References
[1] M. Tariq, A.A. Al-Badr, Chloroquine, AnalyticaI Profiles of Drug Substances, Academv Press, Inc. 1984.
[2] J.M. Karle, I.L. Karle, Redetermination of the crystal and molecular structure of the antimalarial chloroquine bis(dihydrogenphosphate) dehydrate, research papers (organic compounds), Acta Cryst. C44 (1988) 1605-1608. https://doi.org/10.1107/S0108270188004652
[3] H.S. Preston, J.M. Stewart, The crystal structure of the antimalarial chloroquine diphosphate monohydrate, Journal of the Chemical Society D: Chemical Communications J. Chem. Soc. D 18 (1970) 1142-1143. https://doi.org/10.1039/C29700001142
[4] K. Nord, J. Karlsen, H.H. Tonnnesen, Photochemical stability of biologically active compounds. IX. Characterization of the spectroscopic properties of the 4-aminoquinolines chloroquine and hydroxychloroquine and of selected metabolites by absorption, fluorescence and phorporescence measurements, Photochem. Photobiol. 60 (1994) 427-431.https://doi.org/10.1111/j.1751-1097.1994.tb05128.x
[5] J. Nandi, S.N. Sharma, Efficacy of chloroquine in febrile Plasmodium falciparum infected children in Mewat region of Haryana, J. Commun. Dis. 32 (2) (2000) 137-143. https://pubmed.ncbi.nlm.nih.gov/11198399
[6] R. Hayward, K.J. Saliba, K. Kirk, The pH of the digestive vacuole of Plasmodium falciparum is not associated with chloroquine resistance, J. Cell Science 119 (2006) 1016-1025. https://doi: 10.1242/jcs.02795
[7] R. Bortoli, M. Santiago, Chloroquine ototoxicity, Clin. Rheumatol.  26 (2007) 1809-1810. https://doi.org/10.1007/s10067-007-0662-6
[8] C. Loup, J. Lelièvre, F. Benoit-Vical, B. Meunier, Trioxaquines and Heme-Artemisinin adducts inhibit the in vitro formation of hemozoin better than chloroquine, Antimicrob. Agents Chemother. 51(10) (2007) 3768–3770. https://doi:10.1128/AAC.00239-07
[9] R.G. Cooper, T. Magwere, Chloroquine has not disappeared, African health sciences 7 (2007) 185-186. https://doi: 10.5555/afhs.2007.7.3.185
[10] N. Valecha, H. Joshi, P.K. Mallick, S.K. Sharma, A. Kumar, P.K. Tyagi, B. Shahi, M.K. Das, B.N. Nagpal, A.P. Dash, Low efficacy of chloroquine: time to switchover to artemisinin-based combination therapy for falciparum malaria in India, Acta Trop. 111 (2009) 21-28. https://doi: 10.1016/j.actatropica.2009.01.013
[11] F.A. Rojas and V.V. Kouznetsov, Property-based design and synthesis of new chloroquine hybrids via simple incorporation of 2-imino-thiazolidin-4-one or 1h-pyrrol-2,5-dione fragments on the 4-amino-7-chloroquinoline side chain, J. Braz. Chem. Soc. 22 (9) (2011) 1774-1781. http://dx.doi.org/10.1590/S0103-50532011000900021
[12] M.F. Marmor, U. Kellner, T.Y.Y. Lai, J.S. Lyons, W.F. Mieler, Revised recommendations on screening for chloroquine and hydroxychloroquine retinopathy, Ophthalmology 118(2) (2011) 415-422. http://doi: 10.1016/j.ophtha.2010.11.017
[13] M.E. Egger, J.S. Huang, W. Yin, K.M. McMasters, L.R. McNally, Inhibition of autophagy with chloroquine is effective in melanoma, J. Surg. Res. 184 (2013) 274-281. http://doi: 10.1016/j.jss.2013.04.055
[14] T. Kimura, Y. Takabatake, A. Takahashi, Y. Isaka, Chloroquine in cancer therapy: a double-edged sword of autophagy, Cancer Res. 73 (2013) 3-7. http://doi: 10.1158/0008-5472.CAN-12-2464
[15] S. Hangartner, S. Eggert, F. Dussy, D. Wyler, T. Briellmann, Chloroquine and diazepam for her last sleep, Drug Test. Anal. 5 (2013) 777-780. http://doi: 10.1002/dta.1509
[16] R. Thomé, S. Costa Pinto Lopes, F.T. Costa, L. Verinaud, Chloroquine: modes of action of an undervalued drug, Immunol. Lett. 153 (2013) 50-57. http://doi: 10.1016/j.imlet.2013.07.004
[17] E. Tönnesmann, R. Kandolf, T. Lewalter, Chloroquine cardiomyopathy - a review of the literature, Immunopharmacol. Immunotoxicol. 35 (2013) 434-442. http://doi: 10.3109/08923973.2013.780078
[18] S. Doddaga, R. Peddakonda, Chloroquine-N-oxide, a major oxidative degradation product of chloroquine: identification, synthesis and characterization, J. Pharm. Biomed. Anal. 81-82 (2013) 118-125. http://doi: 10.1016/j.jpba.2013.04.004
[19] M.S. Kazi, K. Saurabh, P. Rishi, E. Rishi, Delayed onset chloroquine retinopathy presenting 10 years after long-term usage of chloroquine, Middle East Afr J Ophthalmol. 20 (2013) 89-91. http://www.meajo.org/text.asp?2013/20/1/89/106404
[20] X. Zhang, Y. Yang, X. Liang, X. Zeng, Z. Liu, W. Tao, X. Xiao, H. Chen, L. Huang, L. Mei, Enhancing therapeutic effects of docetaxel-loaded dendritic copolymer nanoparticles by co-treatment with autophagy inhibitor on breast cancer, Theranostics 4(11) (2014) 1085-1095. http://doi: 10.7150/thno.9933
[21] J-P Routy, J.B. Angel, M. Patel, C. Kanagaratham, D. Radzioch, I. Kema, N. Gilmore, P. Ancuta, J Singer, M-A Jenabian, Assessment of chloroquine as a modulator of immune activation to improve CD4 recovery in immune nonresponding HIV-infected patients receiving antiretroviral therapy, HIV Medicine 16 (2015) 48–56. http://doi: 10.1111/hiv.12171.
[22] E.B. Golden, H-Y Cho, F.M. Hofman, S.G. Louie, A.H. Schönthal, T.C. Chen, Quinoline-based antimalarial drugs: a novel class of autophagy inhibitors, Neurosurg. Focus 38 (3):E12 (2015) 1-9. http://doi: 10.3171/2014.12.FOCUS14748
[23] M.F. Marmor, U. Kellner, T.Y. Lai, J.S. Lyons, R.B. Melles, W.F. Mieler, Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 Revision). Ophthalmology 123(6) (2016) 1386-1394. https://doi.org/10.1016/j.ophtha.2016.01.058
[24] H. Ye, M. Chen, F. Cao, H. Huang, R. Zhan, X. Zheng, Chloroquine, an autophagy inhibitor, potentiates the radiosensitivity of glioma initiating cells by inhibiting autophagy and activating apoptosis, BMC Neurology 16 (2016) 178. https://10.1186/s12883-016-0700-6
[25] A-R Choi, J-H Kim, Y-W Woo, H.S. Kim, S. Yoon, Anti-malarial drugs primaquine and chloroquine have different sensitization effects with anti-mitotic drugs in resistant cancer cells, Anticancer Research 36(4) (2016) 1641-1648. http://ar.iiarjournals.org/content/36/4/1641
[26] L.Y. Chan, J.D.W. Teo, K.S-W Tan, K. Sou , W.L. Kwan, C-L.K. Lee, Near infrared fluorophore-tagged chloroquine in plasmodium falciparum diagnostic imaging, Molecules 23 (2018) 2635. https://doi:10.3390/molecules23102635
[27] T. Herraiz, H. Guillén, D. González-Peña, V.J. Arán, Antimalarial quinoline drugs inhibit β-hematin and increase free hemin catalyzing peroxidative reactions and inhibition of cysteine proteases,www.nature.com/scientificreports, 9 (2019) 15398 https://doi.org/10.1038/s41598-019-51604-z
[28] Available from internet: //D:/CHLOROQUINE/Articles/Coronavirus%20disease%202019%20(COVID-19).pdf. Pag. 53,80.
[29] T. Frosch, M. Schmitt, G. Bringmann, W. Kiefer, J. Popp, Structural analysis of the anti-malaria active agent chloroquine under physiological conditions, J Phys Chem B 111(7) (2007) 1815-1822. https://doi: 10.1021/jp065136j
[30] M. Asghari-Khiavi, J. Vongsvivut, I. Perepichka, A. Mechler, B.R. Wood, D. McNaughton, D.S. Bohle, Interaction of quinoline antimalarial drugs with ferriprotoporphyrin IX, a solid state spectroscopy study, J. Inorg. Biochem. 105(12) (2011) 1662–1669. https://doi:10.1016/j.jinorgbio.2011.08.005
[31] M. Kozicki, D.J. Creek, A. Sexton, B.J. Morahan, A Wesełucha-Birczyńska, B.R. Wood, An attenuated total refection (ATR) and Raman spectroscopic investigations into the effects of chloroquine on Plasmodium falciparum-infected red blood cells, Analyst. 140(7) (2015) 2236-2246. https://doi: 10.1039/c4an01904k
[32] E.C. Tackman, M.J. Trujillo, T-L.E. Lockwood, G. Merga, M. Lieberman, J.P. Camden, Identification of substandard and falsified antimalarial pharmaceuticals chloroquine, doxycycline, and primaquine using surface-enhanced Raman scattering, Anal. Methods 10 (2018) 4718-4722.https://doi.org/10.1039/C8AY01413B
[33] A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behaviour, Phys. Rev. A38 (1988) 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
[34] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B37 (1988) 785-789. https://doi.org/10.1103/PhysRevB.37.785
[35] S. Miertus, E. Scrocco, J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects, Chem. Phys. 55 (1981) 117–129. https://doi.org/10.1016/0301-0104(81)85090-2
[36] J. Tomasi, J. Persico, Molecular interactions in solution: an overview of methods based on continous distributions of the solvent, Chem. Rev. 94 (1994) 2027-2094. https://doi.org/10.1021/cr00031a013
[37] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B113 (2009) 6378-6396. https://doi.org/10.1021/jp810292n
[38] P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs, A. Vargha, Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene, J. Am. Chem. Soc. 105 (1983) 7073-7047.https://doi.org/10.1021/ja00362a005
[39] G. Rauhut, P. Pulay, Transferable scaling factors for density functional derived vibrational force fields, J. Phys. Chem. 99 (1995) 3093-3100,https://doi.org/10.1021/j100010a019
[40] T. Sundius, Scaling of ab-initio force fields by MOLVIB. Vib. Spectrosc. 29 (2002) 89-95.https://doi.org/10.1016/S0924-2031(01)00189-8.
[41] R.G. Parr, R.G. Pearson, Absolute hardness: companion parameter to absolute electronegativity, J. Am. Chem. Soc. 105 (1983) 7512-7516.