References
[1] Ahmad M, Schatz M, Casey MV. An empirical approach to predict droplet impact erosion in low-pressure stages of steam turbines. Wear 2018;402/403: 57–63.
[2] Kirols HS, Kevorkov D, Uihlein A, Medraj M. Water droplet erosion of stainless steel steam turbine blades. Materials Research Express 2017;4: 1-12.
[3] Ilieva GI. Erosion failure mechanisms in turbine stage with twisted rotor blade. Engineering Failure Analysis 2016;70: 90–104.
[4] DNVGL, LNG - N2 Stripper inlet pipe - Velocity limitation. Report No.: 2016-0290, 2016.
[5] Bartolomé L, Teuwen J. Prospective challenges in the experimentation of the rain erosion on the leading edge of wind turbine blades. Wind Energy 2019;22: 140-151.
[6] Gohardani O. Impact of erosion testing aspects on current and future flight conditions. Progress in Aerospace Sciences 2011;47: 280-303.
[7] Thiruvengadam A, Heymann FJ, eds. Characterization and Determination of Erosion Resistance. ASTM STP 474, USA: ASTM International; 1970.
[8] Thiruvengadam A, eds. Erosion, Wear, and Interfaces with Corrosion. ASTM STP 567, USA: ASTM International; 1974.
[9] Heymann FJ, Toward Quantitative Prediction of Liquid Impact Erosion, In: Thiruvengadam A, Heymann FJ, eds. Characterization and Determination of Erosion Resistance. ASTM STP 474, USA: ASTM International; 1970: 212-248.
[10] Heymann FJ. Conclusions from the ASTM Interlaboratory Test Program with Liquid Impact Erosion Facilities. In: Field JE, eds. Proceedings of the Fifth International Conference on Erosion by Liquid and Solid Impact (ELSI-V). Cambridge: Cavendish Laboratory; 1979: paper 20, 1-10.
[11] Schmitt Jr. GF. Liquid and Solid Particle Impact Erosion. In: Peterson MB, Winer WO, eds. Wear Control Handbook. American Society of Mechanical Engineers; 1980.
[12] Heymann FJ. Liquid Impingement Erosion. In: ASM Handbook, Friction, Wear and Lubrication, vol. 18. ASM International; 1998.
[13] ASTM-G73-2010. Standard Practice for Liquid Impingement Erosion Testing. USA:American Society for Testing and Materials; 2010.
[14] Slot HM, Gelinck ERM, Rentrop C, Heide E van der. Leading edge erosion of coated wind turbine blades: Review of coating life models. Renewable Energy 2015;80: 837-848.
[15] Slot HM, IJzerman RM, Feber M le, Heide E van der. Rain erosion resistance of injection moulded and compression moulded polybutylene terephthalate PBT. Wear 2018;414/415: 234-242.
[16] Amirzadeh B, Louhghalam A, Raessi M, Tootkaboni M. A computational framework for the analysis of rain-induced erosion in wind turbine blades, part I: Stochastic rain texture model and drop impact simulations. Journal of Wind Engineering & Industrial Aerodynamics 2017;163: 33-43.
[17] Amirzadeh B, Louhghalam A, Raessi M, Tootkaboni M. A computational framework for the analysis of rain-induced erosion in wind turbine blades, part II: Drop impact-induced stresses and blade coating fatigue life. Journal of Wind Engineering & Industrial Aerodynamics 2017;163: 44–54.
[18] Castorrini A, Corsini A, Rispoli F, Venturini P, Takizawa K, Tezduyar TE. Computational analysis of wind-turbine blade rain erosion. Computers and Fluids 2016;141: 175–183.
[19] Solomon N, Solomon I. Deformation induced martensite in AISI 316 stainless steel. Revista de Metalurgia 2010; 46: 121-128.
[20] Deloro Stellite Inc. Wrought Wear-Resistant Alloys Stellite® 6B & Stellite® 6K - Plate, Sheet and Bar. Brochure, www.stellite.com; 2008.
[21] Polmear I, StJohn D, Nie J-F, Qian M. Light Alloys: Metallurgy of the Light Metals. Oxford: Butterworth-Heinemann; 2017.
[22] Heymann FJ. On the Shock Wave Velocity and Impact Pressure in High-Speed Liquid-Solid Impact. J. Basic Eng. 1968;90: 400-402.
[23] Adler WF. Liquid drop collisions on deformable media. Journal of Materials Science 1977;12: 1253-1271.
[24] Morrow J. Fatigue Design Handbook - Advances in Engineering. SAE-AE-4. Warrendale (PA): Society of Automotive Engineers; 1968: 21-29.
[25] Landgraf RW, Chernenkoff RA, Residual Stress Effects on Fatigue of Surface Processed Steels, In: Champoux RL, Kapp JA, Underwood JH, eds. Analytical and Experimental Methods for Residual Stress Effects in Fatigue. ASTM STP 1004. ASTM International; 1988: 1-12.
[26] Tokaji K, Kohyama K, Akita M. Fatigue behaviour and fracture mechanism of a 316 stainless steel hardened by carburizing. International Journal of Fatigue 2004;26: 543–551.
[27] Kamaya M, Kawakubo M. Fatigue life prediction of stainless steel under variable loading. Journal of the Society of Materials Science (Japan) 2011;60: 871-878.
[28] Herrera-Solaz V, Niffenegger M. Application of hysteresis energy criterion in a microstructure-based model for fatigue crack initiation and evolution in austenitic stainless steel. International Journal of Fatigue 2017; 100: 84–93.
[29] Maruyama N, Mori D, Hiromoto S, Kanazawa K, Nakamura M. Fatigue strength of 316L-type stainless steel in simulated body fluids. Corrosion Science 2011;53: 2222–2227.
[30] Leeuwen JFC van. Het vermoeiingsgedrag van Roestvast staal. MSc thesis, Delft: TNO, 1995.
[31] Liljas M, Ericsson C. Fatigue behaviour of stainless steel welds. ACOM 1/2, Sweden: Avesta-Polarit; 2002.
[32] Mohammad KA, Ali A, Sahari BB, Abdullah S. Fatigue behavior of Austenitic Type 316L Stainless Steel. IOP Conf. Series: Materials Science and Engineering 2012: 36 (012012): 1-9.
[33] Rama Krishna L, Madhavi Y, Sahithi T, Wasekar NP, Chavan NM, Srinivasa Rao D. Influence of prior shot peening variables on the fatigue life of micro arc oxidation coated 6061-T6 Al alloy. International Journal of Fatigue 2018;106: 165–174.
[34] Wasekar NP, Jyothirmayi A, Sundararajan G, Influence of prior corrosion on the high cycle fatigue behavior of microarc oxidation coated 6061-T6 Aluminum alloy. International Journal of Fatigue 2011;33 1268–1276.
[35] Takahashi Y, Shikama T, Yoshihara S, Aiura T, Noguchi H. Study on dominant mechanism of high-cycle fatigue life in 6061-T6 aluminum alloy through microanalyses of microstructurally small cracks, Acta Materialia 2012;60: 2554–2567.
[36] Scott-Emuakpor O, George T, Cross C, Herman Shen M-H. Hysteresis-loop representation for strain energy calculation and fatigue assessment. Journal of Strain Analysis for Engineering Design 2010;45: 275-282.
[37] Mutombo K, Toit M du. Corrosion fatigue behaviour of aluminium alloy 6061-T651 welded using fully automatic gas metal arc welding and ER5183 filler alloy. International Journal of Fatigue 2011;33: 1539–1547.
[38] ASM Handbook, Properties and Selection: Irons, Steels, and High-Performance Alloys, Vol. 1. ASM International; 1998.
[39] Masaki K, Ochi Y, Matsumura T. Initiation and propagation behaviour of fatigue cracks in hard‐shot peened Type 316L steel in high cycle fatigue. Fatigue Fract Eng Mater Struct. 2004;27: 1137-1145.
[40] Gariépy A, Miao HY, Lévesque M. Simulation of the shot peening process with variable shot diameters and impacting velocities. Advances in Engineering Software 2017;114: 121–133.
[41] Hirai N, Tosha K, Rouhaud E. Finite element analysis of shot peening - on the form of a single dent. In: Proc 9th conf shot peening (ICSP9) 2005: 82–87.
[42] Mylonas GI, Labeas G. Numerical modelling of shot peening process and corresponding products: residual stress, surface roughness and cold work prediction. Surface and Coatings Technology. 2011;205: 4480–4494.
[43] Thiruvengadam A, Rudy SL. Experimental and Analytical Investigations on Multiple Liquid Impact Erosion. Report of Hydronautics Inc., NASA-CR-1288; 1969.
[44] Thiruvengadam A, Rudy SL, Gunasekaran M. Experimental and Analytical Investigations on Multiple Liquid Impact Erosion. Report of Hydronautics Inc., NASA-CR-1638; 1970.
[45] Thiruvengadam A, Rudy SL, Gunasekaran M. Experimental and Analytical Investigations on Liquid Impact Erosion. In: Characterization and Determination of Erosion Resistance - ASTM STP 474. ASTM International; 1970: 249-280.
[46] Soyama H. Comparison between the improvements made to the fatigue strength of stainless steel by cavitation peening, water jet peening, shot peening and laser peening. Journal of Materials Processing Technology 2019;269: 65-78.
[47] Ramulu M, Kunaporn S, Jenkins M, Hashish M, Hopkins J. Fatigue Performance of High-Pressure Waterjet-Peened Aluminum Alloy. Journal of Pressure Vessel (ASME) 2002;124: 118-123.
[48] Cho JR. Simulation of the repeated waterdrop impact onto the Al6061-T6. Journal of Mechanical Science and Technology 2015;29: 3679-3683.
[49] Rajesh N, Veeraraghavan S, Ramesh Babu N. A novel approach for modelling of water jet peening. International Journal of Machine Tools & Manufacture 2004;44: 855–863.
[50] Rajesh N, Ramesh Babu N. Multi-droplet Impact Model for Prediction of Residual Stresses in Water Jet Peening of Materials. Materials and Manufacturing Processes 2006;21: 399-409.