REFERENCES
Allison, P.A. (1988). The role of anoxia in the decay and mineralization of proteinaceous macro-fossils. Paleobiol . 14 , 139–154.
Anderson, R.P., Tosca, N.J., Gaines, R.R., Koch, N.M., & Briggs, D.E.G. (2018). A mineralogical signature for Burgess Shale-type fossilization.Geol . 46 , 347–350.
Berner, R.A. (1968). Calcium carbonate concretions formed by the decomposition of organic matter. Science . 159 , 195–197.
Betts, H.C., Puttick, M.N., Clark, J.W., Williams, T.A., Donoghue, P.C.J., & Pisani, D. (2018). Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nature Ecology & Evolution . 2 , 1556–1562.
Briggs, D.E.G., & Kear, A.J. (1997). Decay and preservation of polychaetes: Taphonomic thresholds in soft-bodied organisms.Paleobiol . 19 , 107–135.
Brown, K.L., Banerjee, S., Feigley, A., Abe, H., Blackwell, T.S. et al. (2018). Salt-bridge modulates differential calcium-mediated ligand binding to integrin α1- and α2-I domains. Sci. Rep. 8 , 2916.
Butler, A.D., Cunningham, J.A., Budd, G.E.P., & Donoghue, C.J. (2015). Experimental taphonomy of Artemia reveals the role of endogenous microbes in mediating decay and fossilization. Proc. Royal Soc. Seria B: Biol. Sci . 282 , 20150476.
Butterfield, N.J. (1995). Secular distribution of Burgess Shale-type reservation. Lethaia . 28 , 1–13.
Butterfield, N.J. (2003). Exceptional fossil preservation and the Cambrian explosion. Integr. Compar. Bio l. 43 , 166–177.
Coates, J.C., & Harwood, A.D. (2001). Cell-cell adhesion and signal transduction during Dictyostelium development. J. Cell Sci . 114 , 4349–4358.
Crundwell, F. K. (2014). The mechanism of dissolution of minerals in acidic and alkaline solutions: Part II, Application of a new theory to silicates, aluminosilicates and quartz. Hydrometallurgy .149 , 265–275.
Darroch, S.A.F., Laflamme, M., Schiffbauer, J. D., & Briggs, D.E.G. (2012). Experimental formation of a microbial death mask.Palaios . 27 , 293–303.
Dohrmann, M., & Wörheide, G. (2017). Dating early animal evolution using phylogenomic data. Sci. Rep. 7 , 3599.
Fahey, B., & Degnan, B.M. (2010). Origin of animal epithelia: insights from the sponge genome. Evol. Develop. 12 , 601–617.
Földvári, M., 2011. Handbook of thermogravimetric system of minerals and its use in geological practice. Geological Inst. of Hungary (Budapest).
Fu, D., Tong, G., Dai, T., Liu, W., Yang, Y. et al. (2019). The Qingjiang biota — A Burgess Shale–type fossil Lagerstätte from the early Cambrian of South China. Science . 363 , 1338–1342.
Gaines, R.R., Hammarlund, E.U., Hou, X., Qi, C., Gabbott, S.E. et al. (2012). Mechanism for Burgess Shale-type preservation. PNAS .109 , 5180–5184.
Garson, D.E., Gaines, R.R., Droser, M.L., Liddell, W.D., & Sappenfield, A. (2011). Dynamic palaeoredox and exceptional preservation in the Cambrian Spence Shale of Utah. Lethaia . 45 , 164–177.
Gehling, J.G. (1999). Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios . 14 , 40–57.
Hammarlund, E., Canfield, D.E., Bengtson, S., Leth, P.M., Schillinger, B., & Calzada, E. (2011). The influence of sulfate concentration on soft-tissue decay and preservation. Palaeontologr. Canad .31 , 141–156.
Kataoka, T., Mori, M., Nakanishi, T.M., Matsumoto, S., & Uchiumi, A. (1997). Highly sensitive analytical method for aluminium movement in soybean root through lumogallion staining. J. Plant Res. and Environment . 110 , 305–309.
Kompantseva, E.I., Naimark, E.B., Komova, A.V., & Nikitina, N.S. (2011). Interaction of the haloalkaliphilic purple bacteriaRhodovulum steppense with aluminosilicate minerals.Microbiol . 80 , 650–656.
Marin, F., & Luquet, G. (2007). Unusually acidic proteins in biomineralization. In Handbook of Biomineralization. Biological aspects and structure formation (ed. Bäuerlein, E.) 273–290 (Weinheim: Wiley VCH).
Martin, D., Briggs, D.E.G., & Parkes, R.J. (2004). Experimental attachment of sediment particles to invertebrate eggs and the preservation of soft-bodied fossils. J. Geol. Soc. 161 , 735–738.
McCoy, V.E., Young, R.T., & Briggs, D.E.G. (2015a). Factors controlling exceptional preservation in concretions. Palaios . 30 , 272–280.
McCoy, V. E., Young, R.T., & Briggs, D.E.G. (2015b). Sediment permeability and the preservation of soft-tissues in concretions: an experimental study. Palaios . 30 , 608–612.
McMahon, S., Anderson, R.P., Saupe, E.E., & Briggs, D.E.G. (2016). Experimental evidence that clay inhibits bacterial decomposers: Implications for preservation of organic fossils. Geol .44 , 867–870.
Mold, M., Eriksson, H., Siesjö, P., Darabi, A., Shardlow, E., & Exley, C. (2014). Unequivocal identification of intracellular aluminium adjuvant in a monocytic THP-1 cell line. Sci. Rep . 4 , 6287.
Muscente, A.D., Schiffbauer, J.D., Broce, J., Laflamme, M., O’Donnell, K. et al. (2017). Exceptionally preserved fossil assemblages through geologic time and space. Gondwana Research . 48 , 164–188.
Naimark, E.B., Kalinina, M.A., Shokurov, A.V., Markov, A.V., & Boeva, N.M. (2016a). Decaying of Artemia salina in clay colloids: 14-month experimental formation of subfossils. J. Palaeontol .90 , 472–484.
Naimark, E., Kalinina, M., Shokurov, A., Boeva, N., Markov, A., & Zaytseva, L. (2016b). Decaying in different clays: implications for soft-tissue preservation. Palaeontol . 59, 583–595.
Naimark, E.B., Boeva, N.M., Kalinina, M.A., & Zaytseva, L.V. (2018a). Complementary transformations of buried organic residues and the ambient sediment: results of long-term taphonomic experiments. Paleontol. J . 52 , 109–122.
Naimark, E., Kalinina, M., Shokurov, A., Markov, A., Zaytseva, L., & Boeva, N. (2018b). Mineral composition of host sediments influences the fossilization of soft tissues. Canad. J. of Earth Sci.55 , 1271–1283.
Naimark, E., Kalinina, M., & Boeva, N. (2018c). Persistence of external anatomy of small crustaceans in a long term taphonomic experiment.Palaios . 33 , 154–163.
Negrea, P., Caunii, A., Sarac, I., & Butnariu, M. (2015). The study of infrared spectrum of chitin and chitosan extract as potential sources of biomass. Digest J. Nanomater. and Biostructures . 10 , 1129–1138.
Newman, S.A., Daye, M., Fakra, S.C., Marcus, M.A., Pajusalu, M. et al. (2019). Experimental preservation of muscle tissue in quartz sand and kaolinite. Palaios. 34 , 437–451.
Petrovich, R. (2001). Mechanisms of fossilization of the soft-bodied and lightly armored faunas of the Burgess Shale and of some other classical localities. Amer. J. Sci . 301 , 683–726.
Pratt, B.R., & Kimmig, J. (2019). Extensive bioturbation in a middle Cambrian Burgess Shale–type fossil Lagerstätte in northwestern Canada.Geol . 47 , 231–234.
Raff, E.C., Schollaert, K.L., Nelson, D.E., Donoghue, P.C.J., Thomas, C.-W. et al. (2008). Embryo fossilization is a biological process mediated by microbial biofilms. PNAS . 105 , 19360–19365.
Raff, E.C., Andrews, M.E., Turner, F.R., Toh, E., Nelson, D.E., & Raff, R.A. (2013). Contingent interactions among biofilm-forming bacteria determine preservation or decay in the first steps toward fossilization of marine embryos. Evol. Develop . 15 , 243–256.
Rickard, D., & Luther, G.W. (2007). Chemistry of Iron Sulfides.Chem. Rev. 107 , 514–562.
Rozalén, M.L., Huertas, F.J., Brady, P.V., Cama, J., García-Palma, S., & Linares, J. (2008). Experimental study of the effect of pH on the kinetics of montmorillonite dissolution at 25°C. Geochim. et Cosmochim. Acta . 72 , 4224–4253.
Sadiq, M.F. (1995). Effect of sodium azide and trifluoperazine on growth, development and monolayer cell differentiation inDictyostelium discoideum. J. of Biosci . 20 , 481–491.
Sagemann, J., Bale, S.L., Briggs, D.E.G., & Parkes, R.J. (1999). Controls on the formation of authigenic minerals in association with decaying organic matter: an experimental approach. Geochim. et Cosmochim. Acta . 63 , 1083–1095.
Schiffbauer, J.D., Xiao, S., Cai, Y., Wallace, A.F., Hua, H. et al. (2014). A unifying model for Neoproterozoic–Palaeozoic exceptional fossil preservation through pyritization and carbonaceous compression.Nat. Commun . 5 , 5754.
Schopf, W.J. (1976). Are the oldest ‘fossils’, fossils? Origins of life . 7 , 19–36.
Seymour, G.B., Tucker, G., & Leach, L.A. (2004). Cell Adhesion Molecules in Plants and Animals. Biotechnol. Gen. Engineering Rev . 21 , 123–132.
Sharpe, S.C., Eme, L.,  Brown, M.W., & Roger, A.J. (2015). Timing the Origins of Multicellular Eukaryotes Through Phylogenomics and Relaxed Molecular Clock Analyses. In Evolutionary Transitions to Multicellular Life. 2 (ed. Ruiz-Trillo, I., Nedelcu, A.) 3–29 (Dordrecht: Springer).
Siveter, D.J., Briggs, D.E.G., Siveter, D.J., & Sutton, M.D. (2020). The Herefordshire Lagerstätte: fleshing out Silurian marine life.J. Geol. Soc . 177 , 1–13.
Siu, C.H., Sriskanthadevan, S., Wang, J., Hou, L., Chen, G. et al. (2011). Regulation of spatiotemporal expression of cell–cell adhesion molecules during development of Dictyostelium discoideum .Development, Growth, Differentiation . 53 , 518–527.
Sotomayor, M., & Schulten, K. (2008). The allosteric role of the Ca++ switch in adhesion and plasticity of C-cadherin.Biophysical J. 94 , 4621–4633.
Strang, K.M., Armstrong, H.A., Harper, D.A.T., & Trabucho-Alexandre, J.P. (2016). The Sirius Passet Lagerstätte: silica death masking opens the window on the earliest mat ground community of the Cambrian explosion. Lethaia . 49 , 631–643.
Wilson, L.A., & Butterfield, N.J. (2014). Sediment effects on the preservation of Burgess Shale-type compression fossils. Palaios .29 , 145–154.
Zhu, Q., Aller, R.C., & Fan, Y. (2006). Two-dimensional pH distributions and dynamics in bioturbated marine sediments.Geochim. et Cosmochim. Acta . 70 , 4933–4949.