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Abstract. This paper investigates the long time well-posedness of 2-D MHD boundary
layer equation without resistivity. It is proved that if the initial data satisfies
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H

3,0
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H

1,2
µ

+ ‖(u0, h0 − 1)‖
H

2,1
µ
≤ ε,

then the life span of the solution is at least of order ε−
4
3 .
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1. Introduction

The purpose of this paper is to understand the long time well-posedness of the MHD
boundary layer equation without resistivity in Ω = T×R+:

(1.1)



∂tu+ u∂xu+ v∂yu− h∂xh− g∂yh− ν∂2yu = ∂xP,

∂th+ ∂y(vh− ug) = 0,

∂xu+ ∂yv = 0, , ∂xh+ ∂yg = 0,

(u, v, h, g)|y=0 = 0, lim
y→∞

(u, h) = (U(t, x), H(t, x))

(u, h)t=0 = (u0, h0).

where (u, v) denotes the velocity field of the boundary layer flow, (h, g) is the magnetic field
and (U(t, x), H(t, x), P (t, x)) is the outflow of velocity, magnetic and pressure, which verifies
the Bernouli law:

∂tU + U∂xU −H∂xH + ∂xP = 0, ∂tH + U∂xH −H∂xH = 0.

It is well-known that electrically conducting fluid such as plasmas and liquid metals, the
system of magnetohydrodynamics(denoted by MHD) is a fundamental system to describe
the movement of fluid under the influence of electro-magnetic field. The study on the MHD
was initiated by Alfvén who showed that the magnetic field can induce current in a moving
conductive fluid with a new propagation mechanism along the magnetic field, called Alfven
waves. The system (1.1) can be derived from the fundamental MHD system and they are
more complicated than the classical Prandtl system because of the coupling of the magnetic
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field with velocity field through the Maxwell equations. It is also a boundary layer model,
which describes the behavior of the solution to the viscous MHD equations when the viscosity
and the resistivity tend to zero (see [8],[13]).

For simplicity, we consider a uniform outflow (U,H) = (0, 1) and take ν = 1. Let

h(t, x, y) = 1 + h̃(t, x, y). Then (u, h̃) obeys the following system

(1.2)



∂tu+ u∂xu+ v∂yu− h∂xh̃− g∂yh̃− ∂2yu = 0,

∂th̃+ u∂xh̃+ v∂yh̃− h∂xu− g∂yu = 0,

∂xu+ ∂yv = 0, ∂xh̃+ ∂yg = 0,

(u, v, h̃, g)|y=0 = 0, lim
y→∞

(u, h̃) = (0, 0),

(u, h̃)t=0 = (u0, h̃0).

When h̃ = 1, this system is the classical Prandtl equation which was first introduced by L.
Prandtl in [19] to understand the structure if incompressible fluid with high Rynolds number
and physical boundaries. The well posedness of the two dimensional Prandtl equation was well
understand. When the tangential initial data satisfies the monotonicity condition, Oleinik
[17]-[18] proved the local existence and uniqueness of classical solutions. Xin and Zhang [23]
achieved the global existence of weak solutions to the Prandtl equation under an additional
favourable pressure. Sammartino and Calfinish [20] showed the local well-posedness of the
Prandtl equation with analytic initial data. Recently, Alexandre [1] e tal. and Masmoudi-
Wong [16] established the well-posedness of the Prandtl equation for monotonic initial data
in Sobolev space with energy methods independently. Without monotonicity, Gérard, Dormy
obtained the ill-posedness of the Prandtl equation in Sobolev spaces in [10]. On the other
hand, the Prandtl equation is well-posedness in Gevrey class 2 for a class of non-monotone
data with non-degenerate critiacl points, we refer the reads to [5], [15]. For small analytic
initial data, Zhang Ping and Zhang Zhifei [25] proved if the initiao data satisfies

‖e
1+y2

8 e|Dx|u0‖
B

1
2
≤ ε,

then the lifespan of the solution of the Prandtl equation is greater than ε−
4
3 . Ignatova and

Vicol [12] achieved a bigger lifespan exp{ ε−1

logε−1 } under the assumption the analytic initial

data is small of size O(ε). Now it is time to give some background on MHD bounder layer
equations. Liu, Xie and Yang [13] proved that the tangetial magnetic field has stabilization
effect on the boundary layer of the fluid and they also obtained the well-posedness of the
system (1.1) with resistivity for the initial data without monotonicity under an uniform
tangential magnetic field. The long time existence of solutions to the MHD boundary layer
equations in analytic setting for two different physical regimes were also investigated by Xie
and Yang in [21] and [22]. When the magnetic Reynolds is much larger than the hydrodynamic
Reynolds number, the resistivity terms can be ignored in MHD equations. Consequently,
there is no partial viscous effect in normal variable y for the second equation in (1.1). Liu et
al [14] obtained the local well posedness of the solution of (1.1) in Sobolev spaces and they
also proved if the tangential magnetic field of shear layer system around at one point, then
the linearized MHD boundary layer system around the shear layer profile is ill-posed in the
Gevrey function space. Motivated by [12], [14] and [25], the purpose of this paper is to study
the long time well-posedness of the system (1.2) and we will give the explicit lifespan of the
solution of the system (1.2).

Our result is stated as follows.
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Theorem 1.1. Let µ = exp{ y
2

8〈t〉} with 〈t〉 = 1 + t. There exists a constant ε > 0 such that

if the initial data (u0, h̃0) satisfies

‖(u0, h̃0)‖H3,0
µ

+ ‖(u0, h̃0)‖H1,2
µ

+ ‖(u0, h̃0)‖H2,1
µ
≤ ε,(1.3)

then there exists a time Tε > ε−
4
3 such that the equations (1.2) has a unique solution (u, h̃)

on [0, Tε] satisfying

u ∈L∞([0, Tε];H
3,0
µ ∩H1,2

µ (Ω) ∩H2,1
µ (Ω)) ∩ L2([0, Tε];H

3,1
µ ∩H1,3

µ (Ω) ∩H2,2
µ (Ω));

h̃ ∈L∞([0, Tε];H
3,0
µ ∩H1,2

µ (Ω) ∩H2,1
µ (Ω)) ∩ L2([0, Tε];H

2,1
µ (Ω)).

Remark 1.2. It is unclear whether the lifespan of the solution obtained in Theorem 1.1 is
sharp. It remains open whether the solution is global in time for small data.

The rest of this paper is organized as follows. Some crucial lemmas are presented in Section
2. Paralinearization and symmetrizing can be found in Section 3. Section 4 discusses the
tangential estimates and vertical estimate is given in Section 5. Theorem 1.1 is obtained by
a bootstrap argument in Section 6.

2. Preliminaries

In this section, we first introduce the Littlewood-Paley decomposition in the horizontal
direction x ∈ R.

Choose two smooth functions χ(τ) and ϕ(τ), which satisfy

suppϕ ⊂ {τ ∈ 3

4
≤ |τ | ≤ 8

3
}, suppχ ⊂ {τ ∈ R : |τ | ≤ 4

3
},

and for any τ ∈ R,

χ(τ) +
∑
j≥0

ϕ(2−jτ) = 1.

Then we define

∆jf = F(ϕ(2−jξ)f̂), Sjf = F−1(χ(2−jξ)f̂) for j ≥ 0,

∆−1f = S0f, Sjf = S0f, for j < 0.

The Bony’s decomposition Tfg is defined by

Tfg =
∑
j≥−1

Sj−1f∆jg.

Then we have the following Bony’s decomposition

fg = Tfg +Rgf,(2.1)

where the remainder term Rgf is defined by

Rfg =
∑
j≥0

∆jfS1g +
∑

j≥1,j′≥j−1
∆j′∆jg.

Let W s,p be the usual Sobolev spaces in R and denote W s,2 by Hs. We now recall classical
paraproduct estimates and paraproduct calculus.
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Lemma 2.1. Let s ∈ R. It holds that

‖Tfg‖Hs ≤ C‖f‖L∞‖g‖Hs .

If s > 0, then it admits

‖R(f, g)‖Hs ≤ C min{‖f‖L∞‖g‖Hs , ‖g‖L∞‖f‖Hs}.

Lemma 2.2. Let s ∈ R and σ ∈ (0, 1]. It holds that

‖(TaTb − Tab)f‖Hs ≤ C(‖b‖L∞‖a‖Wσ,∞ + ‖a‖L∞‖b‖Wσ,∞)‖f‖Hs−1 ,

Especially, we have

‖[Ta, Tb]f‖Hs ≤≤ C(‖b‖L∞‖a‖Wσ,∞ + ‖a‖L∞‖b‖Wσ,∞)‖f‖Hs−1 ,

‖(Ta − Ta∗)f‖Hs ≤ C‖a‖Wσ,∞‖f‖Hs−σ ,

Here T ∗a is the adjoint of Ta.

The above lemmas are referred to [2].

3. Paralinearization and symmetrization

Thanks to Bony’s decomposition, we can rewrite the system (1.2) as

(3.1)

{
∂tu+ Tu∂xu+ T∂yuv − Th∂xh̃− T∂yh̃g − ∂

2
yu = W1,

∂th̃+ Tu∂xh̃+ T∂yh̃v − Th∂xu− T∂yug = W2,

where

W1 = −R∂xuu−Rv∂yu+R∂xh̃h+Rg∂yh̃,

W2 = Rv∂yh̃−R∂xhu+R∂xuh̃+Rg∂yu.

Now we introduce

h1 =

∫ y

0
h̃(t, x, z)dz.

Then we infer from the second equation of (3.1)

∂th1 + Thv − Tug =

∫ y

0
W2dz.

Let us introduce the following good unknowns
uα = u− T ∂yu

h

h1,

h̃α = h̃− T ∂yh
h

h1
(3.2)

It is easy to verify {
∂tuα + Tu∂xuα − ∂xh̃α − Th̃∂xh̃α − ∂

2
yuα = G1,

∂th̃α − ∂xuα − Th̃∂xuα + Tu∂xh̃α = G2,
(3.3)
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where

G1 =[T ∂yu
h

Th − T∂yh]v − [T ∂yu
h

, Tu]g − [ThT ∂yh
h

− T∂yh]g − T
(∂t−∂2y)

∂yu

h

h1

+ 2T
∂y

∂yu

h

h̃− TuT∂x ∂yhh
h1 − T ∂yu

h

∫ y

0
W2dz +W1 + T ∂yu

h

∂yh̃

=

9∑
i=1

G1i,

(3.4)

and

G2 =[T ∂yh
h

Th − T∂yh]v − [ThT ∂yu
h

− T∂yu]g − [T ∂yh
h

, Tu]g − T
∂t
∂yh

h

h1

+ ThT∂x
∂yu

h

h1 − TuT∂x ∂yhh
h1 − T ∂yh

h

∫ y

0
W2dz +W2

=
8∑
i=1

G2i.

(3.5)

Moreover, it is easy to check that (uα, h̃α) satisfies the condition below

(uα, h̃α)|y=0 = (0, 0), lim
y→∞

(uα, h̃α) = (0, 0).

4. Tangential estimate

We first introduce the energy functional

E(t) = (‖(uα, h̃α)‖2
H3,0
µ

+ ‖(u, h̃)‖2
H1,2
µ

+ ‖(∂tu, ∂th̃)‖2
H1,0
µ

+ ‖(u, h̃)‖2
H2,1
µ

),

D(t) = (‖∂yuα‖H3,0
µ

+ ‖∂yu‖H1,2
µ

+ ‖∂yu‖2H2,1
µ

+ ‖∂yh̃‖2H2,0
µ

+ ‖∂yh̃‖2H2,0
µ

+ ‖∂y∂tu‖2H1,0
µ

).

In this section, we always assume that (u, h̃) is a smooth solution of (1.2) on [0, T ] and

sup
t≤T

E(t) ≤ C1ε
2, T ≤ C1ε

−2(4.1)

for some C1 > 0.
Let us give some crucial lemmas that could be found in [6].

Lemma 4.1. There exists ε0 > 0 such that if ε ∈ (0, ε0), then

h(t, x, y) ≥ 1

2
, for (t, x, y) ∈ [0, T ]×R2

+.

Lemma 4.2. It holds that

‖
∫ y

0
fdz‖L∞y ≤ C〈t〉

1
4 ‖f‖L2

y,µ
.

In particular, thanks to ∂xu+ ∂yv = 0 and ∂xh̃+ ∂yg = 0, it holds that for any k ∈ N

‖v‖Hk
xL
∞
y
≤ C〈t〉

1
4 ‖u‖

Hk+1,0
µ

, ‖g‖Hk
xL
∞
y
≤ C〈t〉

1
4 ‖h̃‖

Hk+1,0
µ

.

Now we would like to build the bridge of norm between good unknown (uα, h̃α) and (u, h̃).

Lemma 4.3. There exists a positive constant ε0 such that if (0, ε0), then for any t ∈ [0, T ]

‖u‖
H3,0
µ

+ ‖h̃‖
H3,0
µ
≤ CE(t)

1
2 , ‖∂yu‖H3,0

µ
≤ CD(t)

1
2 .

In order to state our main result, we shall establish the following Lemma.
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Lemma 4.4. It holds that

‖∂tu(0, ·)‖
H1,0
µ
≤ ‖∂2yu‖H1,0

µ
+ ‖h̃0‖H2,0

µ
+ ‖u0‖H1,1

µ
‖u0‖H2,0

µ
+ ‖u0‖H1,0

µ
‖∂yu0‖H1,0

µ

+ ‖h̃‖
H1,1
µ
‖h̃‖

H2,0
µ

+ ‖h̃0‖H1,0
µ
‖∂yh̃0‖H1,0

µ
.

and

‖∂th̃(0, ·)‖
H1,0
µ
≤ ‖u0‖H2,0

µ
+ C‖u0‖H1,1

µ
‖h̃0‖H3,0

µ
+ C‖u0‖H1,0

µ
‖∂yh̃0‖H2,0

µ

+ ‖h̃0‖H1,1
µ
‖u0‖H2,0

µ
+ C‖h̃0‖H1,0

µ
‖∂yu0‖H2,0

µ
.

Proof. A direct calculation yields

‖∂tu‖H1,0
µ
≤ ‖∂2yu‖H1,0

µ
+ ‖h̃‖

H2,0
µ

+ ‖u‖
H1,1
µ
‖u‖

H2,0
µ

+ 〈t〉
1
4 ‖u‖

H1,0
µ
‖∂yu‖H1,0

µ

+ ‖h̃‖
H1,1
µ
‖h̃‖

H2,0
µ

+ 〈t〉
1
4 ‖h̃‖

H1,0
µ
‖∂yh̃‖H1,0

µ
.

Similarly, we have

‖∂th̃‖H2,0
µ
≤ ‖u‖

H2,0
µ

+ ‖u‖
H1,1
µ
‖h̃‖

H2,0
µ

+ 〈t〉
1
4 ‖u‖

H1,0
µ
‖∂yh̃‖H1,0

µ

+ ‖h̃‖
H1,1
µ
‖u‖

H2,0
µ

+ 〈t〉
1
4 ‖h̃‖

H1,0
µ
‖∂yh̃‖H1,0

µ
.

Then, we have

‖∂tu(0, ·)‖
H1,0
µ
≤ ‖∂2yu‖H1,0

µ
+ ‖h̃0‖H2,0

µ
+ ‖u0‖H1,1

µ
‖u0‖H2,0

µ
+ ‖u0‖H1,0

µ
‖∂yu0‖H1,0

µ

+ ‖h̃‖
H1,1
µ
‖h̃‖

H2,0
µ

+ ‖h̃0‖H1,0
µ
‖∂yh̃0‖H1,0

µ
.

and

‖∂th̃(0, ·)‖
H1,0
µ
≤ ‖u0‖H2,0

µ
+ C‖u0‖H1,1

µ
‖h̃0‖H3,0

µ
+ C‖u0‖H1,0

µ
‖∂yh̃0‖H2,0

µ

+ ‖h̃0‖H1,1
µ
‖u0‖H2,0

µ
+ C‖h̃0‖H1,0

µ
‖∂yu0‖H2,0

µ
.

�

Lemma 4.5. It holds that

‖∂y∂tu‖H1,0
µ
≤ ‖∂3yu‖H1,0

µ
+ ‖∂yh̃‖H2,0

µ
+ ‖u‖

H1,1
µ
‖∂yu‖H2,0

µ
+ C(Tε)‖u‖H1,0

µ
‖∂2yu‖H1,0

µ

+ ‖h̃‖
H1,1
µ
‖∂yh̃‖H2,0

µ
+ C(Tε)‖h̃‖H1,0

µ
‖h̃‖

H1,2
µ
.

for any t ∈ [0, Tε].

Proof. Thanks to the Hölder inequality, one has

‖∂y∂tu‖H1,0
µ
≤ ‖∂3yu‖H1,0

µ
+ ‖∂yh̃‖H2,0

µ
+ ‖∂y(u∂xu+ v∂yu− h̃∂xh̃+ g∂yh̃)‖

H1,0
µ

≤ ‖∂3yu‖H1,0
µ

+ ‖∂yh̃‖H2,0
µ

+ ‖u‖
H1,1
µ
‖∂yu‖H2,0

µ
+ 〈t〉

1
4 ‖u‖

H1,0
µ
‖∂2yu‖H1,0

µ

+ ‖h̃‖
H1,1
µ
‖∂yh̃‖H2,0

µ
+ 〈t〉

1
4 ‖h̃‖

H1,0
µ
‖h̃‖

H1,2
µ

which implies

‖∂y∂tu‖H1,0
µ
≤ ‖∂3yu‖H1,0

µ
+ ‖∂yh̃‖H2,0

µ
+ ‖u‖

H1,1
µ
‖∂yu‖H2,0

µ
+ C(Tε)‖u‖H1,0

µ
‖∂2yu‖H1,0

µ

+ ‖h̃‖
H1,1
µ
‖∂yh̃‖H2,0

µ
+ C(Tε)‖h̃‖H1,0

µ
‖h̃‖

H1,2
µ
.

�
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4.1. Nonlinear term estimates.

Lemma 4.6. It holds that

1

2

d

dt
(‖uα‖2H3,0

µ
+ ‖h̃α‖2H3,0

µ
) +

1

2
‖∂yuα‖2H3,0

µ

≤ CD(t)
1
4E(t)

5
4 + CD(t)

3
4E(t)

3
4 + C〈t〉

1
4D(t)

1
2E(t) + C〈t〉

1
2D(t)

1
2E(t)

3
2 + CD(t)E(t).

(4.2)

Proof. Making H3,0
µ -inner product between the equations (3.3) and (uα, h̃α), we obtain

(∂tuα, uα)
H3,0
µ
− (∂3yuα, uα)

H3,0
µ
− (∂xh̃α, uα)

H3,0
µ

+ (∂th̃α, h̃α)
H3,0
µ
− (∂xuα, h̃α)

H3,0
µ

+ (Tu∂xuα, uα)
H3,0
µ

− (Th̃∂xh̃α, uα)
H3,0
µ
− (Th̃∂xuα, h̃α)

H3,0
µ

+ (Tu∂xh̃α, h̃α)
H3,0
µ

= (G1, uα)
H3,0
µ

+ (G2, h̃α)
H3,0
µ
.

where µ = eθ and θ = y2

8〈t〉 . Thanks to integration by parts and using the Young inequality,

we have

(∂tuα, uα)
H3,0
µ
− (∂3yuα, uα)

H3,0
µ
≥ 1

2

d

dt
‖uβ‖2H3,0

µ
−
∫
R+

∂tθ‖eθuα‖2H3
x
dy

+ ‖∂yuα‖2H3,0
µ

+ 2

∫
R+

2∂yθ(e
θ∂yuα, e

θuα)2H3
x
dy

≥ 1

2

d

dt
‖uα‖2H3,0

µ
+

1

2
‖∂yuα‖2H3,0

µ
−
∫
R+

(∂tθ + 2(∂yθ)
2)‖eθuα‖2H3

x
dy

≥ 1

2

d

dt
‖uα‖2H3,0

µ
+

1

2
‖∂yuα‖2H3,0

µ
.

where we have used the fact ∂tθ + 2(∂yθ)
2 ≤ 0. Similarly, one gets

(∂th̃α, h̃α)
H3,0
µ

=
1

2

d

dt
‖h̃α‖2H3,0

µ
+

∫
R+

y2

4〈t〉2
‖eθh̃β‖2H3

x
dy.

From integration by parts, one can deduce

−(∂xh̃α, uα)
H3,0
µ
− (∂xuα, h̃α)

H3,0
µ

= 0.

The other terms on the left hand side can be handled as those in [6]. But the nonlinear term
on the right hand side is somewhat different. Let us estimate the nonlinear term G1 and G2.

(G1, uα)
H3,0
µ

= (
8∑
i=1

G1i, uα)
H3,0
µ

+ (G19, uα)
H3,0
µ

≤
8∑
i=1

‖G1i‖H3,0
µ
‖uβ‖H3,0

µ
+ |(G9, uα)

H3,0
µ
|.

From Lemma 4.4, we deduce

8∑
i=1

‖G1i‖H3,0
µ
‖uβ‖H3,0

µ
≤ C〈t〉

1
4D(t)

1
2E(t) + C〈t〉

1
2D(t)

1
2E(t)

3
2 .(4.3)
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Since ∂yh̃ loss one derivative in the direction y, we are able to use integration by parts to
transform the derivative ∂y to uα. More precisely,

(G19, uα)
H3,0
µ

= (T ∂yu
h

∂yh̃, uα)
H3,0
µ

= (∂y(T ∂yu
h

∂yh̃), uα)
H3,0
µ
− (T

∂y
∂yu

h

h̃, uα)
H3,0
µ

= −(T ∂yu
h

h̃, e2θ∂yuα)H3,0 − (T ∂yu
h

h̃, 2∂yθe
2θuα)H3,0 − (T

∂y
∂yu

h

h̃, uα)
H3,0
µ

= H1 +H2 +H3.

We first bound H1, H2 and H3.

−(T
∂y

∂yu

h

h, e2θ∂yuα)H3,0 ≤ ‖(∂yh̃∂yu+ ∂2yu)‖L∞‖h̃‖H3,0
µ
‖∂yuα‖H3,0

µ

≤ ‖∂yh̃‖L∞‖∂yu‖L∞‖h̃‖H3,0
µ
‖∂yuα‖H3,0

µ

+ ‖∂2yu‖L∞‖h̃‖H3,0
µ
‖∂yuα‖H3,0

µ

≤ ‖∂yh̃‖
1
2

H1,0
µ
‖∂2y h̃‖

1
2

H1,0
µ
‖∂yu‖

1
2

H1,0
µ
‖∂2yu‖

1
2

H1,0
µ
‖h̃‖

H3,0
µ
‖∂yuα‖H3,0

µ

+ ‖∂2yu‖
1
2

H1,0
µ
‖∂3yu‖

1
2

H1,0
µ
‖h̃‖

H3,0
µ
‖∂yuα‖H3,0

µ

≤ CD(t)
1
2E(t) + CD(t)

3
4E(t)

3
4 .

In view of the Hölder inequality, Lemma 2.1 and the Young inequality, one has

(T ∂yu
h

h̃, 2∂yθe
2θuα)H3,0 ≤ C‖∂yu‖2L∞‖∂yuα‖2H3,0

µ
+

1

4

∫
R+

y2

4〈t〉2
‖eθh̃‖2H3

x
dy

≤ CD(t)E(t) +
1

4

∫
R+

y2

4〈t〉2
‖eθh̃‖2H3

x
dy.

Using Lemma 2.1 again, we obtain

H3 ≤ C‖T∂y ∂yuh
h̃‖

H3,0
µ
‖uα‖H3,0

µ

≤ C‖∂yh̃‖L∞‖∂yu‖L∞‖h̃‖H3,0
µ
‖uα‖H3,0

µ
+ ‖∂2yu‖L∞‖h̃‖H3,0

µ
‖uα‖H3,0

µ

≤ CD(t)
1
4E(t)

5
4 .

Thus, one has

(G19, uα)
H3,0
µ
≤ CD(t)

3
4E(t)

3
4 +

1

4

∫
R+

y2

4〈t〉2
‖eθh̃‖2H3

x
dy + CD(t)

1
2E(t) + CD(t)

1
4E(t)

5
4 ,

which along with (4.3) gives rise to

(G1, uα)
H3,0
µ
≤1

4

∫
R+

y2

4〈t〉2
‖eθh̃‖2H3

x
dy + C〈t〉

1
4D(t)

1
2E(t)

+ C〈t〉
1
2D(t)

1
2E(t)

3
2 + CD(t)

1
4E(t)

5
4 + CD(t)

3
4E(t)

3
4 .

Now we are reminded to estimate (G2, h̃α)
H3,0
µ

.

(G2, h̃α)
H3,0
µ
≤

8∑
i=1

‖G2i‖H3,0
µ
‖h̃α‖H3,0

µ
.
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Now we have to pay our attention to estimate ‖G24‖H3,0
µ

, which cannot be found in [6].

A direct calculation gives

∂t
∂yh̃

h
=
−∂th̃∂yh̃

h2
+
∂y∂th̃

h

=
−u∂xh̃∂yh̃− v∂yu∂yh̃+ h∂xũ∂yh̃+ g∂yu∂yh̃

h2

−
∂yu∂xh̃+ u∂y∂xh̃− ∂xu∂yh̃+ v∂2y h̃− ∂yh∂xu− h∂x∂yu+ ∂xh̃∂yu− g∂2yu

h
= J1 + J2.

Then

‖T
∂t
∂yh̃

h

h1‖H3,0
µ

= ‖TJ1h1‖H3,0
µ

+ ‖TJ2h1‖H3,0
µ

Now we deal with ‖TJ1h1‖H3,0
µ

and ‖TJ2h1‖H3,0
µ

, respectively. Thanks to Lemma 4.2, we have

‖TJ1h1‖H3,0
µ
≤ ‖T−u∂xh̃∂yh̃−v∂yu∂yh̃+g∂yu∂yh̃h1‖H3,0

µ
+ ‖T∂xũ∂yh̃h1‖H3,0

µ

≤ ‖ − u∂xh̃∂yh̃− v∂yu∂yh̃+ g∂yu∂yh̃‖L∞x L2
y,µ
‖h1‖L∞y H3

x
+ ‖∂xũ∂yh̃‖L∞x L2

y,µ
‖h1‖L∞y H3

x

≤ 〈t〉
1
4 ‖u‖L∞‖∂xh̃‖L∞‖∂yh̃‖L∞x L2

y,µ
‖h̃‖

H3,0
µ

+ 〈t〉
1
4 ‖v‖L∞‖∂yu‖L∞‖∂yh̃‖L∞x L2

y,µ
‖h̃‖

H3,0
µ

+ 〈t〉
1
4 ‖∂xu‖L∞‖∂yh̃‖L∞x L2

y,µ
‖h̃‖

H3,0
µ

+ 〈t〉
1
4 ‖g‖L∞‖∂yu‖L∞‖∂yh̃‖L∞x L2

y,µ
‖h̃‖

H3,0
µ

≤ 〈t〉
1
4D(t)

1
2E(t)

3
2 + 〈t〉

1
4D(t)

1
2E(t) + 〈t〉

1
2D(t)

1
2E(t)

3
2 .

Similarly, one has

‖TJ2h1‖H3,0
µ
≤ ‖T∂yu∂xh̃+u∂y∂xh̃−∂xu∂yh̃+v∂2y h̃−∂yh∂xu+∂xh̃∂yu−g∂2yuh1‖H3,0

µ
+ ‖T∂x∂yuh1‖H3,0

µ

≤ ‖∂yu∂xh̃+ u∂y∂xh̃− ∂xu∂yh̃+ v∂2y h̃‖L∞x L2
y,µ
‖h1‖L∞y H3

x

+ ‖ − ∂yh∂xu− h∂x∂yu+ ∂xh̃∂yu− g∂2yu‖L∞x L2
y.µ
‖h1‖L∞y H3

x
+ ‖∂x∂yu‖L∞x L2

y.µ
‖h1‖L∞y H3

x

≤ C〈t〉
1
4D(t)

1
2E(t)

1
2 + C〈t〉

1
2D(t)

1
2E(t).

Then, we can deduce

‖G24‖H3,0
µ
≤ C〈t〉

1
4D(t)

1
2E(t)

1
2 + C〈t〉

1
2D(t)

1
2E(t) + C〈t〉

1
2D(t)

1
2E(t)

3
2 .(4.4)

Thanks to Lemma 4.4 in [6] again, we have

8∑
i=1,i 6=4

‖G2i‖H3,0
µ
≤ C〈t〉

1
4D(t)

1
2E(t)

1
2 + C〈t〉

1
2D(t)

1
2E(t).

which together with (4.4) yields

(G2, h̃α)
H3,0
µ
≤ ‖G2‖H3,0

µ
‖h̃α‖H3,0

µ
≤ C〈t〉

1
4D(t)

1
2E(t) + C〈t〉

1
2D(t)

1
2E(t)

3
2 .

Collecting all the above estimates, we can build

1

2

d

dt
(‖uα‖2H3,0

µ
+ ‖h̃α‖2H3,0

µ
) +

1

2
‖∂yuα‖2H3,0

µ
+

1

2

∫
R+

y2

4〈t〉2
‖eθh̃β‖2H3

x
dy
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≤ CD(t)
1
4E(t)

5
4 + CD(t)

3
4E(t)

3
4 + C〈t〉

1
4D(t)

1
2E(t) + C〈t〉

1
2D(t)

1
2E(t)

3
2 + CD(t)E(t).

�

5. Vertical estimate

In this section, we will derive the high derivative norm in the vertical variable y. We also
assume that (u, h̃) is a solution of (1.2) on [0, T ] satisfying (4.1).

5.1. Vertical estimates of the velocity field.

Proposition 5.1. It holds that

1

2

d

dt
(‖u‖2

H1,0
µ

+ ‖h̃‖2
H1,0
µ

) +
1

2
‖∂yu‖2H1,0

µ
+

∫
R+

y2

4〈t〉2
‖eθh̃‖2H1

x
dy

≤ CD(t)
1
4E(t)

5
4 + 〈t〉

1
4D(t)

1
2E(t).

(5.1)

Proof. Performing H1,0
µ inner product with (u, h̃) to the equation (1.2), we obtain

(∂tu, u)
H1,0
µ

+ (∂th̃, h̃)
H1,0
µ
− (∂2yu, u)

H1,0
µ

= (∂xh̃, u)
H1,0
µ

+ (∂xu, h̃)
H1,0
µ

+

(
− u∂xu− v∂yu+ h̃∂xh̃+ g∂yh̃, u

)
H1,0
µ

+

(
− u∂xh̃− v∂yh̃+ h̃∂xu+ g∂yu, h̃

)
H1,0
µ

= I1 + I2 + I3 + I4.

(5.2)

It is easy to check that by integration by parts

I1 + I2 = 0,

and

(∂tu, u)
H1,0
µ

+ (∂th̃, h̃)
H1,0
µ
− (∂2yu, u)

H1,0
µ
≥ 1

2

d

dt
(‖u‖2

H1,0
µ

+ ‖h‖2
H1,0
µ

) +
1

2
‖∂yu‖2H1,0

µ

−
∫
R+

(∂tθ + 2(∂yθ)
2)‖eθu‖2H1

x
dy +

∫
R+

y2

4〈t〉2
‖eθh̃‖2H1

x
dy

≥ 1

2

d

dt
(‖u‖2

H1,0
µ

+ ‖h̃‖2
H1,0
µ

) +
1

2
‖∂yu‖2H1,0

µ
+

∫
R+

y2

4〈t〉2
‖eθh̃‖2H1

x
dy.

(5.3)

The estimate of I3 + I4 can be found in [6], that is,

I3 + I4 ≤ CD(t)
1
4E(t)

5
4 + 〈t〉

1
4D(t)

1
2E(t).

Thus we deduce that

1

2

d

dt
(‖u‖2

H1,0
µ

+ ‖h‖2
H1,0
µ

) +
1

2
‖∂yu‖2H1,0

µ
+

∫
R+

y2

4〈t〉2
‖eθh̃‖2H1

x
dy

≤ CD(t)
1
4E(t)

5
4 + 〈t〉

1
4D(t)

1
2E(t).

�

The following Lemma gives the H1,1
µ estimate.
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Proposition 5.2. It holds that

1

2

d

dt
(‖∂yu‖2H1,0

µ
+ ‖∂yh̃‖2H1,0

µ
) +

1

2
‖∂2yu‖2H1,0

µ
+

∫
R+

y2

4〈t〉2
‖eθ∂yh̃‖2H1

x
dy

≤ D(t)
1
4E(t)

5
4 + 〈t〉

1
4D(t)

1
2E(t).

(5.4)

Proof. We apply ∂y to the result equations (1.2) and then take H1,0
µ -inner product with

(∂yu, ∂yh̃) to get

(∂t∂yu, ∂yu)
H1,0
µ

+ (∂t∂yh̃, ∂yh̃)
H1,0
µ
− (∂3yu, ∂yu)

H1,0
µ

=

(
∂y(−u∂xu− v∂yu+ h̃∂xh̃+ g∂yh̃), ∂yu

)
H1,0
µ

+

(
∂y(−u∂xh̃− v∂yh̃+ h̃∂xu+ g∂yu), ∂yh̃

)
H1,0
µ

=(∂x∂yh̃, ∂yu)
H1,0
µ

+ (∂x∂yu, ∂yh̃)
H1,0
µ

+ (−u∂x∂yu− v∂2yu+ h̃∂x∂yh̃

+ g∂2y h̃, ∂yu)
H1,0
µ

+ (−∂yu∂xh̃− u∂x∂yh̃+ ∂xu∂yh̃− v∂2y h̃, ∂yh̃)
H1,0
µ

+ (∂yh̃∂xu+ h̃∂x∂yu− ∂xh̃∂yu+ g∂2yu, ∂yh̃)
H1,0
µ

=A1 +A2 +A3.

(5.5)

where we have used the fact

(∂x∂yh̃, ∂yu)
H1,0
µ

+ (∂x∂yu, ∂yh̃)
H1,0
µ

= 0.

Applying the same line to (5.3) yields

(∂t∂yu, ∂yu)
H1,0
µ

+ (∂t∂yh̃, ∂yh̃)
H1,0
µ
− (∂3yu, ∂yu)

H1,0
µ

≥ 1

2

d

dt
(‖∂yu‖2H1,0

µ
+ ‖∂yh̃‖2H1,0

µ
) +

1

2
‖∂2yu‖2H1,0

µ
+

∫
R+

y2

4〈t〉2
‖eθ∂yh̃‖2H1

x
dy.

(5.6)

A straight calculation gives

A1 ≤ ‖u‖L∞‖∂yu‖H1,0
µ
‖∂yu‖H1,0

µ
+ ‖v‖L∞‖∂2yu‖H1,0

µ
‖∂yu‖H1,0

µ

+ ‖h̃‖L∞‖∂yh̃‖H2,0
µ
‖∂yh̃‖H1,0

µ
+ ‖g‖L∞‖∂2y h̃‖H1,0

µ
‖∂yu‖H1,0

µ

≤ D(t)
1
4E(t)

5
4 + 〈t〉

1
4D(t)

1
2E(t),

A2 ≤ ‖∂yu‖L∞‖∂xh̃‖H1,0
µ
‖∂yh̃‖H1,0

µ
+ ‖u‖L∞‖∂yh̃‖H2,0

µ
‖∂yh̃‖H1,0

µ

+ ‖∂xu‖L∞‖∂yh̃‖2H1,0
µ

+ ‖g‖L∞‖∂2y h̃‖H1,0
µ
‖∂yh̃‖H1,0

µ

≤ D(t)
1
4E(t)

5
4 + 〈t〉

1
4D(t)

1
2E(t),

and

A3 ≤ ‖∂xu‖L∞‖∂yh̃‖2H1,0
µ

+ ‖h̃‖L∞‖∂yu‖H2,0
µ
‖∂yh̃‖H1,0

µ

+ ‖∂yu‖L∞‖∂xh̃‖H1,0
µ
‖∂yh̃‖H1,0

µ
+ ‖g‖L∞‖∂2yu‖H1,0

µ
‖∂yh̃‖H1,0

µ

≤ D(t)
1
4E(t)

5
4 + 〈t〉

1
4D(t)

1
2E(t).
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Collecting the estimates of A1, A2 and A3, we have

1

2

d

dt
(‖∂yu‖2H1,0

µ
+ ‖∂yh̃‖2H1,0

µ
) +

1

2
‖∂2yu‖2H1,0

µ
+

∫
R+

y2

4〈t〉2
‖eθ∂yh̃‖2H1

x
dy

≤ D(t)
1
4E(t)

5
4 + 〈t〉

1
4D(t)

1
2E(t).

�

Proposition 5.3. It holds that

1

2

d

dt
(‖∂2yu‖2H1,0

µ
+ ‖∂2y h̃‖2H1,0

µ
) +

1

2
‖∂3yu‖2H1,0

µ
+

1

2

∫
R+

y2

4〈t〉2
‖eθ∂2y h̃‖2H1

x
dy

≤ 1

16

∫
R+

y2

4〈t〉2
‖eθ∂yh̃‖2H1

x
dy + C〈t〉

1
2D(t)E(t) +D(t)

1
4E(t)

5
4 + 〈t〉

1
4D(t)

1
2E(t).

(5.7)

Proof. Taking ∂2y to (1.2) and making the H1,0
µ -inner product with (∂2yu, ∂

2
y h̃), we obtain

(∂t∂
2
yu,∂

2
yu)

H1,0
µ

+ (∂t∂
2
y h̃, ∂

2
y h̃)

H1,0
µ
− (∂4yu, ∂

2
yu)

H1,0
µ

=(∂2y(−u∂xu− v∂yu), ∂2yu)
H1,0
µ

+ (∂2y(h̃∂xh̃+ g∂yh̃), ∂2yu)
H1,0
µ

+ (∂2y(−u∂xh̃− v∂yh̃, ∂2y h̃)
H1,0
µ

+ (∂2y(h̃∂xu+ g∂yu), ∂2y h̃)
H1,0
µ

=B1 +B2 +B3 +B4.

(5.8)

where we have used the fact

−(∂x∂
2
y h̃, ∂

2
yu)

H1,0
µ
− (∂x∂

2
yu, ∂

2
y h̃)

H1,0
µ

= 0.

Reasoning as (5.3) and using the boundary condition ∂2yu|y=0 = 0 yield

(∂t∂
2
yu, ∂

2
yu)

H1,0
µ

+ (∂t∂
2
y h̃, ∂

2
y h̃)

H1,0
µ
− (∂4yu, ∂

2
yu)

H1,0
µ

≥ 1

2

d

dt
(‖∂2yu‖2H1,0

µ
+ ‖∂2y h̃‖2H1,0

µ
) +

1

2
‖∂3yu‖2H1,0

µ
+

∫
R+

y2

4〈t〉2
‖eθ∂2y h̃‖2H1

x
dy.

(5.9)

Leibniz law and Lemma 4.5 tell us

B1 = (−∂yu∂x∂yu− u∂x∂2yu+ ∂xu∂
2
yu− v∂3yu, ∂2yu)

H1,0
µ

≤ ‖∂yu‖L∞‖∂yu‖H2,0
µ
‖∂2yu‖H1,0

µ
+ ‖u‖L∞‖∂2yu‖H2,0

µ
‖∂2yu‖H1,0

µ

+ ‖∂xu‖L∞‖∂2yu‖H1,0
µ
‖∂2yu‖H1,0

µ
+ ‖v‖L∞‖∂3yu‖H1,0

µ
‖∂2yu‖H1,0

µ

≤ D(t)
1
4E(t)

5
4 + 〈t〉

1
4D(t)

1
2E(t).

Similarly, one has

B4 = (∂2y h̃∂xu+ 2∂yh̃∂x∂yu+ h̃∂x∂
2
yu− ∂x∂yh̃∂yu− 2∂xh̃∂

2
yu+ g∂3yu, ∂

2
y h̃)

H1,0
µ

≤ D(t)
1
4E(t)

5
4 + 〈t〉

1
4D(t)

1
2E(t).

Thanks to integration by parts, we obtain

B2 = (∂2y(h̃∂xh̃, ∂
2
yu)

H1,0
µ
− (∂y(g∂yh̃), e2θ∂3yu)H1,0 − (∂y(g∂yh̃), 2e2θ∂yθ∂

2
yu)H1,0

= B21 +B22 +B23.
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A direct calculation gives

B21 = (∂2y h̃∂xh̃+ 2∂yh̃∂x∂yh̃, ∂
2
yu)

H1,0
µ

+ (h̃∂x∂
2
y h̃, ∂

2
yu)

H1,0
µ

= (∂2y h̃∂xh̃+ 2∂yh̃∂x∂yh̃, ∂
2
yu)

H1,0
µ
− (∂xh̃∂

2
y h̃, ∂

2
yu)

H1,0
µ
− (h̃∂2y h̃, ∂x∂

2
yu)

H1,0
µ

≤ D(t)
1
4E(t)

5
4 +D(t)

1
2E(t).

B22 = (∂xh̃∂yh̃+ g∂2y h̃, ∂
3
yu)

H1,0
µ
≤ 〈t〉

1
4D(t)

1
2E(t).

To bound B23, thanks to the Hölder’s inequality and Young inequality, one gets

B23 =(∂xh̃∂yh̃− g∂2y h̃, 2e2θ∂yθ∂2yu)H1,0

≤ 1

16

∫
R+

y2

4〈t〉2
‖eθ∂yh̃‖2H1

x
dy +

1

16

∫
R+

y2

4〈t〉2
‖eθ∂2y h̃‖2H1

x
dy

+ (‖∂xh̃‖2L∞ + ‖g‖2L∞)‖∂2yu‖2H1,0
µ

≤ 1

16

∫
R+

y2

4〈t〉2
‖eθ∂yh̃‖2H1

x
dy +

1

16

∫
R+

y2

4〈t〉2
‖eθ∂2y h̃‖2H1

x
dy

+ C〈t〉
1
2D(t)E(t).

In view of integration by parts and ∂xu+ ∂yv = 0, we deduce

B3 = −(∂2yu∂xh̃+ 2∂yu∂x∂yh̃− ∂x∂yu∂yh̃− 2∂xu∂
2
y h̃, ∂

2
y h̃)

H1,0
µ

+ (v∂yθe
θ∂2y h̃, e

θ∂2y h̃)H1,0

≤ 1

16

∫
R+

y2

4〈t〉2
‖eθ∂2y h̃‖2H1

x
dy + C〈t〉

1
2D(t)E(t) + CD(t)

1
4E(t)

5
4 + CD(t)

1
2E(t).

Collecting all the above estimates, it leads to

1

2

d

dt
(‖∂2yu‖2H1,0

µ
+ ‖∂2y h̃‖2H1,0

µ
) +

1

2
‖∂3yu‖2H1,0

µ
+

1

2

∫
R+

y2

4〈t〉2
‖eθ∂2y h̃‖2H1

x
dy

≤ 1

16

∫
R+

y2

4〈t〉2
‖eθ∂yh̃‖2H1

x
dy + C〈t〉

1
2D(t)E(t) +D(t)

1
4E(t)

5
4 + 〈t〉

1
4D(t)

1
2E(t).

�

5.2. The dissipation estimates of the magnetic field.

Proposition 5.4. It holds that

1

2

d

dt
(‖∂tu‖2H1,0

µ
+ ‖∂th̃‖2H1,0

µ
) +

1

2
‖∂y∂tu‖2H1,0

µ
+

∫
R+

y2

4〈t〉2
‖eθ∂th̃‖2H1

x
dy

≤ C〈t〉
1
4D(t)

1
2E(t) + C〈t〉

1
2D(t)E(t).

Proof. Applying ∂t to the equation (1.2) and making H1,0
µ with (∂tu, ∂th̃), we obtain

(∂2t u, ∂tu)
H1,0
µ
− (∂2y∂tu, ∂tu)

H1,0
µ

+ (∂2t h̃, ∂th̃)
H1,0
µ

= (∂x∂th̃, ∂tu)
H1,0
µ

+ (∂x∂tu, ∂th̃)
H1,0
µ

+ (∂t(̃∂xh̃+ g∂yh̃− u∂xu− v∂yu), ∂tu)
H1,0
µ

+ (∂t(h̃∂xu+ g∂yu− u∂xh̃− v∂yh̃), ∂th̃)
H1,0
µ

= (∂t(h̃∂xh̃+ g∂yh̃− u∂xu− v∂yu), ∂tu)
H1,0
µ

+ (∂t(h̃∂xu+ g∂yu− u∂xh̃− v∂yh̃), ∂th̃)
H1,0
µ

= D1 +D2.
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where we have used that

(∂x∂th̃, ∂tu)
H1,0
µ

+ (∂x∂tu, ∂th̃)
H1,0
µ

= 0.

In view of integration by parts and using the Young inequality, we infer

(∂2t u, ∂tu)
H1,0
µ
− (∂2y∂tu, ∂tu)

H1,0
µ

+ (∂2t h̃, ∂th̃)
H1,0
µ

≥ 1

2

d

dt
(‖∂tu‖2H1,0

µ
+ ‖∂th̃‖2H1,0

µ
) +

1

2
‖∂y∂tu‖2H1,0

µ

+

∫
R+

y2

4〈t〉2
‖eθ∂th̃‖2H1

x
dy −

∫
R+

(∂tθ + 2(∂yθ)
2)‖eθ∂tu‖2H1

x
dy

≥ 1

2

d

dt
(‖∂tu‖2H1,0

µ
+ ‖∂th̃‖2H1,0

µ
) +

1

2
‖∂y∂tu‖2H1,0

µ
+

∫
R+

y2

4〈t〉2
‖eθ∂th̃‖2H1

x
dy.

Now we deal with the nonlinear terms. Thanks to Leibnz law and the Hölder inequality, one
has

D1 = (∂t(h̃∂xh̃− u∂xu− v∂yu), ∂tu)
H1,0
µ

+ (∂tg∂yh̃, ∂tu)
H1,0
µ

+ (g∂y∂th̃, ∂tu)
H1,0
µ

≤ ‖∂xh̃‖L∞‖∂th̃‖H1,0
µ
‖∂tu‖H1,0

µ
+ ‖h̃‖

H1,1
µ
‖∂th̃‖H2,0

µ
‖∂tu‖H1,0

µ

+ ‖∂xu‖L∞‖∂tu‖H1,0
µ
‖∂tu‖H1,0

µ
+ ‖u‖

H1,1
µ
‖∂tu‖H2,0

µ
‖∂tu‖H1,0

µ

+ 〈t〉
1
4 ‖∂tu‖H1,0

µ
‖∂yu‖H1,0

µ
‖∂tu‖H1,0

µ
+ 〈t〉

1
4 ‖u‖

H1,0
µ
‖∂y∂tu‖H1,0

µ
‖∂tu‖H1,0

µ

+ 〈t〉
1
4 ‖∂th̃‖H1,0

µ
‖∂yh̃‖H1,0

µ
‖∂tu‖H1,0

µ
+ C〈t〉

1
4 ‖h̃‖

H1,0
µ
‖∂th̃‖H1,0

µ
‖∂y∂tu‖H1,0

µ

+ C〈t〉
1
2 ‖h̃‖2

H1,0
µ
‖∂tu‖2H1,0

µ
+

1

4

∫
R+

y2

4〈t〉2
‖eθ∂th̃‖2H1

x
dy + ‖h̃‖

H2,1
µ
‖∂th̃‖H1,0

µ
‖∂tu‖2H1,0

µ

≤ C〈t〉
1
4D(t)

1
2E(t) + C〈t〉

1
2D(t)E(t) +

1

4

∫
R+

y2

4〈t〉2
‖eθ∂th̃‖2H1

x
dy,

where we have used the following estimate:

(g∂y∂th̃, ∂tu)
H1,0
µ

= (∂y(e
2θg∂th̃), ∂tu)H1,0 − (2∂yθg∂th̃, ∂tu)

H1,0
µ

+ (∂xh̃∂th̃, ∂tu)
H1,0
µ

= −(g∂th̃, ∂y∂tu)
H1,0
µ
− (2∂yθg∂th̃, ∂tu)

H1,0
µ

+ (∂xh̃∂th̃, ∂tu)
H1,0
µ

≤ C〈t〉
1
4 ‖h̃‖

H1,0
µ
‖∂th̃‖H1,0

µ
‖∂y∂tu‖H1,0

µ
+ C〈t〉

1
2 ‖h̃‖2

H1,0
µ
‖∂tu‖2H1,0

µ

+
1

4

∫
R+

y2

4〈t〉2
‖eθ∂th̃‖2H1

x
dy + ‖h̃‖

H2,1
µ
‖∂th̃‖H1,0

µ
‖∂tu‖2H1,0

µ
.

Similarly, we have

D2 ≤ C〈t〉
1
4D(t)

1
2E(t) + C〈t〉

1
2D(t)E(t) +

1

4

∫
R+

y2

4〈t〉2
‖eθ∂th̃‖2H1

x
dy.

From all the above estimates, one deduces

1

2

d

dt
(‖∂tu‖2H1,0

µ
+ ‖∂th̃‖2H1,0

µ
) +

1

2
‖∂y∂tu‖2H1,0

µ
+

∫
R+

y2

4〈t〉2
‖eθ∂th̃‖2H1

x
dy

≤ C〈t〉
1
4D(t)

1
2E(t) + C〈t〉

1
2D(t)E(t).

�
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It is time to build the ‖∂yh̃‖H2,0
µ

.

Proposition 5.5. It holds that

‖∂yh̃‖2H2,0
µ
≤ C‖∂t∂yu‖2H1,0

µ
+ C‖∂3yu‖2H1,0

µ
+ C〈t〉

1
2D(t)E(t) + C〈t〉

1
4D(t)E(t)

1
2 .(5.10)

Proof. Thanks to the equation (1.2), we deduce

(∂x∂yh̃, ∂x∂yh̃)
H1,0
µ

= (∂t∂yu− ∂3yu+ ∂y(u∂xu+ v∂yu− h̃∂xh̃− g∂yh̃), ∂x∂yh̃)
H1,0
µ

≤ C‖∂t∂yu‖2H1,0
µ

+ C‖∂3yu‖2H1,0
µ

+
1

8
‖∂yh̃‖2H2,0

µ

+ ‖∂y(u∂xu+ v∂yu− h̃∂xh̃− g∂yh̃)‖
H1,0
µ
‖∂yh̃‖H2,0

µ
.

(5.11)

A direct calculation gives

‖∂y(u∂xu+ v∂yu− h̃∂xh̃− g∂yh̃)‖
H1,0
µ

= ‖u∂x∂yu+ v∂2yu− h̃∂x∂yh̃− g∂2y h̃)‖
H1,0
µ

≤ ‖u‖L∞‖∂yu‖H2,0
µ

+ ‖v‖L∞‖∂2yu‖H1,0
µ

+ ‖h̃‖L∞‖∂yh̃‖H2,0
µ

+ ‖g‖L∞‖∂2y h̃‖H1,0
µ

≤ 〈t〉
1
4E(t)

1
2D(t)

1
2 .

(5.12)

which together with (5.11) gives

‖∂yh̃‖2H2,0
µ
≤ C‖∂t∂yu‖2H1,0

µ
+ C‖∂3yu‖2H1,0

µ
+ C〈t〉

1
4D(t)E(t)

1
2 .

�

Proposition 5.6. It holds that

1

2

d

dt
‖(∂yu, ∂yh̃)‖2

H2,0
µ

+
1

2
‖∂2yu‖2H2,0

µ
+

∫
R+

y2

4〈t〉2
‖eθ∂yh̃‖2H2

x
dy

≤ C〈t〉
1
4D(t)

1
2E(t) + C〈t〉

1
2D(t)E(t) +

1

4

∫
R+

y2

4〈t〉2
‖eθh̃‖2H2

x
dy.

Proof. Applying ∂y to the equation (1.2) and Making H2,0
µ -inner product with (∂yu, ∂yh̃) to

obtain

(∂t∂yu, ∂yu)
H2,0
µ
− (∂3yu, ∂yu)

H2,0
µ

+ (∂t∂yh̃, ∂yh̃)
H2,0
µ

= [(∂x∂yh̃, ∂yu)
H2,0
µ

+ (∂x∂yu, ∂yh̃)
H2,0
µ

]− (∂y(u∂xu+ v∂yu− h̃∂xh̃− g∂yh̃), ∂yu)
H2,0
µ

− (∂y(u∂xh̃+ v∂yh̃− h̃∂xu− g∂yu), ∂yh̃)
H2,0
µ

= −(∂y(u∂xu+ v∂yu− h̃∂xh̃− g∂yh̃), ∂yu)
H2,0
µ

− (∂y(u∂xh̃+ v∂yh̃− h̃∂xu− g∂yu), ∂yh̃)
H2,0
µ

= E7 + E8.

where we used the fact

(∂x∂yh̃, ∂yu)
H2,0
µ

+ (∂x∂yu, ∂yh̃)
H2,0
µ

= 0.



16 2D MHD BOUNDARY LAYER EQUATION WITHOUT RESISTIVITY

Thanks to integration by parts and the Young inequality, we obtain

(∂t∂yu, ∂yu)
H2,0
µ
− (∂3yu, ∂yu)

H2,0
µ

+ (∂t∂yh̃, ∂yh̃)
H2,0
µ

≥ 1

2

d

dt
(‖∂yu‖2H2,0

µ
+ ‖∂yh̃‖2H2,0

µ
) +

1

2
‖∂2yu‖2H2,0

µ

+

∫
R+

y2

4〈t〉2
‖eθ∂yh̃‖2H2

x
dy −

∫
R+

(∂tθ + 2(∂yθ)
2)‖eθ∂yu‖2H2

x
dy

≥ 1

2

d

dt
‖(∂yu, ∂yh̃)‖2

H2,0
µ

+
1

2
‖∂2yu‖2H2,0

µ
+

∫
R+

y2

4〈t〉2
‖eθ∂yh̃‖2H2

x
dy.

(5.13)

Now we are reminded to bound the nonlinear terms. According to the Hölder inequality,
we deduce

E7 = (u∂x∂yu+ v∂2yu, ∂yu)
H2,0
µ

+ (h̃∂xh̃+ g∂yh̃, ∂
2
yu)

H2,0
µ

+ (h̃∂xh̃+ g∂yh̃, 2∂yθe
2θ∂yu)H2,0

≤ ‖u‖L∞‖∂yu‖H3,0
µ
‖∂yu‖H2,0

µ
+ ‖v‖L∞‖∂2yu‖H2,0

µ
‖∂yu‖H2,0

µ

+ ‖h̃‖L∞‖h̃‖H3,0
µ
‖∂2yu‖H2,0

µ
+ ‖g‖L∞‖∂yh̃‖H2,0

µ
‖∂2yu‖H2,0

µ
+ ‖∂xh̃‖2L∞‖∂yu‖2H2,0

µ

+
1

4

∫
R+

y2

4〈t〉2
‖eθh̃‖2H2

x
dy +

1

4

∫
R+

y2

4〈t〉2
‖eθ∂yh̃‖2H2

x
dy + ‖g‖2L∞‖∂yu‖2H2,0

µ

≤ C〈t〉
1
4D(t)

1
2E(t) + C〈t〉

1
2D(t)E(t) +

1

4

∫
R+

y2

4〈t〉2
‖eθh̃‖2H2

x
dy +

1

4

∫
R+

y2

4〈t〉2
‖eθ∂yh̃‖2H2

x
dy.

Similarly, we also have

E8 = (−∂yu∂xh̃+ ∂xu∂yh̃, ∂yh̃)
H2,0
µ
− (u∂x(eθ∂yh̃) + v∂y(e

θ∂yh̃), ∂yh̃)H2,0

− (∂yθve
θ∂yh̃, e

θ∂yh̃)H2,0 + (∂yh̃∂xu+ h̃∂x∂yu− ∂xh̃∂yu+ g∂2yu, ∂yh̃)H2,0

= (−∂yu∂xh̃+ ∂xu∂yh̃, ∂yh̃)
H2,0
µ
− (∂yθve

θ∂yh̃, e
θ∂yh̃)H2,0

+ (∂yh̃∂xu+ h̃∂x∂yu− ∂xh̃∂yu+ g∂2yu, ∂yh̃)H2,0

≤ 〈t〉
1
4D(t)

1
2E(t) + 〈t〉

1
4D(t)E(t) +

1

4

∫
R+

y2

4〈t〉2
‖eθ∂yh̃‖2H2

x
dy..

Collecting all the estimates mentioned above yields

1

2

d

dt
‖(∂yu, ∂yh̃)‖2

H2,0
µ

+
1

2
‖∂2yu‖2H2,0

µ
+

∫
R+

y2

4〈t〉2
‖eθ∂yh̃‖2H2

x
dy

≤ C〈t〉
1
4D(t)

1
2E(t) + C〈t〉

1
2D(t)E(t) +

1

4

∫
R+

y2

4〈t〉2
‖eθh̃‖2H2

x
dy.

�

A similar argument can build the following proposition.

Proposition 5.7. It holds that

1

2

d

dt
‖(u, h̃)‖2

H2,0
µ

+
1

2
‖∂yu‖2H2,0

µ
+

∫
R+

y2

4〈t〉2
‖eθh̃‖2H2

x
dy

≤ 〈t〉
1
4D(t)

1
2E(t) + 〈t〉

1
4D(t)E(t).

(5.14)

Now we collect all the above propositions to build the following vertical estimates.
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Proposition 5.8. It holds that

d

dt
(‖(u, h̃)‖2

H1,2
µ

+ ‖(u, h̃)‖2
H2,1
µ

+ ‖(∂tu, ∂th̃)‖2L2
µ
) + (‖∂yu‖H1,2

µ

+ ‖∂t∂yu‖2H1,0
µ

+ ‖∂yh̃‖2H2,0
µ

+ ‖∂yu‖2H2,1
µ

)

≤ CD(t)
1
4E(t)

5
4 + 〈t〉

1
4D(t)

1
2E(t) + 〈t〉

1
4D(t)E(t)

1
2 + C〈t〉

1
2E(t)2 + C〈t〉

1
2D(t)E(t).

(5.15)

Proof. According to the estimates from Proposition 5.1 to Proposition 5.7, it is easy to
conclude this proposition. So we omit it. �

6. Proof of Theorem 1.1

Motivated by [13], the approximate solution can be constructed by adding the viscosity

term ∂2xu,∆h̃ to the system (1.2). Thus, we only present the uniform estimates of smooth
solution. With the uniform estimates, the existence and uniqueness of the solution can be
obtained by showing that the approximate sequence is a Cauchy sequence in lower order
Sobolev spaces.

The uniform estimate is based on a bootstrap argument. Let us first assume that [0, T ∗)
is the maximal time interval so that

E(t) ≤ C1ε
2.(6.1)

where C1 > 0 is a fixed constant. Let us also assume T ∗ < ε−2. Thanks to Lemma 4.6 and
Proposition 5.8, we have

d

dt
E(t) +D(t) ≤ C〈t〉

1
2D(t)E(t) + C〈t〉

1
4D(t)

1
2E(t) + C〈t〉

1
2D(t)

1
2E(t)

3
2

+ CD(t)
1
4E(t)

5
4 + CD(t)

3
4E(t)

3
4 + C〈t〉

1
2E(t)2 + C〈t〉

1
4D(t)E(t)

1
2 .

According to (6.1), it leads to

d

dt
E(t) +D(t) ≤ C〈t〉

1
2D(t)

1
2E(t)

3
2 + CD(t)

1
4E(t)

5
4 + CD(t)

3
4E(t)

3
4

+ C〈t〉
1
4D(t)

1
2E(t) + C〈t〉

1
2E(t)2.

Thanks to the Young inequality, we get

d

dt
E(t) +D(s) ≤ C2E(t)

5
3 + C2〈t〉

1
2E(t)2 + C2〈t〉E(t)3.

which along with (6.1) implies

d

dt
E(t) ≤ (C2ε

4
3 + C2〈t〉

1
2 ε2 + C2〈t〉ε4)E(t).

Then, for any t < ε−
4
3 , one has

E(t) ≤ C3ε
2,

Taking C3 = C1
2 , the theorem follows by a bootstrap argument.
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