6. References
Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma , 122 , 121–142.
doi: 10.1016/j.geoderma.2004.01.003
Aguilar, J., Dorronsoro, C., Fernández, E., Fernández, J., García, I., Martín, F., & Simón, M. (2004a). Soil pollution by a pyrite mine spill in Spain: evolution in time. Environmental Pollution , 132 , 395–401.
doi: 10.1016/j.envpol.2004.05.028
Aguilar, J., Bouza, P., Dorronsoro, C., Fernández, E., Fernández, J., García, I., Martín, F., & Simón, M. (2004b). Application of remediation techniques for immobilization of metals in soils contaminated by a pyrite tailing spill in Spain. Soil Use and Management , 20 , 451–453.
doi: 10.1111/j.1475-2743.2004.tb00396.x
Álvarez, J. M., López-Valdivia, L. M., Novillo, J., Obrador, A., & Rico, M. I. (2006). Comparison of EDTA and sequential extraction tests for phytoavailability prediction of manganese and zinc in agricultural alkaline soils. Geoderma ,132 , 450–463.
doi: 10.1016/j.geoderma.2005.06.009
Barahona, E. (1984).Determinación de carbonatos totales y caliza activa. Grupo de trabajo de normalización de métodos analíticos . In: I Congreso Nacional de la Ciencia del Suelo. Sociedad Española de la Ciencia del Suelo. Madrid, Spain, pp. 53–67.
Bernard, O., & Oluranti, O. (2017). Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. International Journal of Environmental Research and Public Health , 14 , 1504.
doi: 10.3390/ijerph14121504
BOJA (Boletín Oficial de la Junta de Andalucía). (2015). Decreto 18/2015, de 27 de enero, por el que se aprueba el reglamento que regula el régimen aplicable a los suelos contaminados . Consejería de Medio Ambiente y Ordenación del Territorio. Junta de Andalucía, Spain, pp. 28–64.
Cabrera, F., Clemente, L., Díaz Barrientos, E., López, R., & Murillo, J. M. (1999). Heavy metal pollution of soils affected by the Guadiamar toxic flood. Science of the Total Environment , 242 , 117–129.
doi: 10.1016/S0048-9697(99)00379-4
Clemente, R., Dickinson, N. M., & Lepp, N. W. (2008). Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity. Environmental Pollution ,155 , 254–261.
doi 10.1016/j.envpol.2007.11.024
CMA (Consejería de Medio Ambiente). (1999). Los criterios y estándares para declarar un suelo contaminado en Andalucía y la metodología y técnicas de toma de muestra y análisis para su investigación . Junta de Andalucía, Sevilla, Spain.
CMA (Consejería de Medio Ambiente). (2003). Ciencia y restauración del río Guadiamar. PICOVER 1998-2002 . Junta de Andalucía, Sevilla, Spain.
García, I., Diez, M., Martín, F., Simón, M., & Dorronsoro, C. (2009). Mobility of arsenic and heavy metals in a sandy-loam textured and carbonated soil. Pedosphere ,19 , 166–175.
doi: 10.1016/S1002-0160(09)60106-5
García-Carmona, M., Romero-Freire, A, Sierra Aragón, M, Martínez Garzón, F. J., & Martín Peinado, F. J. (2017). Evaluation of remediation techniques in soils affected by residual contamination with heavy metals and arsenic.Journal of Environmental Management , 191 , 228–236.
doi: 10.1016/j.jenvman.2016.12.041
García-Carmona, M., Romero-Freire, A, Sierra Aragón, M, & Martín Peinado, F. J. (2019). Effectiveness of ecotoxicological tests in relation to physicochemical properties of Zn and Cu polluted Mediterranean soils. Geoderma ,338 , 259–268.
doi: 10.1016/j.geoderma.2018.12.016
IUSS (International Union of Soil Sciences). (2015). Working Group WRB. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps . World Soil Resources Reports N° 106. FAO, Italy.
Kim, R. Y., Yoon, J. K., Kim, T. S., Yang, J. E., Owens, G., & Kim, K. R. (2015). Bioavailability of heavy metals in soils: definitions and practical implementation ̵̶̶ a critical review.Environmental Geochemistry and Health , 37 , 1041–1061.
doi: 10.1007/s10653-015-9695-y
Kraus, U., & Wiegand, J. (2006). Long-term effects of the Aznalcóllar mine spill–heavy metal content and mobility in soils and sediments of the Guadiamar river valley (SW Spain). Science of the Total Environment , 367 , 855–871.
doi: 10.1016/j.scitotenv.2005.12.027
Liu, L., Ouyang, W., Wang, Y., Tysklind, M., Hao, F., Liu, H., Hao, X., Xu, Y., Lin, C., & Su, L. (2020). Heavy metal accumulation, geochemical fractions, and loadings in two agricultural watersheds with distinct climate conditions. Journal of Hazardous Materials , 389 , 122–125.
doi: 10.1016/j.jhazmat.2020.122125
Madejón, E., Pérez de Mora, A., Felipe, E., Burgos, P., & Cabrera, F. (2006). Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environmental Pollution , 139 , 40–52.
doi: 10.1016/j.envpol.2005.04.034
Madejón, P., Domínguez, M. T., Madejón, E., Cabrera, F., Marañón, T., & Murillo, J. M. (2018). Soil-plant relationships and contamination by trace elements: A review of twenty years of experimentation and monitoring after the Aznalcóllar (SW Spain) mine accident. Science of the Total Environment ,625 , 50–63.
doi: 10.1016/j.scitotenv.2017.12.277
MAPA (Ministerio de Agricultura, Pesca y Alimentación). (1994). Métodos Oficiales de Análisis . Tomo 3. Secretaría General. Madrid, Spain.
Martín Peinado, F. (2001).Contaminación de suelos por el vertido de una mina de pirita (Aznalcóllar, España) . Ph.D Tesis. University of Granada, Spain.
Martín, F., García, I., Díez, M., Sierra, M., Simón, M., & Dorronsoro, C. (2008). Soil alteration by continued oxidation of pyrite tailings. Applied Geochemistry ,23 , 1152–1165.
doi: 10.1016/j.apgeochem.2007.11.012
Martín, F. J., Romero, A., Arco, E., Sierra, M., Ortiz-Bernad, I., & Abbaslou, H. (2012). Assessment of arsenic toxicity in spiked soils and water solutions by the use of bioassays. Spanish Journal of Soil Science , 2 , 45–56.
doi: 10.3232/SJSS.2012.V2.N3.05
Martín, F. J., Romero-Freire, A., García, I., Sierra, M., Ortiz-Bernad, I., & Simón, M. (2015). Long-term contamination in a recovered area affected by a mining spill.Science of the Total Environment , 514 , 219–223.
doi: 10.1016/j.scitotenv.2015.01.102
OECD (Organization for Economic Cooperation and Development). (2004). Environmental Performance Reviews: Spain 2004 . OECD Publications. Cedex 16, France.
Pardo, J., Mondaca, P., Celis-Diez, J., & Ginocchio, R. (2018). Assessment of revegetation of an acidic metal(loid)-polluted soils six years after the incorporation of lime with and without compost. Geoderma , 331 , 81–86.
doi: 10.1016/j.geoderma.2018.06.018
Pastor-Jáuregui, R., Paniagua-López, M., Martínez-Garzón, J., Martín-Peinado, F., & Sierra-Aragón, M. (2020). Evolution of the Residual Pollution in Soils after Bioremediation Treatments. Applied Sciences , 10 , 1006.
doi: 10.3390/app10031006
Přibil, R. (1982). Applied Complexometry . Pergamon Press Ltd., Oxford.
Quevauviller, Ph., Lachica, M., Barahona, E., Gómez, A., Rauret, G., Ure, A., & Muntau, H. (1998). Certified reference material for the quality control of EDTA and DTPA-extractable trace metal contents in calcareous soils (CRM 6000).Fresenius Journal Analytical Chemistry , 360 , 505–511.
doi: 10.1007/s002160050750
Rivas Martínez, S. (1987). Memoria del mapa de series de vegetación de España . ICONA. Madrid, Spain.
Rocco, C., Agrelli, D., Tafuro, M., Caporale, A. G., & Adamo, P. (2018). Assessing the bioavailability of potentially toxic elements in soil: A proposed approach. Italian Journal of Agronomy , 13 , 16–22.
doi: 10.4081/ija.2018.1348
Romero-Freire, A., Sierra-Aragón, M., Ortiz-Bernad, I., & Martín-Peinado, F. J. (2014). Toxicity of arsenic in relation to soil properties: implications to regulatory purposes. Journal of Soils and Sediments , 14 , 968–979.
doi: 10.1007/s11368-014-0845-0
Romero-Freire, A., García Fernández, I., Simón Torres, M., Martínez Garzón, F. J., & Martín Peinado, F. J. (2016a). Long-term toxicity assessment of soils in a recovered area affected by a mining spill. Environmental Pollution , 208 , 553–561.
doi: 10.1016/j.envpol.2015.10.029
Romero-Freire, A., Sierra, M., Martínez, F. J., & Martín, F. J. (2016b). Is soil basal respiration a good indicator of soil pollution? Geoderma , 263 , 132–139.
doi: 10.1016/j.geoderma.2015.09.006
Schramel, O., Michalke, B., & Kettrup, A. (2000). Study of the copper distribution in contaminated soils of hop fields by single and sequential extraction procedures.Science of the Total Environment , 263 , 11–22.
doi: 10.1016/S0048-9697(00)00606-9
Sierra, M., Mitsui, Y., García-Carmona, M., Martínez, F. J., & Martín Peinado, F. J. (2019). The role of organic amendment in soils affected by residual pollution of potentially harmful elements. Chemosphere , 237 , 124549.
doi: 10.1016/j.chemosphere.2019.124549
Simón, M., Ortíz, I., García, I., Fernández, E., Fernández, J., Dorronsoro, C, & Aguilar, J. (1999). Pollution of soils by the toxic spill of a pyrite mine (Aznalcóllar, Spain). Science of the Total Environment , 242 , 105–115.
doi: 10.1016/s0048-9697(99)00378-2
Simón, M., Martín, F., Ortíz, I., García, I., Fernández, J., Fernández, E., Dorronsoro, C., & Aguilar, J. (2001). Soil pollution by oxidation of tailings from toxic spill of a pyrite mine. Science of the Total Environment , 279 , 63–74.
doi: 10.1016/S0048-9697(01)00726-4
Simón, M., Iriarte, A., García, I., Martín, F., Aguilar, J., & Dorronsoro, C. (2005a). Mobility of heavy metals in pyritic mine spills from an accident in Aznalcóllar, SW Spain. In: Faz Cano, A., Ortíz Silla, R., & Mermut, A. R. (Eds.).Advances in GeoEcology , 36 , 467–476.
Simón, M., Martín, F., García, I., Bouza, P., Dorronsoro, C., & Aguilar, J. (2005b). Interaction of limestone grains and acidic solutions from the oxidation of pyrite tailings. Environmental Pollution , 135 , 65–72.
doi: 10.1016/j.envpol.2004.10.013
Simón, M., García, I., Martín, F, Díez, M., del Moral, F., & Sánchez, J. A. (2008). Remediation measures and displacement of pollutants in soils affected by the spill of a pyrite mine. Science of the Total Environment , 407 , 23–39.
doi: 10.1016/j.scitotenv.2008.07.040
Sposito, G., Lund, L. J., & Chang, A. C. (1982). Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases. Soil Science Society of America Journal , 46 , 260–264.
doi: 10.2136/sssaj1982.03615995004600020009x
SSS (Soil Survey Staff). (2014). Keys to soil taxonomy, twelfth ed . USDA-Natural Resources Conservation Service, Washington.
Tyurin, I. (1951). Analytical procedure for a comparative study of soil humus . Trudy Pochv. Inst Dokuchayeva. USSR, 38, 5–9.
USDA (United States Department of Agriculture). (1972). Soil Conservation Service. Methods and procedures for collecting soil samples . Soil Survey Laboratory, USDA, Washington.
USDA (United States Department of Agriculture). (1999). Soil Taxonomy, second ed . Soil Survey Staff. Natural Resources Conservation Service. Agriculture Handbook Nº 436. Washington.
Wiszniewska, A., Hanus-Fajerska, E., Muszyńska, E., & Ciarkowska, K. (2016). Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress. Pedosphere , 26 , 1–12.
doi: 10.1016/S1002-0160(15)60017-0
Xiong, J., Madejón, P., Madejón, E., & Cabrera, F. (2015). Assisted natural remediation of a trace element-contaminated acid soil: an eight-year field study.Pedosphere , 25 , 250–262.
doi: 10.1016/S1002-0160(15)60010-8
Yotova, G., Zlateva, B., Ganeva, S., Simeonov, V., Kudłak, B., Namieśnik, J., & Tsakovski, S. (2018). Phytoavailability of potentially toxic elements from industrially contaminated soils to wild grass. Ecotoxicology and Environmental Safety , 164 , 317–324.
doi: 10.1016/j.ecoenv.2018.07.077
Zhang, C., Yu, Z. G., Zeng, G. M., Jiang, M., Yang, Z. Z., Cui, F., Zhu, M. Y., Shen, L. Q., & Hu, L. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International , 73 , 270–281.
doi: 10.1016/j.envint.2014.08.010