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Abstract. In this study, our aim is to provide a modification of the so-called

Ismail-May operators that preserve exponential functions eAx, A ∈ R. In con-

sonance to this, we begin with estimating the convergence rate of the opera-
tors in terms of usual and exponential modulus of continuity. We also provide

a global approximation and a quantitative Voronovskaya result. Moreover,

to validate the modification, we exhibit some graphical representations using
Mathematica software to compare the original operator and its modification.

We conclude that the modified operators not only preserve exponential func-
tions but also provide faster rate of convergence when A > 0.

1. Introduction

In extension to the work on exponential operators by May [1], Ismail and May
[2] showed that for a polynomial p(x) of degree n ∈ N, an approximation operator
can be uniquely obtained by determining its unique kernel. As a consequence
of this, besides recovering some well known operators such as Szász operators,
Classical Bernstein operators, Post-Widder operators etc. for polynomials of degree
at most two, they also constructed some new operators with cubic polynomials. For
instance, if p(x) = 2x3/2, the newly constructed operators are defined as

Lλ (f ;x) = e−λ
√
x

{
f (0) + λ

∫ ∞
0

e−λt/
√
xt−1/2I1

(
2λ
√
t
)
f (t) dt

}
where Iλ(y) is a first kind modified Bessel function identified as

Iλ (y) =

∞∑
k=0

(−1)
k

k! (λ+ k)!

(y
2

)λ+2k

These operators were further studied in detail in [3]. Again for p(x) = x(1 + x2),
the corresponding operators obtained are

Rλ (f ;x) =

∞∑
k=0

rλ,k (x)f

(
k

λ+ k

)
, x ∈ (0, 1)

where

rλ,k (x) =
λ(λ+ k)

k−1

k!
e−λx

(
xe−x

)k
.

Key words and phrases. Exponential operators, Ismail-May operators, King-type operators,
Voronovskaya type theorems.
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and λ > 0. These operators were further studied in detail by ([4], [5]). Another
such operator for p(x) = x3 is defined by

Pn(f, x) =

∫ ∞
0

kn(x, t)f(t)dt, x ∈ (0,∞) (1.1)

whose kernel is defined as

kn(x, t) =
( n

2π

)1/2
en/xt−3/2exp

(
− nt

2x2
− n

2t

)
.

These operators were studied further in detail by Gupta [6]. All the three ap-
proximation processes cited above are examples of exponential operators as they

satisfy the normalization condition Wλ (1, x) =
∞∫
−∞

S (λ, x, t)dt = 1 and the partial

differential equation

∂

∂x
S (λ, x, t) =

λ(t− x)

p(x)
S (λ, x, t) ,

where, S(λ, x, t) ≥ 0 is the kernel of the operators and λ, x belong to any subset of
R.
In past years, there have been several modifications of operators to enhance their
convergence and error estimation process (see [7],[8],[9]). In 2003, King [10] pre-
sented a sequence of linear positive operators which approximated each continuous
function on [0, 1] while preserving the test function x2. This remarkable approach
has been since applied by many researchers to propose good modifications and ful-
fil the need to achieve better approximation. For example, Duman and Özarslan
[11] gave a modification of classical Szász operators to provide a better error es-
timation. Bodur et al. [12] introduced a general class of Baskakov–Szász–Stancu
operators preserving exponential functions. Readers can refer to the articles [[13],
[14],[15],[16]] for more such interesting papers related to this approach.

Instigated by the above-mentioned researches, we propose to construct a mod-
ification of the operators (1.1) which reproduce exponential functions. We begin
with the following form of the operators (1.1), for functions f ∈ C(R+) where
R+ = (0,∞), we consider

Bn(f ;x) =

∫ ∞
0

ln(x, t)f(t)dt, x ∈ R+ (1.2)

where

ln(x, t) =

√
n

2π
en/σn(x)t−3/2 exp

(
− nt

2(σn(x))
2 −

n

2t

)
Using calculation analogous to that given in [6], we can evaluate Bn (eat;x) as:

Bn
(
eat;x

)
= exp

 n

σn (x)

1−

√
n− 2a(σn (x))

2

n

 , (1.3)

which is the moment generating function of our proposed operators (1.2). This is
used to find the moments and central moments throughout this paper. Now based
on the above form of the operators, we divide our paper into three major sections.
The first section defines the form of operators (1.2) that preserves constants and
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exponential function e−x. We prove our main results that involve global approx-
imation, Voronovskaya type asymptotic result and its quantitative version in this
section. The second section deals with the form of proposed operators that preserve
the exponential function eAx, A ∈ R and prove an improved Voronovskaya theorem
for functions with exponential growth. Finally in the last section, we provide some
graphical representations in support of our results using mathematica software and
conclude that our modified operators along with preserving exponential functions,
provide faster rate of convergence.

2. Preservation for e−x

We begin with our proposed operators (1.2). Assuming that they preserve the
exponential function e−x, we can write Bn(e−t;x) = e−x and therefore making use
of Eqn. (1.3), we get

e−x = exp

 n

σn (x)

1−

√
1 +

2(σn (x))
2

n

 .

Comparing exponents on either sides of the above equation and with easy manip-
ulations, we obtain

σn (x) =
2nx

2n− x2
.

Thus our proposed operators can be rewritten in the following form:

Bn(f ;x) =

∫ ∞
0

ln(x, t)f(t)dt, x ∈ R+ (2.1)

where

ln(x, t) =
( n

2π

)1/2
e(n/x−x/2)t−3/2exp

(
−
(
2n− x2

)2
t

8nx2
− n

2t

)
.

Lemma 2.1. For all x ∈ R+ and n ∈ N, we have

Bn(eγt;x) = exp

(
2n− x2

2x

(
1−

√
1− 8nx2γ

(2n− x2)
2

))
.

which is also the moment generating function of the operators (2.1).

Lemma 2.2. For the operators (2.1), if ev (t) = tv, v = 0, 1, 2, .., then the mo-
ments are as follows:

Bn(e0;x) = 1;

Bn(e1;x) = σn (x) ;

Bn(e2;x) = σ2
n (x) +

σ3
n (x)

n
;

Bn(e3;x) = σ3
n (x) +

3σ4
n (x)

n
+

3σ5
n (x)

n2
;

Bn(e4;x) = σ4
n (x) +

6σ5
n (x)

n
+

15σ6
n (x)

n2
+

15σ7
n (x)

n3
.
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Proof. In view of moment generating function given in Lemma 2.1, the rth− mo-
ment of operators (2.1) is given by-

B[r]n (x) =

[
∂r

∂γr

{
exp

(
2n− x2

2x

(
1−

√
1− 8nx2γ

(2n− x2)
2

))}]
γ=0

. (2.2)

The expansion of Eqn. (2.2) in terms of γ calculated using Mathematica Software
is as follows:

1 +
2nxγ

2n− x2
+

2n2
(
2nx2 − x4 + 2x3

)
γ2

(2n− x2)
3

+
4
(
4n5x3 − 4n4x5 + 12n4x4 + n3x7 − 6n3x6 + 12n3x5

)
γ3

3 (2n− x2)
5

+

2

(
8n7x4 − 12n6x6 + 48n6x5 + 6n5x8 − 48n5x7

+120n5x6 − n4x10 + 12n4x9 − 60n4x8 + 120n4x7

)
γ4

3(2n− x2)
7 +O

(
γ5
)

Thus the rth-moment of the operators (2.1) can be obtained by evaluating rth-
partial differentiation with respect to γ of the above expansion at γ = 0. �

Lemma 2.3. Let ηn,m (x) = Bn ((t− x)
m

;x) ,m = 1, 2, denote the central mo-
ments of operators (2.1), then

ηn,1 (x) = σn (x)− x,

ηn,2 (x) = (σn (x)− x)
2

+
σ3
n (x)

n
.

Proof. Using the property of change of origin of moment generating functions

e−γx exp

(
2n− x2

2x

(
1−

√
1− 8nx2γ

(2n− x2)
2

))
,

Expanding this in terms of γ, we get

1− x3γ

x2 − 2n
+

(
8n2x3 + 2nx6 − x8

)
γ2

2 (2n− x2)
3

+

(
48n3x6 + 96n3x5 + 4n2x9 − 24n2x8 − 4nx11 + x13

)
γ3

6 (2n− x2)
5

+

(
384n5x6 + 192n4x9 + 576n4x8 + 1920n4x7 + 8n3x12

−192n3x11 − 384n3x10 − 12n2x14 + 48n2x13 + 6nx16 − x18

)
γ4

24(2n− x2)
7 +O

(
γ5
)
.

The coefficient of γm/m! in the above expansion is the mth−order central moment
of operators (2.1) . �

Remark 2.1. With simple calculations from Mathematica software, for adequately
large n we have:

(1) lim
n→∞

nηn,1 (x) = x3

2 ,

(2) lim
n→∞

nηn,2 (x) = x3,

(3) lim
n→∞

n2ηn,4 (x) = 3x6,
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(4) lim
n→∞

n2Bn
(

(e−x − e−t)4;x
)

= 3e−4xx6.

In [17], Holhoş defined modulus of continuity for exponential operators as:

$ (f, δ) = sup
|e−x−e−t|≤δ

|f (x)− f (t)| , x, t ≥ 0.

and provided a quantitative result for sequence of linear positive operators on a
class of real-valued continuous functions Ç(R+). These functions f(x) have finite
limit at infinity and are endowed with Chebyshev norm.
The defined modulus of continuity $ possess the following property:

|f (t)− f (x)| ≤

(
1 +

(e−x − e−t)2

δ2

)
$ (f, δ) . (2.3)

The result by Holhoş [17] is given as:

Theorem 2.1. [17] If Qn : Ç(R+) → Ç(R+) satisfy the following inequality for
v = 0, 1, 2 ∥∥Qn (e−vt)− e−vx∥∥∞ = ρv (n) ,

then for f ∈ Ç(R+), we have

‖Qnf − f‖∞ ≤ ρ0 (n) ‖f‖∞ + (2 + ρ0 (n))$
(
f,
√
ρ0 (n) + 2ρ1 (n) + ρ2 (n)

)
.

Theorem 2.2. The sequence of modified exponential operators Bn : Ç(R+) →
Ç(R+) satisfy the following inequality for f ∈ Ç(R+)

‖Bn (f ;x)− f(x)‖∞ 6 2$
(
f,
√
ρ2 (n)

)
,

where ρ2 (n) tends to zero for adequately large n.

Proof. Since the operators preserve the constant as well as exponential function
e−x, so by Theorem 2.1, ρ0 (n) = 0 and ρ1 (n) = 0. We only need to evaluate
ρ2 (n). Next from Lemma 2.1, we have

Bn
(
e−2t;x

)
= exp

(
2n− x2

2x

(
1−

√
1 +

16nx2

(2n− x2)
2

))
.

Consider a sequence of functions

fn (x) = exp

(
2n− x2

2x

(
1−

√
1 +

16nx2

(2n− x2)
2

))
− e−2x.

As fn (x) vanishes at end points of R+, therefore there exists a point ϑn ∈ R+ such
that

‖fn‖∞ = fn (ϑn) .

Also the derivative of the sequence of functions vanishes at ϑn i.e. f ′n (ϑn) = 0.
Making use of Mathematica software, this gives

2n+ ϑ2n
2ϑ2n

 −1√
1 +

16nϑ2
n

(2n−ϑ2
n)

2

+ 1

 exp

(
2n− ϑ2n

2ϑn

(
1−

√
1 +

16nϑ2n

(2n− ϑ2n)
2

))
= 2e−2ϑn .
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Therefore, we have

‖fn‖∞ = exp

(
2n− ϑ2n

2ϑn

(
1−

√
1 +

16nϑ2n

(2n− ϑ2n)
2

))

×

2− 2n+ ϑ2n
2ϑ2n

 −1√
1 +

16nϑ2
n

(2n−ϑ2
n)

2

+ 1

 = ρ2(n)→ 0,

as n→∞. Thus in view of Theorem 2.1, we get the required result. �

Let Ck(R+) denote the space of all real valued continuous and bounded functions
equipped with the Chebyshev norm and let us consider the following K-functional:

K2 (f, δ) = inf
g∈C2

κ(R+)
{‖f − g‖+ δ ‖g′′‖ , δ > 0} ,

where C2
κ (R+) = {g ∈ Cκ (R+) : g′, g′′ ∈ Cκ (R+)} .

Theorem 2.3. Let f ∈ Cκ(R+). We define auxiliary operators

T̂n (f ;x) = Bn(f ;x)− f (σn (x)) + f(x), (2.4)

then, there exists a constant R > 0 such that

|Bn(f ;x)− f(x)| 6 Rω2(f,
√
δ) + ω(f, σn (x)− x),

where
δ = ηn,2 (x) + (σn (x)− x)

2
.

Proof. Let g ∈ C2
κ(R+) and x, t ∈ R+, then by application of Taylor’s expansion,

we have

g(t) = g(x) + (t− x)g′(x) +

t∫
x

(t− u)g′′(u)du.

Using Eqn. 2.4 and the fact that T̂n ((t− x);x) = 0 , we have∣∣∣T̂n(g;x)− g(x)
∣∣∣ =

∣∣∣∣∣∣T̂n
 t∫
x

(t− u)g′′(u)du;x

∣∣∣∣∣∣
6

∣∣∣∣∣∣Bn
 t∫
x

(t− u)g′′(u)du, x

∣∣∣∣∣∣+

∣∣∣∣∣∣∣
σn(x)∫
x

(σn (x)− u) g′′(u)du

∣∣∣∣∣∣∣
6
(
ηn,2 (x) + (σn (x)− x)

2
)
‖g′′‖ . (2.5)

Also, we have
|Bn (f ;x)| 6 ‖f‖ . (2.6)

Combining equations (2.4), (2.5) and (2.6), we get

|Bn (f ;x)− f(x)| 6
∣∣∣T̂n(f − g);x)− (f − g)(x)

∣∣∣+
∣∣∣T̂n(g;x)− g(x)

∣∣∣+ |f(x)− f (σn (x))|

6 4 ‖f − g‖+
(
ηn,2 (x) + (σn (x)− x)

2
)
‖g′′‖+ ω (f, σn (x)− x) .

Taking infimum over all g ∈ C2
κ(R+) and using the relation given in [18],

K2 (f, δ) 6 Cω2

(
f,
√
δ
)
, δ > 0, we get the desired result. �
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Theorem 2.4. Let f ∈ Ck(R+) with continuous first and second derivative exist.
Then for x ∈ R+, the following inequality holds:∣∣∣∣n [Bn (f ;x)− f (x)]− x3

2
(f ′ (x) + f ′′ (x))

∣∣∣∣
≤ |un (x)| |f ′ (x)|+ |vn (x)| |f ′′ (x)|+ x3

2
$

(
f ′′,

1√
n

)(
1 + 3x3e−2x

)
.

where un (x) = nηn,1 (x)− x3

2 and vn (x) = 1
2

(
nηn,2 (x)− x3

)
nηn,2 (x)− x3.

Proof. By the Taylor’s expansion, we have

f (t) =

2∑
i=0

(t− x)
i f

(i) (x)

i!
+ Θ (t, x) (t− x)

2
, (2.7)

where Θ (t, x) is a continuous function given by:

Θ (t, x) =
f ′′ (=)− f ′′ (x)

2
, = ∈ (x, t).

Applying the operator Bn to the inequality (2.7), we can write

Bn (f ;x)−
2∑
i=0

ηn,i (x)
f (i) (x)

i!
= Bn

(
Θ (t, x) (t− x)

2
;x
)
.

Therefore using Remark 2.1, we get∣∣∣∣n [Bn (f ;x)− f (x)]− x3

2
(f ′ (x) + f ′′ (x))

∣∣∣∣
≤
∣∣∣∣nηn,1 (x)− x3

2

∣∣∣∣ |f ′ (x)|+ 1

2

∣∣nηn,2 (x)− x3
∣∣ |f ′′ (x)|+

∣∣∣nBn (Θ (t, x) (t− x)
2
;x
)∣∣∣

≤ |un (x)| |f ′ (x)|+ |vn (x)| |f ′′ (x)|+
∣∣∣nBn (Θ (t, x) (t− x)

2
;x
)∣∣∣ , (2.8)

where un (x) = nηn,1 (x)− x3

2 → 0 and vn (x) = 1
2

(
nηn,2 (x)− x3

)
nηn,2 (x)−x3 →

0 in accordance with Lemma 2.2, for adequately large n.
Using the Property 2.3 of modulus of continuity defined by Holhoş [17], we get

|Θ (t, x)| ≤ 1

2

(
1 +

(e−x − e−t)2

δ2

)
$ (f ′′, δ) .

Hence, after applying Cauchy-Schwarz inequality to the last part of Eqn. (2.8), we
get

nBn
(
|Θ (t, x)| (t− x)

2
;x
)
≤ n

2
$ (f ′′, δ) ηn,2 (x)

+
n

2δ2
$ (f ′′, δ)

√
Bn
(

(e−x − e−t)4;x
)√

ηn,4 (x).

Choosing δ = n−1/2,

nBn
(
|Θ (t, x)| (t− x)

2
;x
)

≤ 1

2
$

(
f ′′,

1√
n

)[
nηn,2 (x) +

√
n2Bn

(
(e−x − e−t)4;x

)√
n2ηn,4 (x)

]
.

In view of Eqn. (2.8) and Remark 2.1, we obtain the desired result. �
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Corollary 2.1. Let f, f ′, f ′′ ∈ Ç(R+), then for x ∈ R+ we have

lim
n→∞

n [Bn (f ;x)− f (x)] =
x3

2
[f ′ (x) + f ′′ (x)]

3. The case of eAx, A ∈ R

In this section, we present a more general form of the operators (1.2) that re-
produces both constants and exponential functions of the form eAx, A ∈ R. We
observe that the modified operators possess faster and better rate of convergence as
compared to the original operators (1.2) for A > 0. To endorse the assertion made,
we exhibit some graphical representations with the aid of numerical examples and
compare the rate of convergence of both original and the modified operators.

Taking into consideration operators (1.2) again and assuming they reproduce
functions of the form eAx, i.e Bn(eAt;x) = eAx , we obtain

σn (x) =
2nx

2n+Ax2
.

Operators (1.2) therefore now take the following form:

Bn(f ;x) =

∫ ∞
0

ln(x, t)f(t)dt, x ∈ R+ (3.1)

where

ln(x, t) =
( n

2π

)1/2
e(n/x+Ax/2)t−3/2 exp

(
−
(
2n+Ax2

)2
8nx2

− n

2t

)
.

Lemma 3.1. For all x ∈ R+ and n ∈ N, we have

BAn
(
eAt;x

)
= exp

(
2n+Ax2

2x

(
1−

√
1− 8nAx2

(2n+Ax2)
2

))
,

BAn
(
teAt;x

)
=

2nx√
(2n+Ax2)

2 − 8nAx2
exp

(
2n+Ax2

2x

(
1−

√
1− 8nAx2

(2n+Ax2)
2

))
,

BAn
(
t2eAt;x

)
=

4n2(
(2n+Ax2)

2 − 8nAx2
)
 2x3√

(2n+Ax2)
2 − 8nAx2

+ x2


× exp

(
2n+Ax2

2x

(
1−

√
1− 8nAx2

(2n+Ax2)
2

))
.

Proof. The quantities BAn
(
teAt;x

)
and BAn

(
t2eAt;x

)
are obtained simply by suc-

cessively partially differentiating BAn
(
eAt;x

)
with respect to A on both sides. �

Lemma 3.2. For br (x) = xr, r ∈ N ∪ {0}, the operators (3.1) hold the following
moments:

i) BAn (b0;x) = 1;
ii) BAn (b1;x) = 2nx

2n+Ax2 ;

iii) BAn (b2;x) =
4n2(Ax4+2nx2+2x3)

(Ax2+2n)3
;

iv) BAn (b3;x) =
8n3(A2x7+4Anx5+6Ax6+4n2x3+12nx4+12x5)

(2n+Ax2)5
;
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v) BAn (b4;x) =

16n4

 A3x10 + 6A2nx8 + 12A2x9 + 12An2x6 + 48Anx7

+60Ax8 + 8n3x4 + 48n2x5 + 120nx6 + 120x7


(2n+Ax2)7

.

Lemma 3.3. Let ηAn,m (x) = BAn ((t− x)
m

;x) ,m = 1, 2, denote the central mo-
ments of operators (3.1), then it can be verified:

(1) ηAn,1 (x) = − Ax3

2n+Ax2 ,

(2) ηAn,2 (x) =
(8n2x3+2A2nx6+A3x8)

(2n+Ax2)3
.

In order to prove our next theorem, let us define a space S of all functions having
exponential growth of order A endowed with norm:

‖f‖A = sup
x∈R+

∣∣f (x) e−Ax
∣∣ <∞.

Let for some 0 ≤ α < 1, Lip(α,A) be the space containing all those functions f
which satisfy ω∗ (f, δ, A) ≤Mδα, where ω∗ is the first order modulus of continuity
defined in [19] as:

ω∗ (f, δ, A) ≤ sup
h<δ,x∈R+

|f (x)− f (x+ h)| e−Ax.

and for every positive number h > 0 and k ∈ N has the following property:

ω∗ (f, kh,A) ≤ k.eA(k−1)h.ω1 (f, h,A) (3.2)

Theorem 3.1. Let BAn : S → Ç(R+). If f ∈ C2
κ (R+)∩S and f ′′ ∈ Lip(α,A), then

for fixed x ∈ R+ and n > 2Ax, we have∣∣∣∣BAn (f ;x)− f (x)− ηAn,1 (x) f ′ (x)− ηAn,2 (x)
f ′′ (x)

2

∣∣∣∣
≤ 1

2
ω∗

(
f ′′,

√
ηAn,4 (x)

ηAn,2 (x)
, A

)[
2e2Ax +M (A, x) +

√
M (2A, x)

]
ηAn,2 (x) ,

where M (A, x) =
(2+Ax2)

2

(2−Ax2)3
e2Ax is a constant independent of n but dependent on A

and x.

Proof. By Taylor’s Expansion, we have

f (t) = f (x) + (t− x) f ′ (x) +
(t− x)

2

2!
f ′′ (x) + Θ2(t, x), (3.3)

where

Θ2(t, x) =
f ′′ (τ)− f ′′ (x)

2
(t− x)

2
.

such that τ lies between x and t and Θ2(t, x) is a continuous function which vanishes
as t approaches x.
Applying the operator BAn on Eqn. (3.3) and in view of Lemma 3.3, we have∣∣BAn (f ;x)− f (x)− ηAn,1 (x) f ′ (x)− ηAn,2 (x) f ′′ (x)

∣∣ ≤ BAn (|Θ2(t, x)| ;x) . (3.4)

Using the Property 3.2 of exponential modulus of continuity, with simple ma-
nipulations we have the relation

BAn (|Θ2(t, x)| ;x) ≤ ω∗ (f ′′, h, A)

2

[
BAn

((
e2Ax + eAt

)
.

(
|t− x|2 +

|t− x|3

h

)
;x

)]
.

(3.5)
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Taking x fixed and n > 2Ax, we have

BAn
(

(t− x)
2
eAt;x

)
=

 2x3√
(2n+Ax2)

2 − 8nAx2
+ x2

 4n2

(2n+Ax2)
2 − 8nAx2

− 4x2n√
(2n+Ax2)

2 − 8nAx2
+ x2

 eAx
≤ 1(

1− 8nAx2

(2n+Ax2)2

)3/2
[

8n2x3

(2n+Ax2)
3 + x2

(√
1− 8nAx2

(2n+Ax2)
2

−4n

(
1− 8nAx2

(2n+Ax2)
2

)
+ 1

)]
eAx

≤ 1(
1− 8nAx2

(2n+Ax2)2

)3/2
[

8n2x3 + 2nA2x6 +A3x8

(2n+Ax2)
3 + x2

×

(
1− 4n

(
1− 8nAx2

(2n+Ax2)
2

)
+ 1

)]
eAx

≤ 1(
1− 8nAx2

(2n+Ax2)2

)3/2
[

8n2x3 + 2nA2x6 +A3x8

(2n+Ax2)
3 + 2x2

]
eAx

≤
(
2 +Ax2

)2
(2−Ax2)

3 e
2AxηAn,2 (x) ≤M (A, x) ηAn,2 (x) , (3.6)

where

M (A, x) =

(
2 +Ax2

)2
(2−Ax2)

3 e
2Ax.

Moreover using Cauchy-Schwarz inequality, we get

BAn
(
|t− x|3eAt;x

)
≤
√
BAn
(

(t− x)
2
e2At;x

)
.
√
ηAn,4 (x)

≤
√
M (2A, x) ηAn,2 (x).

√
ηAn,4 (x). (3.7)

Combining Eqns.(3.4), (3.6) and (3.7) and substituting h =

√
ηAn,4(x)

ηAn,2(x)
in Eqn. (3.5),

we get

BAn (|Θ2(t, x)| ;x) ≤ 1

2
ω∗

(
f ′′,

√
ηAn,4 (x)

ηAn,2 (x)
, A

)[
2e2Ax +M (A, x) +

√
M (2A, x)

]
ηAn,2 (x) ,

and hence the theorem. �

Remark 3.1. One can easily observe in the above theorem,

- Second central moment ηAn,4 (x) of the proposed operators (3.1) is smaller

for A > 0 and x > 1
2A as compared to that of original operators (1.1),



Naokant Deo 11

- For A > 0, the ratio h =

√
ηAn,4(x)

ηAn,2(x)
is higher of original operators as com-

pared to that for our modified operators.
- In addition, the constant M(A, x) which is independent of n is also signif-

icantly reduced for our modified exponential operators if we take A > 0.

Thus judging on the basis of above mentioned rationales, we can say that Theorem
3.1 is an improved version of [6, Theorem 4] for A > 0.

Corollary 3.1. Let f, f ′′ ∈ S and A > 0, then for any x ∈ R+, we have

lim
n→∞

n
[
BAn (f ;x)− f (x)

]
=
x3

2
[−Af ′ (x) + f ′′ (x)] .

Remark 3.2. The advantage of Corollary 3.1 over Corollary 2.1 is in the fact that
latter is defined for a larger function space S while the former is only for Ç(R+).

4. Conclusion

We now conclude that our proposed operators (3.1) is an improved approxima-
tion operator which not only preserves constant and exponential functions eAx and
but in fact also provides faster convergence and better approximation for some
functions in comparison to the original exponential operators for A > 0. Here we
have shown properties which are superior to that of original operators and work for
a much wider function spaces. To highlight our statements, we exhibit some figures
based on numerical examples to show a faster rate of convergence for our modified
operators and also its comparison with the original operators (1.1) for arbitrarily
chosen values of n and A > 0.

5. Graphical Comparisons

Example 5.1. Let f(x) = 5x[sinh(x)]. Then we have the following graphical rep-
resentations where our function f(x) is represented in purple color throughout.

a) Figure 1 exhibits the comparison between the modified operator BAn (Green),
and the original operator Pn (Red) for n = 10, A = 1.

b) Figure 2 exhibits the comparison between the original operator Pn (Cyan)
and the modified operator BAn (Brown) for n = 50, A = 1.

c) Figure 3 shows the rate of convergence of the modified operators BAn for
A = 1 and n = 10 (Green), n = 25 (Orange) and n = 50 (Cyan), towards
the function f(x). The graph clearly shows faster rate of convergence.

After analyzing Figure 1 and Figure 2, it can be easily concluded that operators BAn
provide faster rate of convergence and therefore better approximation as compared
to the operators Pn for A > 0.
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Figure 1. Comparison between operators BA10 (Green), P10 (Red)
towards function f(x) (Purple) for n = 10 and A = 1.

Figure 2. Comparison between convergence of operators BA50
(Cyan), P50 (Brown) towards function f(x) (Purple) for n = 50
and A = 1.
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