References
[1] Ahmad M, Schatz M, Casey MV. An empirical approach to predict
droplet impact erosion in low-pressure stages of steam turbines. Wear
2018;402/403: 57–63.
[2] Kirols HS, Kevorkov D, Uihlein A, Medraj M. Water droplet
erosion of stainless steel steam turbine blades. Materials Research
Express 2017;4: 1-12.
[3] Ilieva GI. Erosion failure mechanisms in turbine stage with
twisted rotor blade. Engineering Failure Analysis 2016;70: 90–104.
[4] DNVGL, LNG - N2 Stripper inlet pipe - Velocity
limitation. Report No.: 2016-0290, 2016.
[5] Bartolomé L, Teuwen J. Prospective challenges in the
experimentation of the rain erosion on the leading edge of wind turbine
blades. Wind Energy 2019;22: 140-151.
[6] Gohardani O. Impact of erosion testing aspects on current and
future flight conditions. Progress in Aerospace Sciences 2011;47:
280-303.
[7] Thiruvengadam A, Heymann FJ, eds. Characterization and
Determination of Erosion Resistance. ASTM STP 474, USA: ASTM
International; 1970.
[8] Thiruvengadam A, eds.
Erosion, Wear, and Interfaces with Corrosion. ASTM STP 567, USA: ASTM
International; 1974.
[9] Heymann FJ, Toward Quantitative Prediction of Liquid Impact
Erosion, In: Thiruvengadam A, Heymann FJ, eds. Characterization and
Determination of Erosion Resistance. ASTM STP 474, USA: ASTM
International; 1970: 212-248.
[10] Heymann FJ. Conclusions from the ASTM Interlaboratory Test
Program with Liquid Impact Erosion Facilities. In: Field JE, eds.
Proceedings of the Fifth International Conference on Erosion by Liquid
and Solid Impact (ELSI-V). Cambridge: Cavendish Laboratory; 1979: paper
20, 1-10.
[11] Schmitt Jr. GF. Liquid and Solid Particle Impact Erosion. In:
Peterson MB, Winer WO, eds. Wear Control Handbook. American Society of
Mechanical Engineers; 1980.
[12] Heymann FJ. Liquid Impingement Erosion. In: ASM Handbook,
Friction, Wear and Lubrication, vol. 18. ASM International; 1998.
[13] ASTM-G73-2010. Standard Practice for Liquid Impingement Erosion
Testing. USA:American Society for Testing and Materials; 2010.
[14] Slot HM, Gelinck ERM, Rentrop C, Heide E van der. Leading edge
erosion of coated wind turbine blades: Review of coating life models.
Renewable Energy 2015;80: 837-848.
[15] Slot HM, IJzerman RM, Feber M le, Heide E van der. Rain erosion
resistance of injection moulded and compression moulded polybutylene
terephthalate PBT. Wear 2018;414/415: 234-242.
[16] Amirzadeh B, Louhghalam A, Raessi M, Tootkaboni M. A
computational framework for the analysis of rain-induced erosion in wind
turbine blades, part I: Stochastic rain texture model and drop impact
simulations. Journal of Wind Engineering & Industrial Aerodynamics
2017;163: 33-43.
[17] Amirzadeh B, Louhghalam A, Raessi M, Tootkaboni M. A
computational framework for the analysis of rain-induced erosion in wind
turbine blades, part II: Drop impact-induced stresses and blade coating
fatigue life. Journal of Wind Engineering & Industrial Aerodynamics
2017;163: 44–54.
[18] Castorrini A, Corsini A, Rispoli F, Venturini P, Takizawa K,
Tezduyar TE. Computational analysis of wind-turbine blade rain erosion.
Computers and Fluids 2016;141: 175–183.
[19] Solomon N, Solomon I. Deformation induced martensite in AISI
316 stainless steel. Revista de Metalurgia 2010; 46: 121-128.
[20] Deloro Stellite Inc. Wrought Wear-Resistant Alloys Stellite® 6B
& Stellite® 6K - Plate, Sheet and Bar. Brochure, www.stellite.com;
2008.
[21] Polmear I, StJohn D, Nie J-F, Qian M. Light Alloys: Metallurgy
of the Light Metals. Oxford: Butterworth-Heinemann; 2017.
[22] Heymann FJ. On the Shock Wave Velocity and Impact Pressure in
High-Speed Liquid-Solid Impact. J. Basic Eng. 1968;90: 400-402.
[23] Adler WF. Liquid drop collisions on deformable media. Journal
of Materials Science 1977;12: 1253-1271.
[24] Morrow J. Fatigue Design Handbook - Advances in Engineering.
SAE-AE-4. Warrendale (PA): Society of Automotive Engineers; 1968: 21-29.
[25] Landgraf RW, Chernenkoff RA, Residual Stress Effects on Fatigue
of Surface Processed Steels, In: Champoux RL, Kapp JA, Underwood JH,
eds. Analytical and Experimental Methods for Residual Stress Effects in
Fatigue. ASTM STP 1004. ASTM International; 1988: 1-12.
[26] Tokaji K, Kohyama K, Akita M. Fatigue behaviour and fracture
mechanism of a 316 stainless steel hardened by carburizing.
International Journal of Fatigue 2004;26: 543–551.
[27] Kamaya M, Kawakubo M. Fatigue life prediction of stainless
steel under variable loading. Journal of the Society of Materials
Science (Japan) 2011;60: 871-878.
[28] Herrera-Solaz V, Niffenegger M. Application of hysteresis
energy criterion in a microstructure-based model for fatigue crack
initiation and evolution in austenitic stainless steel. International
Journal of Fatigue 2017; 100: 84–93.
[29] Maruyama N, Mori D, Hiromoto S, Kanazawa K, Nakamura M. Fatigue
strength of 316L-type stainless steel in simulated body fluids.
Corrosion Science 2011;53: 2222–2227.
[30] Leeuwen JFC van. Het vermoeiingsgedrag van Roestvast staal. MSc
thesis, Delft: TNO, 1995.
[31] Liljas M, Ericsson C. Fatigue behaviour of stainless steel
welds. ACOM 1/2, Sweden: Avesta-Polarit; 2002.
[32] Mohammad KA, Ali A, Sahari BB, Abdullah S. Fatigue behavior of
Austenitic Type 316L Stainless Steel. IOP Conf. Series: Materials
Science and Engineering 2012: 36 (012012): 1-9.
[33] Rama Krishna L, Madhavi Y, Sahithi T, Wasekar NP, Chavan NM,
Srinivasa Rao D. Influence of prior shot peening variables on the
fatigue life of micro arc oxidation coated 6061-T6 Al alloy.
International Journal of Fatigue 2018;106: 165–174.
[34] Wasekar NP, Jyothirmayi A, Sundararajan G, Influence of prior
corrosion on the high cycle fatigue behavior of microarc oxidation
coated 6061-T6 Aluminum alloy. International Journal of Fatigue 2011;33
1268–1276.
[35] Takahashi Y, Shikama T, Yoshihara S, Aiura T, Noguchi H. Study
on dominant mechanism of high-cycle fatigue life in 6061-T6 aluminum
alloy through microanalyses of microstructurally small cracks, Acta
Materialia 2012;60: 2554–2567.
[36] Scott-Emuakpor O, George T, Cross C, Herman Shen M-H.
Hysteresis-loop representation for strain energy calculation and fatigue
assessment. Journal of Strain Analysis for Engineering Design 2010;45:
275-282.
[37] Mutombo K, Toit M du. Corrosion fatigue behaviour of aluminium
alloy 6061-T651 welded using fully automatic gas metal arc welding and
ER5183 filler alloy. International Journal of Fatigue 2011;33:
1539–1547.
[38] ASM Handbook, Properties and Selection: Irons, Steels, and
High-Performance Alloys, Vol. 1. ASM International; 1998.
[39] Masaki K, Ochi Y, Matsumura T. Initiation and propagation
behaviour of fatigue cracks in hard‐shot peened Type 316L steel in high
cycle fatigue. Fatigue Fract Eng Mater Struct. 2004;27: 1137-1145.
[40] Gariépy A, Miao HY, Lévesque M. Simulation of the shot peening
process with variable shot diameters and impacting velocities. Advances
in Engineering Software 2017;114: 121–133.
[41] Hirai N, Tosha K, Rouhaud E. Finite element analysis of shot
peening - on the form of a single dent. In: Proc 9th conf shot peening
(ICSP9) 2005: 82–87.
[42] Mylonas GI, Labeas G. Numerical modelling of shot peening
process and corresponding products: residual stress, surface roughness
and cold work prediction. Surface and Coatings Technology. 2011;205:
4480–4494.
[43] Thiruvengadam A, Rudy SL. Experimental and Analytical
Investigations on Multiple Liquid Impact Erosion. Report of Hydronautics
Inc., NASA-CR-1288; 1969.
[44] Thiruvengadam A, Rudy SL, Gunasekaran M. Experimental and
Analytical Investigations on Multiple Liquid Impact Erosion. Report of
Hydronautics Inc., NASA-CR-1638; 1970.
[45] Thiruvengadam A, Rudy SL, Gunasekaran M. Experimental and
Analytical Investigations on Liquid Impact Erosion. In: Characterization
and Determination of Erosion Resistance - ASTM STP 474. ASTM
International; 1970: 249-280.
[46] Soyama H. Comparison between
the improvements made to the fatigue strength of stainless steel by
cavitation peening, water jet peening, shot peening and laser peening.
Journal of Materials Processing Technology 2019;269: 65-78.
[47] Ramulu M, Kunaporn S, Jenkins M, Hashish M, Hopkins J. Fatigue
Performance of High-Pressure Waterjet-Peened Aluminum Alloy. Journal of
Pressure Vessel (ASME) 2002;124: 118-123.
[48] Cho JR. Simulation of the repeated waterdrop impact onto the
Al6061-T6. Journal of Mechanical Science and Technology 2015;29:
3679-3683.
[49] Rajesh N, Veeraraghavan S, Ramesh Babu N. A novel approach for
modelling of water jet peening. International Journal of Machine Tools
& Manufacture 2004;44: 855–863.
[50] Rajesh N, Ramesh Babu N. Multi-droplet Impact Model for
Prediction of Residual Stresses in Water Jet Peening of Materials.
Materials and Manufacturing Processes 2006;21: 399-409.