References
1. Bartel DP. Metazoan MicroRNAs.Cell. 2018;173(1):20-51.
2. Mehta A, Baltimore D. MicroRNAs as
regulatory elements in immune system logic. Nat Rev Immunol.2016;16(5):279-294.
3. Gebert LFR, MacRae IJ. Regulation
of microRNA function in animals. Nat Rev Mol Cell Biol.2019;20(1):21-37.
4. Johansson K, Weidner J, Radinger M.
MicroRNAs in type 2 immunity. Cancer Lett. 2018;425:116-124.
5. Ambros V, Bartel B, Bartel DP, et
al. A uniform system for microRNA annotation. RNA.2003;9(3):277-279.
6. Alipoor SD, Adcock IM, Garssen J,
et al. The roles of miRNAs as potential biomarkers in lung diseases.Eur J Pharmacol. 2016;791:395-404.
7. Mestdagh P, Vandesompele J,
Brusselle G, Vermaelen K. Non-coding RNAs and respiratory disease.Thorax. 2015;70(4):388-390.
8. Ameis D, Khoshgoo N, Iwasiow BM,
Snarr P, Keijzer R. MicroRNAs in Lung Development and Disease.Paediatr Respir Rev. 2017;22:38-43.
9. Booton R, Lindsay MA. Emerging role
of MicroRNAs and long noncoding RNAs in respiratory disease.Chest. 2014;146(1):193-204.
10. Dissanayake E, Inoue Y. MicroRNAs
in Allergic Disease. Curr Allergy Asthma Rep. 2016;16(9):67.
11. Pua HH, Ansel KM. MicroRNA
regulation of allergic inflammation and asthma. Curr Opin
Immunol. 2015;36:101-108.
12. Rebane A. microRNA and Allergy.Adv Exp Med Biol. 2015;888:331-352.
13. Weidner JM, C.; Rådinger, M.
microRNAs in asthma pathogenesis - from mouse to man. J Transl
Genet Genom. 2019;3(2).
14. D’Argenio V, Del Monaco V, Paparo
L, et al. Altered miR-193a-5p expression in children with cow’s milk
allergy. Allergy. 2018;73(2):379-386.
15. Liu ZQ, Yang G, Geng XR, et al.
Micro RNA-17-92 cluster mediates interleukin-4-suppressed IL-10
expression in B cells. Am J Transl Res. 2016;8(5):2317-2324.
16. Yang LT, Li XX, Qiu SQ, et al.
Micro RNA-19a suppresses thrombospondin-1 in CD35(+) B cells in the
intestine of mice with food allergy. Am J Transl Res.2016;8(12):5503-5511.
17. Larsen LF, Juel-Berg N, Hansen A,
et al. No difference in human mast cells derived from peanut allergic
versus non-allergic subjects. Immun Inflamm Dis.2018;6(4):416-427.
18. Callejas-Diaz B, Fernandez G,
Fuentes M, et al. Integrated mRNA and microRNA transcriptome profiling
during Differentiation of Human Nasal Polyp Epithelium reveals an
altered Ciliogenesis. Allergy. 2020.
19. Cheng J, Chen J, Zhao Y, Yang J,
Xue K, Wang Z. MicroRNA-761 suppresses remodeling of nasal mucosa and
epithelial-mesenchymal transition in mice with chronic rhinosinusitis
through LCN2. Stem Cell Res Ther. 2020;11(1):151.
20. Gu X, Yao X, Liu D. Up-regulation
of microRNA-335-5p reduces inflammation via negative regulation of the
TPX2-mediated AKT/GSK3beta signaling pathway in a chronic rhinosinusitis
mouse model. Cell Signal. 2020;70:109596.
21. Li L, Feng J, Zhang D, et al.
Differential expression of miR-4492 and IL-10 is involved in chronic
rhinosinusitis with nasal polyps. Exp Ther Med.2019;18(5):3968-3976.
22. Li X, Li C, Zhu G, Yuan W, Xiao
ZA. TGF-beta1 Induces Epithelial-Mesenchymal Transition of Chronic
Sinusitis with Nasal Polyps through MicroRNA-21. Int Arch Allergy
Immunol. 2019;179(4):304-319.
23. Liu CC, Xia M, Zhang YJ, et al.
Micro124-mediated AHR expression regulates the inflammatory response of
chronic rhinosinusitis (CRS) with nasal polyps. Biochem Biophys
Res Commun. 2018;500(2):145-151.
24. Ma Z, Shen Y, Zeng Q, et al.
MiR-150-5p regulates EGR2 to promote the development of chronic
rhinosinusitis via the DC-Th axis. Int Immunopharmacol.2018;54:188-197.
25. Qing X, Zhang Y, Peng Y, He G,
Liu A, Liu H. Mir-142-3p Regulates Inflammatory Response by Contributing
to Increased TNF-alpha in Chronic Rhinosinusitis With Nasal Polyposis.Ear Nose Throat J. 2019:145561319847972.
26. Xia G, Bao L, Gao W, Liu S, Ji K,
Li J. Differentially Expressed miRNA in Inflammatory Mucosa of Chronic
Rhinosinusitis. J Nanosci Nanotechnol. 2015;15(3):2132-2139.
27. Xuan L, Luan G, Wang Y, et al.
MicroRNAs regulating mucin type O-glycan biosynthesis and transforming
growth factor beta signaling pathways in nasal mucosa of patients with
chronic rhinosinusitis with nasal polyps in Northern China. Int
Forum Allergy Rhinol. 2019;9(1):106-113.
28. Zhang XH, Zhang YN, Li HB, et al.
Overexpression of miR-125b, a novel regulator of innate immunity, in
eosinophilic chronic rhinosinusitis with nasal polyps. Am J Respir
Crit Care Med. 2012;185(2):140-151.
29. Zhang XH, Zhang YN, Liu Z.
MicroRNA in chronic rhinosinusitis and allergic rhinitis. Curr
Allergy Asthma Rep. 2014;14(2):415.
30. Weidinger S, Novak N. Atopic
dermatitis. Lancet. 2016;387(10023):1109-1122.
31. Czarnowicki T, He H, Krueger JG,
Guttman-Yassky E. Atopic dermatitis endotypes and implications for
targeted therapeutics. J Allergy Clin Immunol. 2019;143(1):1-11.
32. Alexander H, Paller AS,
Traidl-Hoffmann C, et al. The role of bacterial skin infections in
atopic dermatitis: expert statement and review from the International
Eczema Council Skin Infection Group. Br J Dermatol. 2019.
33. Sonkoly E, Wei T, Janson PC, et
al. MicroRNAs: novel regulators involved in the pathogenesis of
psoriasis? PLoS One. 2007;2(7):e610.
34. Hermann H, Runnel T, Aab A, et
al. miR-146b Probably Assists miRNA-146a in the Suppression of
Keratinocyte Proliferation and Inflammatory Responses in Psoriasis.J Invest Dermatol. 2017;137(9):1945-1954.
35. Meisgen F, Xu Landen N, Wang A,
et al. MiR-146a negatively regulates TLR2-induced inflammatory responses
in keratinocytes. J Invest Dermatol. 2014;134(7):1931-1940.
36. Rebane A, Runnel T, Aab A, et al.
MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis
through suppression of innate immune responses in keratinocytes. J
Allergy Clin Immunol. 2014;134(4):836-847 e811.
37. Sonkoly E, Janson P, Majuri ML,
et al. MiR-155 is overexpressed in patients with atopic dermatitis and
modulates T-cell proliferative responses by targeting cytotoxic T
lymphocyte-associated antigen 4. J Allergy Clin Immunol.2010;126(3):581-589 e581-520.
38. Srivastava A, Nikamo P,
Lohcharoenkal W, et al. MicroRNA-146a suppresses IL-17-mediated skin
inflammation and is genetically associated with psoriasis. J
Allergy Clin Immunol. 2017;139(2):550-561.
39. Carreras-Badosa G, Runnel T,
Plaas M, et al. microRNA-146a is linked to the production of IgE in mice
but not in atopic dermatitis patients. Allergy.2018;73(12):2400-2403.
40. Li F, Huang Y, Huang YY, et al.
MicroRNA-146a promotes IgE class switch in B cells via upregulating
14-3-3sigma expression. Mol Immunol. 2017;92:180-189.
41. Okoye IS, Czieso S, Ktistaki E,
et al. Transcriptomics identified a critical role for Th2 cell-intrinsic
miR-155 in mediating allergy and antihelminth immunity. Proc Natl
Acad Sci U S A. 2014;111(30):E3081-3090.
42. Ma L, Xue HB, Wang F, Shu CM,
Zhang JH. MicroRNA-155 may be involved in the pathogenesis of atopic
dermatitis by modulating the differentiation and function of T helper
type 17 (Th17) cells. Clin Exp Immunol. 2015;181(1):142-149.
43. Moyle M, Cevikbas F, Harden JL,
Guttman-Yassky E. Understanding the immune landscape in atopic
dermatitis: The era of biologics and emerging therapeutic approaches.Exp Dermatol. 2019;28(7):756-768.
44. Brozek JL, Bousquet J, Agache I,
et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines-2016
revision. J Allergy Clin Immunol. 2017;140(4):950-958.
45. Cruz AA, Popov T, Pawankar R, et
al. Common characteristics of upper and lower airways in rhinitis and
asthma: ARIA update, in collaboration with GA(2)LEN. Allergy.2007;62 Suppl 84:1-41.
46. Braunstahl GJ. United airways
concept: what does it teach us about systemic inflammation in airways
disease? Proc Am Thorac Soc. 2009;6(8):652-654.
47. Zissler UM, Ulrich M, Jakwerth
CA, et al. Biomatrix for upper and lower airway biomarkers in patients
with allergic asthma. J Allergy Clin Immunol.2018;142(6):1980-1983.
48. Panganiban RP, Wang Y, Howrylak
J, et al. Circulating microRNAs as biomarkers in patients with allergic
rhinitis and asthma. J Allergy Clin Immunol.2016;137(5):1423-1432.
49. Shaoqing Y, Ruxin Z, Guojun L, et
al. Microarray analysis of differentially expressed microRNAs in
allergic rhinitis. Am J Rhinol Allergy. 2011;25(6):e242-246.
50. Suojalehto H, Lindstrom I, Majuri
ML, et al. Altered microRNA expression of nasal mucosa in long-term
asthma and allergic rhinitis. Int Arch Allergy Immunol.2014;163(3):168-178.
51. Kohlhaas S, Garden OA, Scudamore
C, Turner M, Okkenhaug K, Vigorito E. Cutting edge: the Foxp3 target
miR-155 contributes to the development of regulatory T cells. J
Immunol. 2009;182(5):2578-2582.
52. Rodriguez A, Vigorito E, Clare S,
et al. Requirement of bic/microRNA-155 for normal immune function.Science. 2007;316(5824):608-611.
53. Jia M, Chu C, Wang M. Correlation
of microRNA profiles with disease risk and severity of allergic
rhinitis. Int J Clin Exp Pathol. 2018;11(3):1791-1802.
54. Simpson CR, Sheikh A. Trends in
the epidemiology of asthma in England: a national study of 333,294
patients. J R Soc Med. 2010;103(3):98-106.
55. Dong X, Zhong N, Fang Y, Cai Q,
Lu M, Lu Q. MicroRNA 27b-3p Modulates SYK in Pediatric Asthma Induced by
Dust Mites. Front Pediatr. 2018;6:301.
56. Kho AT, Sharma S, Davis JS, et
al. Circulating MicroRNAs: Association with Lung Function in Asthma.PLoS One. 2016;11(6):e0157998.
57. Davis JS, Sun M, Kho AT, et al.
Circulating microRNAs and association with methacholine PC20 in the
Childhood Asthma Management Program (CAMP) cohort. PLoS One.2017;12(7):e0180329.
58. Kho AT, McGeachie MJ, Moore KG,
Sylvia JM, Weiss ST, Tantisira KG. Circulating microRNAs and prediction
of asthma exacerbation in childhood asthma. Respir Res.2018;19(1):128.
59. Simpson LJ, Patel S, Bhakta NR,
et al. A microRNA upregulated in asthma airway T cells promotes TH2
cytokine production. Nat Immunol. 2014;15(12):1162-1170.
60. Haj-Salem I, Fakhfakh R, Berube
JC, et al. MicroRNA-19a enhances proliferation of bronchial epithelial
cells by targeting TGFbetaR2 gene in severe asthma. Allergy.2015;70(2):212-219.
61. Zhang K, Liang Y, Feng Y, et al.
Decreased epithelial and sputum miR-221-3p associates with airway
eosinophilic inflammation and CXCL17 expression in asthma. Am J
Physiol Lung Cell Mol Physiol. 2018;315(2):L253-L264.
62. Rodrigo-Munoz JM, Canas JA,
Sastre B, et al. Asthma diagnosis using integrated analysis of
eosinophil microRNAs. Allergy. 2019;74(3):507-517.
63. Francisco-Garcia AS,
Garrido-Martin EM, Rupani H, et al. Small RNA Species and microRNA
Profiles are Altered in Severe Asthma Nanovesicles from Broncho Alveolar
Lavage and Associate with Impaired Lung Function and Inflammation.Noncoding RNA. 2019;5(4).
64. Levanen B, Bhakta NR, Torregrosa
Paredes P, et al. Altered microRNA profiles in bronchoalveolar lavage
fluid exosomes in asthmatic patients. J Allergy Clin Immunol.2013;131(3):894-903.
65. Solberg OD, Ostrin EJ, Love MI,
et al. Airway epithelial miRNA expression is altered in asthma. Am
J Respir Crit Care Med. 2012;186(10):965-974.
66. Yu B, Yao L, Liu C, Tang L, Xing
T. Upregulation of microRNA16 alters the response to inhaled
betaagonists in patients with asthma though modulating expression of
ADRB2. Mol Med Rep. 2019;19(5):4027-4034.
67. Dong X, Xu M, Ren Z, et al.
Regulation of CBL and ESR1 expression by microRNA-223p, 513a-5p and
625-5p may impact the pathogenesis of dust mite-induced pediatric
asthma. Int J Mol Med. 2016;38(2):446-456.
68. Pinkerton M, Chinchilli V, Banta
E, et al. Differential expression of microRNAs in exhaled breath
condensates of patients with asthma, patients with chronic obstructive
pulmonary disease, and healthy adults. J Allergy Clin Immunol.2013;132(1):217-219.
69. Polikepahad S, Knight JM, Naghavi
AO, et al. Proinflammatory role for let-7 microRNAS in experimental
asthma. J Biol Chem. 2010;285(39):30139-30149.
70. Panganiban RP, Pinkerton MH, Maru
SY, Jefferson SJ, Roff AN, Ishmael FT. Differential microRNA epression
in asthma and the role of miR-1248 in regulation of IL-5. Am J
Clin Exp Immunol. 2012;1(2):154-165.
71. Nakano T, Inoue Y, Shimojo N, et
al. Lower levels of hsa-mir-15a, which decreases VEGFA, in the CD4+ T
cells of pediatric patients with asthma. J Allergy Clin Immunol.2013;132(5):1224-1227 e1212.
72. Castillo JR, Peters SP, Busse WW.
Asthma Exacerbations: Pathogenesis, Prevention, and Treatment. J
Allergy Clin Immunol Pract. 2017;5(4):918-927.
73. Jartti T, Gern JE. Role of viral
infections in the development and exacerbation of asthma in children.J Allergy Clin Immunol. 2017;140(4):895-906.
74. Schwarze J, Openshaw P, Jha A, et
al. Influenza burden, prevention, and treatment in asthma-A scoping
review by the EAACI Influenza in asthma task force. Allergy.2018;73(6):1151-1181.
75. Edwards MR, Regamey N, Vareille
M, et al. Impaired innate interferon induction in severe therapy
resistant atopic asthmatic children. Mucosal Immunol.2013;6(4):797-806.
76. Bondanese VP, Francisco-Garcia A,
Bedke N, Davies DE, Sanchez-Elsner T. Identification of host miRNAs that
may limit human rhinovirus replication. World J Biol Chem.2014;5(4):437-456.
77. Martinez-Nunez RT, Bondanese VP,
Louafi F, et al. A microRNA network dysregulated in asthma controls IL-6
production in bronchial epithelial cells. PLoS One.2014;9(10):e111659.
78. Clifford RL, Jones MJ, MacIsaac
JL, et al. Inhalation of diesel exhaust and allergen alters human
bronchial epithelium DNA methylation. J Allergy Clin Immunol.2017;139(1):112-121.
79. Moheimani F, Koops J, Williams T,
et al. Influenza A virus infection dysregulates the expression of
microRNA-22 and its targets; CD147 and HDAC4, in epithelium of
asthmatics. Respir Res. 2018;19(1):145.
80. McCaskill JL, Ressel S, Alber A,
et al. Broad-Spectrum Inhibition of Respiratory Virus Infection by
MicroRNA Mimics Targeting p38 MAPK Signaling. Mol Ther Nucleic
Acids. 2017;7:256-266.
81. Balmes JR, Earnest G, Katz PP, et
al. Exposure to traffic: lung function and health status in adults with
asthma. J Allergy Clin Immunol. 2009;123(3):626-631.
82. Brunekreef B, Stewart AW,
Anderson HR, et al. Self-reported truck traffic on the street of
residence and symptoms of asthma and allergic disease: a global
relationship in ISAAC phase 3. Environ Health Perspect.2009;117(11):1791-1798.
83. Carlsten C, Dybuncio A, Becker A,
Chan-Yeung M, Brauer M. Traffic-related air pollution and incident
asthma in a high-risk birth cohort. Occup Environ Med.2011;68(4):291-295.
84. De Grove KC, Provoost S, Hendriks
RW, et al. Dysregulation of type 2 innate lymphoid cells and TH2 cells
impairs pollutant-induced allergic airway responses. J Allergy
Clin Immunol. 2017;139(1):246-257 e244.
85. Jacquemin B, Kauffmann F, Pin I,
et al. Air pollution and asthma control in the Epidemiological study on
the Genetics and Environment of Asthma. J Epidemiol Community
Health. 2012;66(9):796-802.
86. Kunzli N, Bridevaux PO, Liu LJ,
et al. Traffic-related air pollution correlates with adult-onset asthma
among never-smokers. Thorax. 2009;64(8):664-670.
87. Maes T, Provoost S, Lanckacker
EA, et al. Mouse models to unravel the role of inhaled pollutants on
allergic sensitization and airway inflammation. Respir Res.2010;11:7.
88. McCreanor J, Cullinan P,
Nieuwenhuijsen MJ, et al. Respiratory effects of exposure to diesel
traffic in persons with asthma. N Engl J Med.2007;357(23):2348-2358.
89. Meng YY, Rull RP, Wilhelm M,
Lombardi C, Balmes J, Ritz B. Outdoor air pollution and uncontrolled
asthma in the San Joaquin Valley, California. J Epidemiol
Community Health. 2010;64(2):142-147.
90. Wenzel SE. Asthma phenotypes: the
evolution from clinical to molecular approaches. Nat Med.2012;18(5):716-725.
91. Vrijens K, Bollati V, Nawrot TS.
MicroRNAs as potential signatures of environmental exposure or effect: a
systematic review. Environ Health Perspect. 2015;123(5):399-411.
92. Rider CF, Yamamoto M, Gunther OP,
et al. Controlled diesel exhaust and allergen coexposure modulates
microRNA and gene expression in humans: Effects on inflammatory lung
markers. J Allergy Clin Immunol. 2016;138(6):1690-1700.
93. Yamamoto M, Singh A, Sava F, Pui
M, Tebbutt SJ, Carlsten C. MicroRNA expression in response to controlled
exposure to diesel exhaust: attenuation by the antioxidant
N-acetylcysteine in a randomized crossover study. Environ Health
Perspect. 2013;121(6):670-675.
94. Liu Q, Wang W, Jing W. Indoor air
pollution aggravates asthma in Chinese children and induces the changes
in serum level of miR-155. Int J Environ Health Res.2019;29(1):22-30.
95. Gao L, Liu X, Millstein J, et al.
Self-reported prenatal tobacco smoke exposure, AXL gene-body
methylation, and childhood asthma phenotypes. Clin Epigenetics.2018;10(1):98.
96. Herberth G, Bauer M, Gasch M, et
al. Maternal and cord blood miR-223 expression associates with prenatal
tobacco smoke exposure and low regulatory T-cell numbers. J
Allergy Clin Immunol. 2014;133(2):543-550.
97. Maes T, Cobos FA, Schleich F, et
al. Asthma inflammatory phenotypes show differential microRNA expression
in sputum. J Allergy Clin Immunol. 2016;137(5):1433-1446.
98. Singh SP, Chand HS, Langley RJ,
et al. Gestational Exposure to Sidestream (Secondhand) Cigarette Smoke
Promotes Transgenerational Epigenetic Transmission of Exacerbated
Allergic Asthma and Bronchopulmonary Dysplasia. J Immunol.2017;198(10):3815-3822.
99. Xiao R, Noel A, Perveen Z, Penn
AL. In utero exposure to second-hand smoke activates pro-asthmatic and
oncogenic miRNAs in adult asthmatic mice. Environ Mol Mutagen.2016;57(3):190-199.
100. Dehmel S, Nathan P, Bartel S,
et al. Intrauterine smoke exposure deregulates lung function, pulmonary
transcriptomes, and in particular insulin-like growth factor (IGF)-1 in
a sex-specific manner. Sci Rep. 2018;8(1):7547.
101. Bleck B, Grunig G, Chiu A, et
al. MicroRNA-375 regulation of thymic stromal lymphopoietin by diesel
exhaust particles and ambient particulate matter in human bronchial
epithelial cells. J Immunol. 2013;190(7):3757-3763.
102. Li J, Zhou Q, Liang Y, et al.
miR-486 inhibits PM2.5-induced apoptosis and oxidative stress in human
lung alveolar epithelial A549 cells. Ann Transl Med.2018;6(11):209.
103. Li X, Lv Y, Hao J, et al. Role
of microRNA-4516 involved autophagy associated with exposure to fine
particulate matter. Oncotarget. 2016;7(29):45385-45397.
104. Liu L, Wan C, Zhang W, et al.
MiR-146a regulates PM1 -induced inflammation via NF-kappaB signaling
pathway in BEAS-2B cells. Environ Toxicol. 2018;33(7):743-751.
105. Wang G, Zheng X, Tang J, et al.
LIN28B/let-7 axis mediates pulmonary inflammatory response induced by
diesel exhaust particle exposure in mice. Toxicol Lett.2018;299:1-10.
106. Yadav S, Singh N, Shah PP, et
al. MIR155 Regulation of Ubiquilin1 and Ubiquilin2: Implications in
Cellular Protection and Tumorigenesis. Neoplasia.2017;19(4):321-332.
107. Yang D, Ma M, Zhou W, Yang B,
Xiao C. Inhibition of miR-32 activity promoted EMT induced by PM2.5
exposure through the modulation of the Smad1-mediated signaling pathways
in lung cancer cells. Chemosphere. 2017;184:289-298.
108. Zhou F, Li S, Jia W, et al.
Effects of diesel exhaust particles on microRNA-21 in human bronchial
epithelial cells and potential carcinogenic mechanisms. Mol Med
Rep. 2015;12(2):2329-2335.
109. Conickx G, Mestdagh P, Avila
Cobos F, et al. MicroRNA Profiling Reveals a Role for MicroRNA-218-5p in
the Pathogenesis of Chronic Obstructive Pulmonary Disease. Am J
Respir Crit Care Med. 2017;195(1):43-56.
110. Lu L, Xu H, Yang P, et al.
Involvement of HIF-1alpha-regulated miR-21, acting via the Akt/NF-kappaB
pathway, in malignant transformation of HBE cells induced by cigarette
smoke extract. Toxicol Lett. 2018;289:14-21.
111. Song L, Li D, Gu Y, Li X, Peng
L. Let-7a modulates particulate matter (</= 2.5 mum)-induced
oxidative stress and injury in human airway epithelial cells by
targeting arginase 2. J Appl Toxicol. 2016;36(10):1302-1310.
112. Song L, Li D, Li X, et al.
Exposure to PM2.5 induces aberrant activation of NF-kappaB in human
airway epithelial cells by downregulating miR-331 expression.Environ Toxicol Pharmacol. 2017;50:192-199.
113. Zhao Y, Xu Y, Li Y, et al.
NF-kappaB-mediated inflammation leading to EMT via miR-200c is involved
in cell transformation induced by cigarette smoke extract. Toxicol
Sci. 2013;135(2):265-276.
114. De Smet EG, Mestdagh P,
Vandesompele J, Brusselle GG, Bracke KR. Non-coding RNAs in the
pathogenesis of COPD. Thorax. 2015;70(8):782-791.
115. Huang X, Zhu Z, Guo X, Kong X.
The roles of microRNAs in the pathogenesis of chronic obstructive
pulmonary disease. Int Immunopharmacol. 2019;67:335-347.
116. Osei ET, Florez-Sampedro L,
Timens W, Postma DS, Heijink IH, Brandsma CA. Unravelling the complexity
of COPD by microRNAs: it’s a small world after all. Eur Respir J.2015;46(3):807-818.
117. Johansson K, Malmhall C,
Ramos-Ramirez P, Radinger M. MicroRNA-155 is a critical regulator of
type 2 innate lymphoid cells and IL-33 signaling in experimental models
of allergic airway inflammation. J Allergy Clin Immunol.2017;139(3):1007-1016 e1009.
118. Qiu L, Zhang Y, Do DC, et al.
miR-155 Modulates Cockroach Allergen- and Oxidative Stress-Induced
Cyclooxygenase-2 in Asthma. J Immunol. 2018;201(3):916-929.
119. Zech A, Ayata CK, Pankratz F,
et al. MicroRNA-155 modulates P2R signaling and Th2 priming of dendritic
cells during allergic airway inflammation in mice. Allergy.2015;70(9):1121-1129.
120. Malmhall C, Alawieh S, Lu Y, et
al. MicroRNA-155 is essential for T(H)2-mediated allergen-induced
eosinophilic inflammation in the lung. J Allergy Clin Immunol.2014;133(5):1429-1438, 1438 e1421-1427.
121. Singh PB, Pua HH, Happ HC, et
al. MicroRNA regulation of type 2 innate lymphoid cell homeostasis and
function in allergic inflammation. J Exp Med.2017;214(12):3627-3643.
122. Ye L, Mou Y, Wang J, Jin ML.
Effects of microRNA-19b on airway remodeling, airway inflammation and
degree of oxidative stress by targeting TSLP through the Stat3 signaling
pathway in a mouse model of asthma. Oncotarget.2017;8(29):47533-47546.
123. Collison A, Herbert C, Siegle
JS, Mattes J, Foster PS, Kumar RK. Altered expression of microRNA in the
airway wall in chronic asthma: miR-126 as a potential therapeutic
target. BMC Pulm Med. 2011;11:29.
124. Mattes J, Collison A, Plank M,
Phipps S, Foster PS. Antagonism of microRNA-126 suppresses the effector
function of TH2 cells and the development of allergic airways disease.Proc Natl Acad Sci U S A. 2009;106(44):18704-18709.
125. Kim RY, Horvat JC, Pinkerton
JW, et al. MicroRNA-21 drives severe, steroid-insensitive experimental
asthma by amplifying phosphoinositide 3-kinase-mediated suppression of
histone deacetylase 2. J Allergy Clin Immunol.2017;139(2):519-532.
126. Lee HY, Lee HY, Choi JY, et al.
Inhibition of MicroRNA-21 by an antagomir ameliorates allergic
inflammation in a mouse model of asthma. Exp Lung Res.2017;43(3):109-119.
127. Lu TX, Hartner J, Lim EJ, et
al. MicroRNA-21 limits in vivo immune response-mediated activation of
the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of
delayed-type hypersensitivity. J Immunol. 2011;187(6):3362-3373.
128. Sawant DV, Wu H, Kaplan MH,
Dent AL. The Bcl6 target gene microRNA-21 promotes Th2 differentiation
by a T cell intrinsic pathway. Mol Immunol. 2013;54(3-4):435-442.
129. Li JJ, Tay HL, Maltby S, et al.
MicroRNA-9 regulates steroid-resistant airway hyperresponsiveness by
reducing protein phosphatase 2A activity. J Allergy Clin Immunol.2015;136(2):462-473.
130. Karo-Atar D, Itan M,
Pasmanik-Chor M, Munitz A. MicroRNA profiling reveals opposing
expression patterns for miR-511 in alternatively and classically
activated macrophages. J Asthma. 2015;52(6):545-553.
131. Veremeyko T, Siddiqui S,
Sotnikov I, Yung A, Ponomarev ED. IL-4/IL-13-dependent and independent
expression of miR-124 and its contribution to M2 phenotype of monocytic
cells in normal conditions and during allergic inflammation. PLoS
One. 2013;8(12):e81774.
132. Bronevetsky Y, Villarino AV,
Eisley CJ, et al. T cell activation induces proteasomal degradation of
Argonaute and rapid remodeling of the microRNA repertoire. J Exp
Med. 2013;210(2):417-432.
133. Pua HH, Steiner DF, Patel S, et
al. MicroRNAs 24 and 27 Suppress Allergic Inflammation and Target a
Network of Regulators of T Helper 2 Cell-Associated Cytokine Production.Immunity. 2016;44(4):821-832.
134. Collison A, Mattes J, Plank M,
Foster PS. Inhibition of house dust mite-induced allergic airways
disease by antagonism of microRNA-145 is comparable to glucocorticoid
treatment. J Allergy Clin Immunol. 2011;128(1):160-167 e164.
135. Kumar M, Ahmad T, Sharma A, et
al. Let-7 microRNA-mediated regulation of IL-13 and allergic airway
inflammation. J Allergy Clin Immunol. 2011;128(5):1077-1085
e1071-1010.
136. Shao Y, Chong L, Lin P, et al.
MicroRNA-133a alleviates airway remodeling in asthtama through
PI3K/AKT/mTOR signaling pathway by targeting IGF1R. J Cell
Physiol. 2019;234(4):4068-4080.
137. Yang ZC, Qu ZH, Yi MJ, et al.
MiR-448-5p inhibits TGF-beta1-induced epithelial-mesenchymal transition
and pulmonary fibrosis by targeting Six1 in asthma. J Cell
Physiol. 2019;234(6):8804-8814.
138. Huang H, Lu H, Liang L, et al.
MicroRNA-744 Inhibits Proliferation of Bronchial Epithelial Cells by
Regulating Smad3 Pathway via Targeting Transforming Growth Factor-beta1
(TGF-beta1) in Severe Asthma. Med Sci Monit. 2019;25:2159-2168.
139. Jardim MJ, Dailey L, Silbajoris
R, Diaz-Sanchez D. Distinct microRNA expression in human airway cells of
asthmatic donors identifies a novel asthma-associated gene. Am J
Respir Cell Mol Biol. 2012;47(4):536-542.
140. Liu D, Pan J, Zhao D, Liu F.
MicroRNA-223 inhibits deposition of the extracellular matrix by airway
smooth muscle cells through targeting IGF-1R in the PI3K/Akt pathway.Am J Transl Res. 2018;10(3):744-752.
141. Matsukura S, Osakabe Y,
Sekiguchi A, et al. Overexpression of microRNA-155 suppresses chemokine
expression induced by Interleukin-13 in BEAS-2B human bronchial
epithelial cells. Allergol Int. 2016;65 Suppl:S17-23.
142. Qian FH, Deng X, Zhuang QX, Wei
B, Zheng DD. miR6255p suppresses inflammatory responses by targeting
AKT2 in human bronchial epithelial cells. Mol Med Rep.2019;19(3):1951-1957.
143. Jia HZ, Liu SL, Zou YF, et al.
MicroRNA-223 is involved in the pathogenesis of atopic dermatitis by
affecting histamine-N-methyltransferase. Cell Mol Biol
(Noisy-le-grand). 2018;64(3):103-107.
144. Kuo YC, Li YS, Zhou J, et al.
Human mesenchymal stem cells suppress the stretch-induced inflammatory
miR-155 and cytokines in bronchial epithelial cells. PLoS One.2013;8(8):e71342.
145. Huo X, Zhang K, Yi L, et al.
Decreased epithelial and plasma miR-181b-5p expression associates with
airway eosinophilic inflammation in asthma. Clin Exp Allergy.2016;46(10):1281-1290.
146. Perry MM, Moschos SA, Williams
AE, Shepherd NJ, Larner-Svensson HM, Lindsay MA. Rapid changes in
microRNA-146a expression negatively regulate the IL-1beta-induced
inflammatory response in human lung alveolar epithelial cells. J
Immunol. 2008;180(8):5689-5698.
147. Tsai MJ, Tsai YC, Chang WA, et
al. Deducting MicroRNA-Mediated Changes Common in Bronchial Epithelial
Cells of Asthma and Chronic Obstructive Pulmonary Disease-A
Next-Generation Sequencing-Guided Bioinformatic Approach. Int J
Mol Sci. 2019;20(3).
148. Kivihall A, Aab A, Soja J, et
al. Reduced expression of miR-146a in human bronchial epithelial cells
alters neutrophil migration. Clin Transl Allergy. 2019;9:62.
149. Comer BS, Camoretti-Mercado B,
Kogut PC, Halayko AJ, Solway J, Gerthoffer WT. MicroRNA-146a and
microRNA-146b expression and anti-inflammatory function in human airway
smooth muscle. Am J Physiol Lung Cell Mol Physiol.2014;307(9):L727-734.
150. Liu Y, Sun X, Wu Y, et al.
Effects of miRNA-145 on airway smooth muscle cells function. Mol
Cell Biochem. 2015;409(1-2):135-143.
151. Liu Y, Yang K, Shi H, et al.
MiR-21 modulates human airway smooth muscle cell proliferation and
migration in asthma through regulation of PTEN expression. Exp
Lung Res. 2015;41(10):535-545.
152. Lu TX, Munitz A, Rothenberg ME.
MicroRNA-21 is up-regulated in allergic airway inflammation and
regulates IL-12p35 expression. J Immunol. 2009;182(8):4994-5002.
153. Kastle M, Bartel S,
Geillinger-Kastle K, et al. microRNA cluster 106a~363 is
involved in T helper 17 cell differentiation. Immunology.2017;152(3):402-413.
154. Montoya MM, Maul J, Singh PB,
et al. A Distinct Inhibitory Function for miR-18a in Th17 Cell
Differentiation. J Immunol. 2017;199(2):559-569.
155. Kilic A, Santolini M, Nakano T,
et al. A systems immunology approach identifies the collective impact of
5 miRs in Th2 inflammation. JCI Insight. 2018;3(11).
156. Qin HB, Xu B, Mei JJ, et al.
Inhibition of miRNA-221 suppresses the airway inflammation in asthma.Inflammation. 2012;35(4):1595-1599.
157. Sharma A, Kumar M, Ahmad T, et
al. Antagonism of mmu-mir-106a attenuates asthma features in allergic
murine model. J Appl Physiol (1985). 2012;113(3):459-464.
158. Tay HL, Kaiko GE, Plank M, et
al. Antagonism of miR-328 increases the antimicrobial function of
macrophages and neutrophils and rapid clearance of non-typeable
Haemophilus influenzae (NTHi) from infected lung. PLoS Pathog.2015;11(4):e1004549.
159. Liao W, Dong J, Peh HY, et al.
Oligonucleotide Therapy for Obstructive and Restrictive Respiratory
Diseases. Molecules. 2017;22(1).
160. Milger K, Gotschke J, Krause L,
et al. Identification of a plasma miRNA biomarker signature for allergic
asthma: A translational approach. Allergy. 2017;72(12):1962-1971.
161. Rodrigo-Munoz JM, Rial MJ,
Sastre B, et al. Circulating miRNAs as diagnostic tool for
discrimination of respiratory disease: Asthma, asthma-chronic
obstructive pulmonary disease (COPD) overlap and COPD. Allergy.2019;74(12):2491-2494.
162. Wu C, Xu K, Wang Z, et al. A
novel microRNA miR-1165-3p as a potential diagnostic biomarker for
allergic asthma. Biomarkers. 2019;24(1):56-63.
163. Weidner J, Ekerljung L,
Malmhall C, Miron N, Radinger M. Circulating microRNAs correlate to
clinical parameters in individuals with allergic and non-allergic
asthma. Respir Res. 2020;21(1):107.
164. Urgard E, Lorents A, Klaas M,
et al. Pre-administration of PepFect6-microRNA-146a nanocomplexes
inhibits inflammatory responses in keratinocytes and in a mouse model of
irritant contact dermatitis. J Control Release. 2016;235:195-204.
165. Chen XF, Zhang LJ, Zhang J, et
al. MiR-151a is involved in the pathogenesis of atopic dermatitis by
regulating interleukin-12 receptor beta2. Exp Dermatol.2018;27(4):427-432.
166. Zeng YP, Nguyen GH, Jin HZ.
MicroRNA-143 inhibits IL-13-induced dysregulation of the epidermal
barrier-related proteins in skin keratinocytes via targeting to
IL-13Ralpha1. Mol Cell Biochem. 2016;416(1-2):63-70.
167. Yang Z, Zeng B, Wang C, Wang H,
Huang P, Pan Y. MicroRNA-124 alleviates chronic skin inflammation in
atopic eczema via suppressing innate immune responses in keratinocytes.Cell Immunol. 2017;319:53-60.
168. Vaher H, Runnel T, Urgard E, et
al. miR-10a-5p is increased in atopic dermatitis and has capacity to
inhibit keratinocyte proliferation. Allergy.2019;74(11):2146-2156.
169. Li L, Zhang S, Jiang X, Liu Y,
Liu K, Yang C. MicroRNA-let-7e regulates the progression and development
of allergic rhinitis by targeting suppressor of cytokine signaling 4 and
activating Janus kinase 1/signal transducer and activator of
transcription 3 pathway. Exp Ther Med. 2018;15(4):3523-3529.
170. Martinez-Nunez RT, Louafi F,
Sanchez-Elsner T. The interleukin 13 (IL-13) pathway in human
macrophages is modulated by microRNA-155 via direct targeting of
interleukin 13 receptor alpha1 (IL13Ralpha1). J Biol Chem.2011;286(3):1786-1794.
171. Suojalehto H, Toskala E,
Kilpelainen M, et al. MicroRNA profiles in nasal mucosa of patients with
allergic and nonallergic rhinitis and asthma. Int Forum Allergy
Rhinol. 2013;3(8):612-620.
172. Malmhall C, Johansson K,
Winkler C, Alawieh S, Ekerljung L, Radinger M. Altered miR-155
Expression in Allergic Asthmatic Airways. Scand J Immunol.2017;85(4):300-307.
173. Othumpangat S, Bryan NB,
Beezhold DH, Noti JD. Upregulation of miRNA-4776 in Influenza Virus
Infected Bronchial Epithelial Cells Is Associated with Downregulation of
NFKBIB and Increased Viral Survival. Viruses. 2017;9(5).
174. Othumpangat S, Walton C,
Piedimonte G. MicroRNA-221 modulates RSV replication in human bronchial
epithelium by targeting NGF expression. PLoS One.2012;7(1):e30030.
175. Ouda R, Onomoto K, Takahasi K,
et al. Retinoic acid-inducible gene I-inducible miR-23b inhibits
infections by minor group rhinoviruses through down-regulation of the
very low density lipoprotein receptor. J Biol Chem.2011;286(29):26210-26219.
176. Zhao L, Zhu J, Zhou H, et al.
Identification of cellular microRNA-136 as a dual regulator of
RIG-I-mediated innate immunity that antagonizes H5N1 IAV replication in
A549 cells. Sci Rep. 2015;5:14991.
177. Fang J, Hao Q, Liu L, et al.
Epigenetic changes mediated by microRNA miR29 activate cyclooxygenase 2
and lambda-1 interferon production during viral infection. J
Virol. 2012;86(2):1010-1020.
178. Guan Z, Shi N, Song Y, Zhang X,
Zhang M, Duan M. Induction of the cellular microRNA-29c by influenza
virus contributes to virus-mediated apoptosis through repression of
antiapoptotic factors BCL2L2. Biochem Biophys Res Commun.2012;425(3):662-667.
179. Zhang X, Dong C, Sun X, et al.
Induction of the cellular miR-29c by influenza virus inhibits the innate
immune response through protection of A20 mRNA. Biochem Biophys
Res Commun. 2014;450(1):755-761.
180. Ma YJ, Yang J, Fan XL, et al.
Cellular microRNA let-7c inhibits M1 protein expression of the H1N1
influenza A virus in infected human lung epithelial cells. J Cell
Mol Med. 2012;16(10):2539-2546.
181. Buggele WA, Krause KE, Horvath
CM. Small RNA profiling of influenza A virus-infected cells identifies
miR-449b as a regulator of histone deacetylase 1 and interferon beta.PLoS One. 2013;8(9):e76560.
182. Khongnomnan K, Makkoch J,
Poomipak W, Poovorawan Y, Payungporn S. Human miR-3145 inhibits
influenza A viruses replication by targeting and silencing viral PB1
gene. Exp Biol Med (Maywood). 2015;240(12):1630-1639.
183. Ingle H, Kumar S, Raut AA, et
al. The microRNA miR-485 targets host and influenza virus transcripts to
regulate antiviral immunity and restrict viral replication. Sci
Signal. 2015;8(406):ra126.
184. Rosenberger CM, Podyminogin RL,
Diercks AH, et al. miR-144 attenuates the host response to influenza
virus by targeting the TRAF6-IRF7 signaling axis. PLoS Pathog.2017;13(4):e1006305.
185. Kumar A, Kumar A, Ingle H, et
al. MicroRNA hsa-miR-324-5p Suppresses H5N1 Virus Replication by
Targeting the Viral PB1 and Host CUEDC2. J Virol. 2018;92(19).