Conclusion
Our understanding of how children are affected by SARS-CoV-2 has evolved
since the beginning of the pandemic, however, much remains to be
learned. It is now clear that children are not as spared from this
pandemic as originally thought. Children are often asymptomatic carriers
that play an unfortunate role in the spread of this disease, and they
are also more likely to become ill from SARS-CoV infection that
previously thought. The increase in cases of MIS-C reveals that the
delayed inflammatory response of COVID-19 can cause significant illness
in children; Understanding how to prevent this hyperinflammatory
response is critical and could have important implications for vaccine
development. Because they are less likely to be affected by the acute
infection, children may offer critical insight in immune modulation and
containment of the acute phase of illness. Importantly, children have
many years ahead of them; it remains to be seen whether SARS-CoV-2
infection or MIS-C have long-term health implications for these
children. Many essential questions remain to be answered regarding the
pediatric impact of COVID-19 and research remains critical as we
continue to fight this pandemic.
Figure 1: Time course of symptoms and disease severity related to
SARS-CoV-2 infection in adults (top) and children (bottom).
Figure 2: Summary of hypothesized age-related differences in SARS-CoV-2
infections in adults as compared to children. Areas of interest include
viral entry, interferon and cytokine immune response, neutrophil
activation, macrophage hyperstimulation, antibody production and T-cell
responses.
Cited References
1. Oberfeld B, Achanta A, Carpenter K, Chen P, Gilette NM, Langat P,
Said JT, Schiff AE, Zhou AS, Barczak AK, et al. SnapShot: COVID-19.
Cell. 2020 [accessed 2020 May 12];81(4):954-954e1.
http://www.sciencedirect.com/science/article/pii/S009286742030475X.
doi:10.1016/j.cell.2020.04.013.
2. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si H-R, Zhu Y, Li
B, Huang C-L, et al. A pneumonia outbreak associated with a new
coronavirus of probable bat origin. Nat. 2020 [accessed 2020 May
12];579(7798):270–273. doi:10.1038/s41586-020-2012-7.
3. Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number
of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020
[accessed 2020 May 28];27(2).
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074654/.
doi:10.1093/jtm/taaa021.
4. Lu X, Zhang L, Du H, Zhang J, Li YY, Qu J, Zhang W, Wang Y, Bao S, Li
Y, et al. SARS-CoV-2 infection in children. N Engl J Med. 2020
[accessed 2020 May 12];382(17):1663–1665.
https://www-ncbi-nlm-nih-gov.ezp-prod1.hul.harvard.edu/pmc/articles/PMC7121177/.
doi:10.1056/NEJMc2005073.
5. Furukawa NW, Brooks JT, Sobel J. Evidence supporting transmission of
Severe Acute Respiratory Syndrome Coronavirus 2 while presymptomatic or
asymptomatic. Emerg Infecti Dis J. 2020 [accessed 2020 May
28];26(7). https://wwwnc.cdc.gov/eid/article/26/7/20-1595_article.
doi:10.3201/eid2607.201595.
6. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N,
Cuomo-Dannenburg G, Thompson H, Walker PGT, Fu H, et al. Estimates of
the severity of coronavirus disease 2019: a model-based analysis. Lancet
Infecti Dis. 2020 [accessed 2020 May 25];20(6):669-677.
http://www.sciencedirect.com/science/article/pii/S1473309920302437.
doi:10.1016/S1473-3099(20)30243-7.
7. CDC COVID-19 Response Team. Severe outcomes among patients with
coronavirus disease 2019 (COVID-19) — United States, February
12–March 16, 2020. Morb Mortal Wkly Rep. 2020 [accessed 2020 May
3];69(12). https://www.cdc.gov/mmwr/volumes/69/wr/mm6912e2.htm.
doi:10.15585/mmwr.mm6912e2.
8. Bi Q, Wu Y, Mei S, Ye C, Zou X, Zhang Z, Liu X, Wei L, Truelove SA,
Zhang T, et al. Epidemiology and transmission of COVID-19 in 391 cases
and 1286 of their close contacts in Shenzhen, China: a retrospective
cohort study. Lancet Infecti Dis. 2020 [accessed 2020 May 19].
http://www.sciencedirect.com/science/article/pii/S1473309920302875.
doi:10.1016/S1473-3099(20)30287-5.
9. Lu X, Xiang Y, Du H, Wong GW-K. SARS-CoV-2 infection in children –
Understanding the immune responses and controlling the pandemic. Pediatr
Allergy Immunol. 2020 [accessed 2020 May 4].
http://onlinelibrary.wiley.com/doi/abs/10.1111/pai.13267.
doi:10.1111/pai.13267.
10. Wong GW, Fok TF. Severe acute respiratory syndrome (SARS) in
children. Pediatr Pulmonol. 2004 [accessed 2020 May 12];37(Suppl
26):69–71.
https://www-ncbi-nlm-nih-gov.ezp-prod1.hul.harvard.edu/pmc/articles/PMC7168116/.
doi:10.1002/ppul.70056.
11. Wu Z, McGoogan JM. Characteristics of and important lessons from the
coronavirus disease 2019 (COVID-19) outbreak in China: summary of a
report of 72 314 cases from the Chinese Center for Disease Control and
Prevention. JAMA. 2020 [accessed 2020 May12];323(13):1239–1242.
https://jamanetwork-com.ezp-prod1.hul.harvard.edu/journals/jama/fullarticle/2762130.
doi:10.1001/jama.2020.2648.
12. Castagnoli R, Votto M, Licari A, Brambilla I, Bruno R, Perlini S,
Rovida F, Baldanti F, Marseglia GL. Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection in children and adolescents: a
systematic review. JAMA Pediatr. 2020 Apr 22 [accessed 2020 Apr 27].
https://doi.org/10.1001/jamapediatrics.2020.1467.
doi:10.1001/jamapediatrics.2020.1467.
13. Bialek S, Gierke R, Hughes M, McNamara LA, Pilishvili T, Skoff T.
Coronavirus disease 2019 in children — United States, February
12–April 2, 2020. Morb Mortal Wkly Rep. 2020; [accessed 2020 May
12]; 69(14):422–426. doi:10.15585/mmwr.mm6914e4.
14. Matricardi PM, Negro RWD, Nisini R. The first, holistic
immunological model of COVID-19: implications for prevention, diagnosis,
and public health measures. Pediatr Allergy Immunol. [accessed 2020
May 6]. http://onlinelibrary.wiley.com/doi/abs/10.1111/pai.13271.
doi:10.1111/pai.13271.
15. Choi S-H, Kim HW, Kang J-M, Kim DH, Cho EY. Epidemiology and
clinical features of coronavirus disease 2019 in children. Clin Exp
Pediatr. 2020 [accessed 2020 May 12];63(4):125–132.
doi:10.3345/cep.2020.00535.
16. Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D. Clinical and CT features
in pediatric patients with COVID‐19 infection: different points from
adults. Pediatr Pulmonol. 2020 [accessed 2020 May
12];55(5):1169–1174. doi:10.1002/ppul.24718.
17. Ludvigsson JF. Systematic review of COVID-19 in children shows
milder cases and a better prognosis than adults. Acta Paediatr. 2020;
[accessed 2020 May 12];109(6):1088–1095. doi:10.1111/apa.15270.
18. Belhadjer Z, Méot M, Bajolle F, Khraiche D, Legendre A, Abakka S,
Auriau J, Grimaud M, Oualha M, Beghetti M, et al. Acute heart failure in
multisystem inflammatory syndrome in children (MIS-C) in the context of
global SARS-CoV-2 pandemic. Circulation. [accessed 2020 Jun 3].
https://www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.120.048360.
doi:10.1161/CIRCULATIONAHA.120.048360.
19. Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P.
Hyperinflammatory shock in children during COVID-19 pandemic. Lancet.
2020 [accessed 2020 May 11].
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31094-1/abstract.
doi:10.1016/S0140-6736(20)31094-1.
20. Viner RM, Whittaker E. Kawasaki-like disease: emerging complication
during the COVID-19 pandemic. The Lancet. 2020 [accessed 2020 May
18].
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31129-6/abstract.
doi:10.1016/S0140-6736(20)31129-6.
21. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu
X, et al. Clinical features of patients infected with 2019 novel
coronavirus in Wuhan, China. Lancet. 2020; [Accessed 2020 May
18];395(10223):497–506. doi:10.1016/S0140-6736(20)30183-5.
22. Morand A, Urbina D, Fabre A. COVID-19 and Kawasaki like disease: the
known-known, the unknown-known and the unknown-unknown. 2020 [accessed
2020 May 11]. doi:10.20944/preprints202005.0160.v1.
23. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal
origin of SARS-CoV-2. Nat Med. 2020 [accessed 2020 May
18];26(4):450–452. doi:10.1038/s41591-020-0820-9.
24. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D.
Structure, function, and antigenicity of the SARS-CoV-2 spike
glycoprotein. Cell. 2020 [accessed 2020 May 18];181(2):281-292.e6.
doi:10.1016/j.cell.2020.02.058.
25. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O,
Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the
prefusion conformation. Science. 2020 [accessed 2020 May
18];367(6483):1260–1263. doi:10.1126/science.abb2507.
26. Aguar JA, Tremblay BJ-M, Mansfield MJ, Woody O, Lobb B, Banerjee A,
Chandiramohan A, Tiessen N, Dvorkin-Gheva A, Revill S, et al. Gene
expression and in situ protein profiling of candidate SARS-CoV-2
receptors in human airway epithelial cells and lung tissue. bioRxiv.
2020 [accessed 2020 May 6].
https://www.biorxiv.org/content/10.1101/2020.04.07.030742v2.
27. Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M,
Talavera-López C, Maatz H, Reichart D, Sampaziotis F, et al. SARS-CoV-2
entry factors are highly expressed in nasal epithelial cells together
with innate immune genes. Nat Med. 2020 [accessed 2020 May
18];26(5):681–687. doi:10.1038/s41591-020-0868-6.
28. Ziegler C, Allon SJ, Nyquist SK, Mbano I, Miao VN, Cao Y, Yousif AS,
Bals J, Hauser BM, Feldman J, et al. SARS-CoV-2 receptor ACE2 is an
interferon-stimulated gene in human Airway epithelial cells and is
enriched in specific cell subsets across tissues. Cell. 2020 [accessed
2020 Jun 4].
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7252096/. doi:
10.1016/j.cell.2020.04.035.
29. Lee IT, Nakayama T, Wu C-T, Goltsev Y, Jiang S, Gall PA, Liao C-K,
Shih L-C, Schurch CM, McIlwain DR, et al. Robust ACE2 protein expression
localizes to the motile cilia of the respiratory tract epithelia and is
not increased by ACE inhibitors or angiotensin receptor blockers.
medRxiv. 2020 [accessed 2020 Jun 4].
doi:10.1101/2020.05.08.20092866.
30. Schuler BA, Habermann AC, Plosa EJ, Taylor CJ, Jetter C, Kapp ME,
Benjamin JT, Gulleman P, Nichols DS, Braunstein LZ, et al. Age-related
expression of SARS-CoV-2 priming protease TMPRSS2 in the developing
lung. bioRxiv. 2020 [accessed 2020 Jun 4].
doi:10.1101/2020.05.22.111187.
31. Wang A, Chiou J, Poirion OB, Buchanan J, Valdez MJ, Verheyden JM,
Hou X, Guo M, Newsome JM, Kudtarkar P, et al. Single nucleus multiomic
profiling reveals age-dynamic regulation of host genes associated with
SARS-CoV-2 infection. bioRxiv. 2020 [accessed 2020 Jun 4].
doi:10.1101/2020.04.12.037580.
32. Radzikowska U, Ding M, Tan G, Zhakparov D, Peng Y, Wawrzyniak P,
Wang M, Li S, Morita H, Altunbulakli C, et al. Distribution of ACE2,
CD147, cyclophilins, CD26 and other SARS-CoV-2 associated molecules in
human tissues and immune cells in health and disease. bioRxiv. 2020
[accessed 2020 Jun 4]. doi:10.1101/2020.05.14.090332.
33. Sun J, Hemler ME. Regulation of MMP-1 and MMP-2 production through
CD147/extracellular matrix metalloproteinase inducer interactions.
Cancer Res. 2001;61(5):2276–2281.
https://cancerres.aacrjournals.org/content/61/5/2276.full-text.pdf.
34. Ibrahim IM, Abdelmalek DH, Elfiky AA. GRP78: A cell’s response to
stress. Life Sci. 2019 [accessed 2020 May 18];226:156–163.
doi:10.1016/j.lfs.2019.04.022.
35. Sajuthi SP, DeFord P, Jackson ND, Montgomery MT, Everman JL, Rios
CL, Pruesse E, Nolin JD, Plender EG, Wechsler ME, et al. Type 2 and
interferon inflammation strongly regulate SARS-CoV-2 related gene
expression in the airway epithelium. bioRxiv. 2020 [accessed 2020 May
6]. https://www.biorxiv.org/content/10.1101/2020.04.09.034454v1.
36. Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in
immunity and infectious diseases. Front Immunol. 2014 [accessed 2020
May 25];5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188125/.
doi:10.3389/fimmu.2014.00491.
37. Delves PJ, Roitt IM. The immune system. N Engl J Med.
2000;343(2):108–117. doi:10.1056/NEJM200007133430207.
38. Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller
R, Jordan TX, Oishi K, Panis M, Sachs D, et al. Imbalanced host response
to SARS-CoV-2 drives development of COVID-19. Cell.
2020;181(5):1036-1045.e9. doi:10.1016/j.cell.2020.04.026.
39. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19:
immunity, inflammation and intervention. Nat Rev Immunol.
2020;20(6):363–374. doi:10.1038/s41577-020-0311-8.
40. Mosaddeghi P, Negahdaripour M, Dehghani Z, Farahmandnejad M,
Moghadami M, Nezafat N, Masoompour SM. Therapeutic approaches for
COVID-19 based on the dynamics of interferon-mediated immune responses.
Preprints. [accessed 2020 Jun 3].
doi:10.20944/preprints202003.0206.v1.
41. Maughan EF, Nigro E, Pennycuick A, Gowers KHC, Denais C, Gómez-López
S, Lazarus KA, Butler CR, Lee DDH, Orr JC, et al. 2020. Cell-intrinsic
differences between human airway epithelial cells from children and
adults. bioRxiv. 2020 [accessed 2020 May 6].
https://www.biorxiv.org/content/10.1101/2020.04.20.027144v1.
42. Henry BM, Lippi G, Plebani M. Laboratory abnormalities in children
with novel coronavirus disease 2019. Clin Chem Lab Med. 2020 [accessed
2020 May 29];1(ahead-of-print).
https://www.degruyter.com/view/journals/cclm/ahead-of-print/article-10.1515-cclm-2020-0272/article-10.1515-cclm-2020-0272.xml.
doi:10.1515/cclm-2020-0272.
43. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue
J, Crawford JM, Daßler-Plenker J, Guerci P, Huynh C, Knight JS, et al.
Targeting potential drivers of COVID-19: neutrophil extracellular traps.
J Exp Med. 2020;217(6). doi:10.1084/jem.20200652.
44. Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, Blair CN,
Weber A, Barnes BJ, Egeblad M, et al. Neutrophil extracellular traps in
COVID-19. JCI insight. 2020. doi:10.1172/jci.insight.138999.
45. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z,
Xiong Y, et al. Clinical characteristics of 138 hospitalized patients
with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA.
2020;323(11):1061-1069. doi:10.1001/jama.2020.1585.
46. Fox SE, Akmatbekov A, Harbert JL, Li G, Brown Q, Vander Heide RS.
Pulmonary and cardiac pathology in Covid-19: the first autopsy series
from New Orleans. medRxiv. 2020 [accessed 2020 Jun 3].
doi:10.1101/2020.04.06.20050575v1.
47. Merad M, Martin JC. Pathological inflammation in patients with
COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol.
2020;20(6):355–362. doi:10.1038/s41577-020-0331-4.
48. van Royen N, Hoefer I, Böttinger M, Hua J, Grundmann S, Voskuil M,
Bode C, Schaper W, Buschmann I, Piek JJ. Local monocyte chemoattractant
protein-1 therapy increases collateral artery formation in
apolipoprotein E-deficient mice but induces systemic monocytic CD11b
expression, neointimal formation, and plaque progression. Circ Res.
2003;92(2):218–225. doi:10.1161/01.res.0000052313.23087.3f.
49. De Martinis M, Modesti M, Ginaldi L. Phenotypic and functional
changes of circulating monocytes and polymorphonuclear leucocytes from
elderly persons. Immunol Cell Biol. 2004;82(4):415–420.
doi:10.1111/j.0818-9641.2004.01242.x.
50. Albright JM, Dunn RC, Shults JA, Boe DM, Afshar M, Kovacs EJ.
Advanced age alters monocyte and macrophage responses. Antioxid Redox
Sign. 2016;25(15):805–815. doi:10.1089/ars.2016.6691.
51. Henderson LA, Canna SW, Schulert GS, Volpi S, Lee PY, Kernan KF,
Caricchio R, Mahmud S, Hazen MM, Halyabar O, et al. On the alert for
cytokine storm: immunopathology in COVID-19. Arthritis Rheumatol.
[accessed 2020 May 14]; 2020;0(0):1-5.
https://onlinelibrary.wiley.com/doi/abs/10.1002/art.41285.
doi:10.1002/art.41285.
52. Grom AA, Mellins ED. Macrophage activation syndrome: advances
towards understanding pathogenesis. Curr Opin Rheumatol.
2010;22(5):561–566. doi:10.1097/01.bor.0000381996.69261.71.
53. Channappanavar R, Perlman S. Pathogenic human coronavirus
infections: causes and consequences of cytokine storm and
immunopathology. Semin Immunopathol. 2017;39(5):529–539.
doi:10.1007/s00281-017-0629-x.
54. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of
mortality due to COVID-19 based on an analysis of data of 150 patients
from Wuhan, China. Intensiv Care Med. 2020 [accessed 2020 May
19];46(5). https://pubmed.ncbi.nlm.nih.gov/32125452/.
doi:10.1007/s00134-020-05991-x.
55. Schouten LR, van Kaam AH, Kohse F, Veltkamp F, Bos LD, de Beer FM,
van Hooijdonk RT, Horn J, Straat M, Witteveen E, et al. Age-dependent
differences in pulmonary host responses in ARDS: a prospective
observational cohort study. Ann Intensiv Care. 2019;9(1):55.
doi:10.1186/s13613-019-0529-4.
56. Flint SJ, Racaniello VR, Rall GF, Skalka AM. 2015. Princ Virol. 4th
ed. Washington (DC): ASM Press; 2015.
57. Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, Wang X, Yuan J, Li T,
Li J, et al. Antibody responses to SARS-CoV-2 in patients of novel
coronavirus disease 2019. Clin Infect Dis. 2020 [accessed 2020 Jun
3]: doi:10.1093/cid/ciaa344.
58. Long Q-X, Liu B-Z, Deng H-J, Wu G-C, Deng K, Chen Y-K, Liao P, Qiu
J-F, Lin Y, Cai X-F, et al. Antibody responses to SARS-CoV-2 in patients
with COVID-19. Nat Med. 2020 [accessed 2020 Jun 3]:
doi:10.1038/s41591-020-0897-1.
59. Galanti M, Shaman J. Direct observation of repeated infections with
endemic coronaviruses. medRxiv. 2020 [accessed 2020 Jun 3]:
doi.org/10.1101/2020.04.27.20082032.
60. Cao Y, Su B, Guo X, Sun W, Deng Y, Bao L, Zhu Q, Zhang X, Zheng Y,
Geng C, et al. Potent neutralizing antibodies against SARS-CoV-2
identified by high-throughput single-cell sequencing of convalescent
patients’ B cells. Cell. 2020. doi:10.1016/j.cell.2020.05.025.
61. Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, Hu Y, Tao Z-W, Tian
J-H, Pei Y-Y, et al. A new coronavirus associated with human respiratory
disease in China. Nat. 2020;579(7798):265–269.
doi:10.1038/s41586-020-2008-3.
62. Zhao J, Zhao J, Legge K, Perlman S. Age-related increases in PGD(2)
expression impair respiratory DC migration, resulting in diminished T
cell responses upon respiratory virus infection in mice. Journal Clin
Investig. 2011;121(12):4921–4930. doi:10.1172/JCI59777.
63. Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA.
Age-associated decline in T cell repertoire diversity leads to holes in
the repertoire and impaired immunity to influenza virus. J Exp Med.
2008;205(3):711–723. doi:10.1084/jem.20071140.
64. Linton P-J, Li SP, Zhang Y, Bautista B, Huynh Q, Trinh T. Intrinsic
versus environmental influences on T-cell responses in aging. Immunol
Rev. 2005;205:207–219. doi:10.1111/j.0105-2896.2005.00266.x.
65. Haynes BF, Markert ML, Sempowski GD, Patel DD, Hale LP. The role of
the thymus in immune reconstitution in aging, bone marrow
transplantation, and HIV-1 infection. Annu Rev Immunol.
2000;18:529–560. doi:10.1146/annurev.immunol.18.1.529.
66. Weiskopf D, Weinberger B, Grubeck-Loebenstein B. The aging of the
immune system. Transpl Intern. 2009;22(11):1041–1050.
doi:10.1111/j.1432-2277.2009.00927.x.
67. Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, Xu Y, Tian Z.
Functional exhaustion of antiviral lymphocytes in COVID-19 patients.
Cell Mol Immunol. 2020;17(5):533–535. doi:10.1038/s41423-020-0402-2.
68. Li Y, Guo F, Cao Y, Li L, Guo Y. Insight into COVID-2019 for
pediatricians. Pediatr Pulmonol. 2020 [accessed 2020 Jun
3];55(5):E1–E4. doi:10.1002/ppul.24734.
69. Guo X, Guo Z, Duan C, Chen Z, Wang G, Lu Y, Li M, Lu J. Long-term
persistence of IgG antibodies in SARS-CoV infected healthcare workers.
medRxiv. 2020 [accessed 2020 Jun 3]:
doi:10.1101/2020.02.12.20021386.
70. Jones VG, Mills M, Suarez D, Hogan CA, Yeh D, Segal JB, Nguyen EL,
Barsh GR, Maskatia S, Mathew R. COVID-19 and Kawasaki disease: novel
virus and novel case. Hosp Pediatr. 2020 [accessed 2020 May 6]:
https://hosppeds.aappublications.org/content/early/2020/04/06/hpeds.2020-0123.
doi:10.1542/hpeds.2020-0123.
71. Pain CE, Felsenstein S, Cleary G, Mayell S, Conrad K, Harave S,
Duong P, Sinha I, Porter D, Hedrich CM. Novel paediatric presentation of
COVID-19 with ARDS and cytokine storm syndrome without respiratory
symptoms. Lancet Rheumatol. 2020 [accessed 2020 May 18]:
https://www.thelancet.com/journals/lanrhe/article/PIIS2665-9913(20)30137-5/abstract.
doi:10.1016/S2665-9913(20)30137-5.
72. Verdoni L, Mazza A, Gervasoni A, Martelli L, Ruggeri M, Ciuffreda M,
Bonanomi E, D’Antiga L. An outbreak of severe Kawasaki-like disease at
the Italian epicentre of the SARS-CoV-2 epidemic: an observational
cohort study. Lancet. 2020;395(10239):1771–1778.
doi:10.1016/S0140-6736(20)31103-X.
73. Yurttutan S, İpek S, Güllü UU. Why the SARS‐Cov‐2 has prolonged
spreading time in children? Pediatr Pulmonol. 2020 [accessed 2020 Jun
4]: doi:10.1002/ppul.24795.
74. Selva KJ, van de Sandt CE, Lemke MM, Lee CY, Shoffner SK, Chua BY,
Nguyen THO, Rowntree LC, Hensen L, Koutsakos M, et al. Distinct systems
serology features in children, elderly and COVID patients. medRxiv. 2020
[accessed 2020 Jun 4]: doi:10.1101/2020.05.11.20098459.