REFERENCES
Allison, P.A. (1988). The role of anoxia in the decay and mineralization
of proteinaceous macro-fossils. Paleobiol . 14 , 139–154.
Anderson, R.P., Tosca, N.J., Gaines, R.R., Koch, N.M., & Briggs, D.E.G.
(2018). A mineralogical signature for Burgess Shale-type fossilization.Geol . 46 , 347–350.
Berner, R.A. (1968). Calcium carbonate concretions formed by the
decomposition of organic matter. Science . 159 , 195–197.
Betts, H.C., Puttick, M.N., Clark, J.W., Williams, T.A., Donoghue,
P.C.J., & Pisani, D. (2018). Integrated genomic and fossil evidence
illuminates life’s early evolution and eukaryote origin. Nature
Ecology & Evolution . 2 , 1556–1562.
Briggs, D.E.G., & Kear, A.J. (1997). Decay and preservation of
polychaetes: Taphonomic thresholds in soft-bodied organisms.Paleobiol . 19 , 107–135.
Brown, K.L., Banerjee, S., Feigley, A., Abe, H., Blackwell, T.S. et al.
(2018). Salt-bridge modulates differential calcium-mediated ligand
binding to integrin α1- and α2-I domains. Sci. Rep. 8 ,
2916.
Butler, A.D., Cunningham, J.A., Budd, G.E.P., & Donoghue, C.J. (2015).
Experimental taphonomy of Artemia reveals the role of endogenous
microbes in mediating decay and fossilization. Proc. Royal Soc.
Seria B: Biol. Sci . 282 , 20150476.
Butterfield, N.J. (1995). Secular distribution of Burgess Shale-type
reservation. Lethaia . 28 , 1–13.
Butterfield, N.J. (2003). Exceptional fossil preservation and the
Cambrian explosion. Integr. Compar. Bio l. 43 , 166–177.
Coates, J.C., & Harwood, A.D. (2001). Cell-cell adhesion and signal
transduction during Dictyostelium development. J. Cell
Sci . 114 , 4349–4358.
Crundwell, F. K. (2014). The mechanism of dissolution of minerals in
acidic and alkaline solutions: Part II, Application of a new theory to
silicates, aluminosilicates and quartz. Hydrometallurgy .149 , 265–275.
Darroch, S.A.F., Laflamme, M., Schiffbauer, J. D., & Briggs, D.E.G.
(2012). Experimental formation of a microbial death mask.Palaios . 27 , 293–303.
Dohrmann, M., & Wörheide, G. (2017). Dating early animal evolution
using phylogenomic data. Sci. Rep. 7 , 3599.
Fahey, B., & Degnan, B.M. (2010). Origin of animal epithelia: insights
from the sponge genome. Evol. Develop. 12 , 601–617.
Földvári, M., 2011. Handbook of thermogravimetric system of minerals and
its use in geological practice. Geological Inst. of Hungary (Budapest).
Fu, D., Tong, G., Dai, T., Liu, W., Yang, Y. et al. (2019). The
Qingjiang biota — A Burgess Shale–type fossil Lagerstätte from the
early Cambrian of South China. Science . 363 , 1338–1342.
Gaines, R.R., Hammarlund, E.U., Hou, X., Qi, C., Gabbott, S.E. et al.
(2012). Mechanism for Burgess Shale-type preservation. PNAS .109 , 5180–5184.
Garson, D.E., Gaines, R.R., Droser, M.L., Liddell, W.D., & Sappenfield,
A. (2011). Dynamic palaeoredox and exceptional preservation in the
Cambrian Spence Shale of Utah. Lethaia . 45 , 164–177.
Gehling, J.G. (1999). Microbial mats in terminal Proterozoic
siliciclastics: Ediacaran death masks. Palaios . 14 ,
40–57.
Hammarlund, E., Canfield, D.E., Bengtson, S., Leth, P.M., Schillinger,
B., & Calzada, E. (2011). The influence of sulfate concentration on
soft-tissue decay and preservation. Palaeontologr. Canad .31 , 141–156.
Kataoka, T., Mori, M., Nakanishi, T.M., Matsumoto, S., & Uchiumi, A.
(1997). Highly sensitive analytical method for aluminium movement in
soybean root through lumogallion staining. J. Plant Res. and
Environment . 110 , 305–309.
Kompantseva, E.I., Naimark, E.B., Komova, A.V., & Nikitina, N.S.
(2011). Interaction of the haloalkaliphilic purple bacteriaRhodovulum steppense with aluminosilicate minerals.Microbiol . 80 , 650–656.
Marin, F., & Luquet, G. (2007). Unusually acidic proteins in
biomineralization. In Handbook of Biomineralization. Biological
aspects and structure formation (ed. Bäuerlein, E.) 273–290 (Weinheim:
Wiley VCH).
Martin, D., Briggs, D.E.G., & Parkes, R.J. (2004). Experimental
attachment of sediment particles to invertebrate eggs and the
preservation of soft-bodied fossils. J. Geol. Soc. 161 ,
735–738.
McCoy, V.E., Young, R.T., & Briggs, D.E.G. (2015a). Factors controlling
exceptional preservation in concretions. Palaios . 30 ,
272–280.
McCoy, V. E., Young, R.T., & Briggs, D.E.G. (2015b). Sediment
permeability and the preservation of soft-tissues in concretions: an
experimental study. Palaios . 30 , 608–612.
McMahon, S., Anderson, R.P., Saupe, E.E., & Briggs, D.E.G. (2016).
Experimental evidence that clay inhibits bacterial decomposers:
Implications for preservation of organic fossils. Geol .44 , 867–870.
Mold, M., Eriksson, H., Siesjö, P., Darabi, A., Shardlow, E., & Exley,
C. (2014). Unequivocal identification of intracellular aluminium
adjuvant in a monocytic THP-1 cell line. Sci. Rep . 4 ,
6287.
Muscente, A.D., Schiffbauer, J.D., Broce, J., Laflamme, M., O’Donnell,
K. et al. (2017). Exceptionally preserved fossil assemblages through
geologic time and space. Gondwana Research . 48 ,
164–188.
Naimark, E.B., Kalinina, M.A., Shokurov, A.V., Markov, A.V., & Boeva,
N.M. (2016a). Decaying of Artemia salina in clay colloids:
14-month experimental formation of subfossils. J. Palaeontol .90 , 472–484.
Naimark, E., Kalinina, M., Shokurov, A., Boeva, N., Markov, A., &
Zaytseva, L. (2016b). Decaying in different clays: implications for
soft-tissue preservation. Palaeontol . 59, 583–595.
Naimark, E.B., Boeva, N.M., Kalinina, M.A., & Zaytseva, L.V. (2018a).
Complementary transformations of buried organic residues and the ambient
sediment: results of long-term taphonomic experiments. Paleontol.
J . 52 , 109–122.
Naimark, E., Kalinina, M., Shokurov, A., Markov, A., Zaytseva, L., &
Boeva, N. (2018b). Mineral composition of host sediments influences the
fossilization of soft tissues. Canad. J. of Earth Sci.55 , 1271–1283.
Naimark, E., Kalinina, M., & Boeva, N. (2018c). Persistence of external
anatomy of small crustaceans in a long term taphonomic experiment.Palaios . 33 , 154–163.
Negrea, P., Caunii, A., Sarac, I., & Butnariu, M. (2015). The study of
infrared spectrum of chitin and chitosan extract as potential sources of
biomass. Digest J. Nanomater. and Biostructures . 10 ,
1129–1138.
Newman, S.A., Daye, M., Fakra, S.C., Marcus, M.A., Pajusalu, M. et al.
(2019). Experimental preservation of muscle tissue in quartz sand and
kaolinite. Palaios. 34 , 437–451.
Petrovich, R. (2001). Mechanisms of fossilization of the soft-bodied and
lightly armored faunas of the Burgess Shale and of some other classical
localities. Amer. J. Sci . 301 , 683–726.
Pratt, B.R., & Kimmig, J. (2019). Extensive bioturbation in a middle
Cambrian Burgess Shale–type fossil Lagerstätte in northwestern Canada.Geol . 47 , 231–234.
Raff, E.C., Schollaert, K.L., Nelson, D.E., Donoghue, P.C.J., Thomas,
C.-W. et al. (2008). Embryo fossilization is a biological process
mediated by microbial biofilms. PNAS . 105 , 19360–19365.
Raff, E.C., Andrews, M.E., Turner, F.R., Toh, E., Nelson, D.E., & Raff,
R.A. (2013). Contingent interactions among biofilm-forming bacteria
determine preservation or decay in the first steps toward fossilization
of marine embryos. Evol. Develop . 15 , 243–256.
Rickard, D., & Luther, G.W. (2007). Chemistry of Iron Sulfides.Chem. Rev. 107 , 514–562.
Rozalén, M.L., Huertas, F.J., Brady, P.V., Cama, J., García-Palma, S.,
& Linares, J. (2008). Experimental study of the effect of pH on the
kinetics of montmorillonite dissolution at 25°C. Geochim. et
Cosmochim. Acta . 72 , 4224–4253.
Sadiq, M.F. (1995). Effect of sodium azide and trifluoperazine on
growth, development and monolayer cell differentiation inDictyostelium discoideum. J. of Biosci . 20 , 481–491.
Sagemann, J., Bale, S.L., Briggs, D.E.G., & Parkes, R.J. (1999).
Controls on the formation of authigenic minerals in association with
decaying organic matter: an experimental approach. Geochim. et
Cosmochim. Acta . 63 , 1083–1095.
Schiffbauer, J.D., Xiao, S., Cai, Y., Wallace, A.F., Hua, H. et al.
(2014). A unifying model for Neoproterozoic–Palaeozoic exceptional
fossil preservation through pyritization and carbonaceous compression.Nat. Commun . 5 , 5754.
Schopf, W.J. (1976). Are the oldest ‘fossils’, fossils? Origins of
life . 7 , 19–36.
Seymour, G.B., Tucker, G., & Leach, L.A. (2004). Cell Adhesion
Molecules in Plants and Animals. Biotechnol. Gen. Engineering
Rev . 21 , 123–132.
Sharpe, S.C., Eme, L., Brown, M.W., & Roger, A.J. (2015). Timing the
Origins of Multicellular Eukaryotes Through Phylogenomics and Relaxed
Molecular Clock Analyses. In Evolutionary Transitions to
Multicellular Life. 2 (ed. Ruiz-Trillo, I., Nedelcu, A.) 3–29
(Dordrecht: Springer).
Siveter, D.J., Briggs, D.E.G., Siveter, D.J., & Sutton, M.D. (2020).
The Herefordshire Lagerstätte: fleshing out Silurian marine life.J. Geol. Soc . 177 , 1–13.
Siu, C.H., Sriskanthadevan, S., Wang, J., Hou, L., Chen, G. et al.
(2011). Regulation of spatiotemporal expression of cell–cell adhesion
molecules during development of Dictyostelium discoideum .Development, Growth, Differentiation . 53 , 518–527.
Sotomayor, M., & Schulten, K. (2008). The allosteric role of the
Ca++ switch in adhesion and plasticity of C-cadherin.Biophysical J. 94 , 4621–4633.
Strang, K.M., Armstrong, H.A., Harper, D.A.T., & Trabucho-Alexandre,
J.P. (2016). The Sirius Passet Lagerstätte: silica death masking opens
the window on the earliest mat ground community of the Cambrian
explosion. Lethaia . 49 , 631–643.
Wilson, L.A., & Butterfield, N.J. (2014). Sediment effects on the
preservation of Burgess Shale-type compression fossils. Palaios .29 , 145–154.
Zhu, Q., Aller, R.C., & Fan, Y. (2006). Two-dimensional pH
distributions and dynamics in bioturbated marine sediments.Geochim. et Cosmochim. Acta . 70 , 4933–4949.