciences). (2015). Working Group WRB. World Reference Base for
Soil Resources 2014, update 2015. International soil classification
system for naming soils and creating legends for soil maps . World Soil
Resources Reports N° 106. FAO, Italy.
Kim, R. Y., Yoon, J. K., Kim, T. S., Yang,
J. E., Owens, G., & Kim, K. R. (2015). Bioavailability of heavy metals
in soils: definitions and practical implementation ̵̶̶ a critical review.Environmental Geochemistry and Health , 37 , 1041–1061.
doi: 10.1007/s10653-015-9695-y
Kraus, U., & Wiegand, J. (2006).
Long-term effects of the Aznalcóllar mine spill–heavy metal content and
mobility in soils and sediments of the Guadiamar river valley (SW
Spain). Science of the Total Environment , 367 , 855–871.
doi: 10.1016/j.scitotenv.2005.12.027
Liu, L., Ouyang, W., Wang, Y., Tysklind,
M., Hao, F., Liu, H., Hao, X., Xu, Y., Lin, C., & Su, L. (2020). Heavy
metal accumulation, geochemical fractions, and loadings in two
agricultural watersheds with distinct climate conditions. Journal
of Hazardous Materials , 389 , 122–125.
doi: 10.1016/j.jhazmat.2020.122125
Madejón, E., Pérez de Mora, A.,
Felipe, E., Burgos, P., & Cabrera, F. (2006). Soil amendments reduce
trace element solubility in a contaminated soil and allow regrowth of
natural vegetation. Environmental Pollution , 139 , 40–52.
doi: 10.1016/j.envpol.2005.04.034
Madejón, P., Domínguez, M. T.,
Madejón, E., Cabrera, F., Marañón, T., & Murillo, J. M. (2018).
Soil-plant relationships and contamination by trace elements: A review
of twenty years of experimentation and monitoring after the Aznalcóllar
(SW Spain) mine accident. Science of the Total Environment ,625 , 50–63.
doi: 10.1016/j.scitotenv.2017.12.277
MAPA (Ministerio de Agricultura, Pesca y
Alimentación). (1994). Métodos Oficiales de Análisis . Tomo 3.
Secretaría General. Madrid, Spain.
Martín Peinado, F. (2001).Contaminación de suelos por el vertido de una mina de pirita
(Aznalcóllar, España) . Ph.D Tesis. University of Granada, Spain.
Martín, F., García, I., Díez, M.,
Sierra, M., Simón, M., & Dorronsoro, C. (2008). Soil alteration by
continued oxidation of pyrite tailings. Applied Geochemistry ,23 , 1152–1165.
doi: 10.1016/j.apgeochem.2007.11.012
Martín, F. J., Romero, A., Arco, E.,
Sierra, M., Ortiz-Bernad, I., & Abbaslou, H. (2012). Assessment of
arsenic toxicity in spiked soils and water solutions by the use of
bioassays. Spanish Journal of Soil Science , 2 , 45–56.
doi: 10.3232/SJSS.2012.V2.N3.05
Martín, F. J., Romero-Freire,
A., García, I., Sierra, M., Ortiz-Bernad, I., & Simón, M. (2015).
Long-term contamination in a recovered area affected by a mining spill.Science of the Total Environment , 514 , 219–223.
doi: 10.1016/j.scitotenv.2015.01.102
OECD (Organization for Economic
Cooperation and Development). (2004). Environmental Performance
Reviews: Spain 2004 . OECD Publications. Cedex 16, France.
Pardo, J., Mondaca, P., Celis-Diez,
J., & Ginocchio, R. (2018). Assessment of revegetation of an acidic
metal(loid)-polluted soils six years after the incorporation of lime
with and without compost. Geoderma , 331 , 81–86.
doi: 10.1016/j.geoderma.2018.06.018
Pastor-Jáuregui, R., Paniagua-López, M.,
Martínez-Garzón, J., Martín-Peinado, F., & Sierra-Aragón, M. (2020).
Evolution of the Residual Pollution in Soils after Bioremediation
Treatments. Applied Sciences , 10 , 1006.
doi: 10.3390/app10031006
Přibil, R. (1982). Applied
Complexometry . Pergamon Press Ltd., Oxford.
Quevauviller, Ph., Lachica, M.,
Barahona, E., Gómez, A., Rauret, G., Ure, A., & Muntau, H. (1998).
Certified reference material for the quality control of EDTA and
DTPA-extractable trace metal contents in calcareous soils (CRM 6000).Fresenius Journal Analytical Chemistry , 360 , 505–511.
doi: 10.1007/s002160050750
Rivas Martínez, S. (1987). Memoria
del mapa de series de vegetación de España . ICONA. Madrid, Spain.
Rocco, C., Agrelli, D., Tafuro, M.,
Caporale, A. G., & Adamo, P. (2018). Assessing the bioavailability of
potentially toxic elements in soil: A proposed approach. Italian
Journal of Agronomy , 13 , 16–22.
doi: 10.4081/ija.2018.1348
Romero-Freire, A.,
Sierra-Aragón, M., Ortiz-Bernad, I., & Martín-Peinado, F. J. (2014).
Toxicity of arsenic in relation to soil properties: implications to
regulatory purposes. Journal of Soils and Sediments , 14 ,
968–979.
doi: 10.1007/s11368-014-0845-0
Romero-Freire, A., García
Fernández, I., Simón Torres, M., Martínez Garzón, F. J., & Martín
Peinado, F. J. (2016a). Long-term toxicity assessment of soils in a
recovered area affected by a mining spill. Environmental
Pollution , 208 , 553–561.
doi: 10.1016/j.envpol.2015.10.029
Romero-Freire, A., Sierra,
M., Martínez, F. J., & Martín, F. J. (2016b). Is soil basal respiration
a good indicator of soil pollution? Geoderma , 263 ,
132–139.
doi: 10.1016/j.geoderma.2015.09.006
Schramel, O., Michalke, B., &
Kettrup, A. (2000). Study of the copper distribution in contaminated
soils of hop fields by single and sequential extraction procedures.Science of the Total Environment , 263 , 11–22.
doi: 10.1016/S0048-9697(00)00606-9
Sierra, M., Mitsui, Y., García-Carmona,
M., Martínez, F. J., & Martín Peinado, F. J. (2019). The role of
organic amendment in soils affected by residual pollution of potentially
harmful elements. Chemosphere , 237 , 124549.
doi: 10.1016/j.chemosphere.2019.124549
Simón, M., Ortíz, I., García, I.,
Fernández, E., Fernández, J., Dorronsoro, C, & Aguilar, J. (1999).
Pollution of soils by the toxic spill of a pyrite mine (Aznalcóllar,
Spain). Science of the Total Environment , 242 , 105–115.
doi: 10.1016/s0048-9697(99)00378-2
Simón, M., Martín, F., Ortíz, I.,
García, I., Fernández, J., Fernández, E., Dorronsoro, C., & Aguilar, J.
(2001). Soil pollution by oxidation of tailings from toxic spill of a
pyrite mine. Science of the Total Environment , 279 ,
63–74.
doi: 10.1016/S0048-9697(01)00726-4
Simón, M., Iriarte, A., García, I.,
Martín, F., Aguilar, J., & Dorronsoro, C. (2005a). Mobility of heavy
metals in pyritic mine spills from an accident in Aznalcóllar, SW Spain.
In: Faz Cano, A., Ortíz Silla, R., & Mermut, A. R. (Eds.).Advances in GeoEcology , 36 , 467–476.
Simón, M., Martín, F., García, I.,
Bouza, P., Dorronsoro, C., & Aguilar, J. (2005b). Interaction of
limestone grains and acidic solutions from the oxidation of pyrite
tailings. Environmental Pollution , 135 , 65–72.
doi: 10.1016/j.envpol.2004.10.013
Simón, M., García, I., Martín, F,
Díez, M., del Moral, F., & Sánchez, J. A. (2008). Remediation measures
and displacement of pollutants in soils affected by the spill of a
pyrite mine. Science of the Total Environment , 407 ,
23–39.
doi: 10.1016/j.scitotenv.2008.07.040
Sposito, G., Lund, L. J., & Chang, A.
C. (1982). Trace metal chemistry in arid-zone field soils amended with
sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd and Pb in solid
phases. Soil Science Society of America Journal , 46 ,
260–264.
doi: 10.2136/sssaj1982.03615995004600020009x
SSS (Soil Survey Staff). (2014). Keys
to soil taxonomy, twelfth ed . USDA-Natural Resources Conservation
Service, Washington.
Tyurin, I. (1951). Analytical
procedure for a comparative study of soil humus . Trudy Pochv. Inst
Dokuchayeva. USSR, 38, 5–9.
USDA (United States Department of
Agriculture). (1972). Soil Conservation Service. Methods and
procedures for collecting soil samples . Soil Survey Laboratory, USDA,
Washington.
USDA (United States Department of
Agriculture). (1999). Soil Taxonomy, second ed . Soil Survey
Staff. Natural Resources Conservation Service. Agriculture Handbook Nº
436. Washington.
Wiszniewska, A., Hanus-Fajerska,
E., Muszyńska, E., & Ciarkowska, K. (2016). Natural organic amendments
for improved phytoremediation of polluted soils: a review of recent
progress. Pedosphere , 26 , 1–12.
doi: 10.1016/S1002-0160(15)60017-0
Xiong, J., Madejón, P., Madejón, E., &
Cabrera, F. (2015). Assisted natural remediation of a trace
element-contaminated acid soil: an eight-year field study.Pedosphere , 25 , 250–262.
doi: 10.1016/S1002-0160(15)60010-8
Yotova, G., Zlateva, B., Ganeva, S.,
Simeonov, V., Kudłak, B., Namieśnik, J., & Tsakovski, S. (2018).
Phytoavailability of potentially toxic elements from industrially
contaminated soils to wild grass. Ecotoxicology and Environmental
Safety , 164 , 317–324.
doi: 10.1016/j.ecoenv.2018.07.077
Zhang, C., Yu, Z. G., Zeng, G. M., Jiang,
M., Yang, Z. Z., Cui, F., Zhu, M. Y., Shen, L. Q., & Hu, L. (2014).
Effects of sediment geochemical properties on heavy metal
bioavailability. Environment International , 73 , 270–281.
doi: 10.1016/j.envint.2014.08.010