References
Ahmed, S. F., Quadeer, A. A., & McKay, M. R. (2020). Preliminary
identification of potential vaccine targets for the COVID-19 Coronavirus
(SARS-CoV-2) based on SARS-CoV immunological studies. Viruses, 12(3),
E254.
Baez-Santos, Y. M., St. John, S. E., & Mesecar, A. D. (2015). The SARS-
coronavirus papain-like protease: structure, function and inhibition by
designed antiviral compounds. Antiviral Research, 115, 21-38.
Bai. Y., Yao, L., Wei, T., Tian, F., Jin, D. Y., Chen, L., & Wang, M.
(2020). Presumed Asymptomatic Carrier Transmission of COVID-19. Journal
of American Medical Association.
https://doi.org/10.1001/jama.2020.2565.
Balfour, H. (2020). Coronavirus update: recent developments in vaccine
research. Drug Target Review.
https://www.drugtargetreview.com/news/56607/coronavirus-update-recent-developments-in-vaccine-research/
Accessed online 06/04/2020 12:09 PM
Bijlenga, G. (2005). Proposal for vaccination against SARS coronavirus
using avian infectious bronchitis virus strain H from The Netherlands.
Journal of Infection 51(3), 263-265.
Bisht, H., Roberts, A., Vogel, L., Bukreyev, A., Collins, P. L., Murphy,
B. R., Subbarao, K., & Moss, B. ( 2004). Severe acute
respiratory syndrome corona- virus spike protein expressed by attenuated
vaccinia virus protectively immunizes mice. Proceedings of National
Academy of Science USA 101, 6641-6646.
Buchholz, U. J., Bukreyev, A., Yang, L., Lamirande, E. W., Murphy, B.
R., Subbarao, K., & Collins, P. L. (2004). Contributions of the
structural proteins of severe acute respiratory syndrome coronavirus to
protective immunity. Proceedings of National Academy of Science USA
101(26), 9804-9809.
Bukreyev, A., Lamirande, E. W., Buchholz, U. J., Vogel, L. N., Elkins,
W. R., St. Claire, M., Murphy, B. R., Subbarao, K., & Collins, P. L.
(2004). Mucosal immunisation of African green monkeys
(Cercopithecus aethiops ) with an attenuated parainfluenza virus
expressing the SARS coronavirus spike protein for the prevention of
SARS. Lancet 363, 2122-2127.
Chen, J. (2020). Pathogenicity and transmissibility of 2019-nCoV-A quick
overview and comparison with other emerging viruses. Microbes and
Infection 22(2), 69-71.
Chen, W. H., Chag, S. M., Poongavanam, M. V., Biter, A. B., Ewere, E.
A., Rezende, W., Seid, C. A., Hudspeth, E. M., Pollet, J., McAtee, C.
P., et al. (2017). Optimization of the production process and
characterization of the yeast-expressed SARS-CoV recombinant
receptor-binding domain (RBD219-N1), a SARS vaccine candidate. Journal
of Pharmaceutical Science 106(8), 1961-1970.
Chen, W. H., Du, L., Chag, S. M., Ma, C., Tricoche, N., Tao, X., Seid,
C. A., Hudspeth, E. M., Lustigman, S., Tseng, C. T., et al. (2014).
Yeast- expressed recombinant protein of the receptor-binding domain in
SARS-CoV spike protein with deglycosylated forms as a SARS vaccine
candidate. Human Vaccines and Immunotherapy 10(3), 648-658.
Chen, W. H., Strych, U., Hotez, P. J., & Bottazzi, M. E. (2020). The
SARS-CoV-2 Vaccine Pipeline: an Overview. Current Tropical Medicine
Reports. https://doi.org/10.1007/s40475-020-00201-6.
Cheung, E. (2020). China coronavirus: Hong Kong researchers have already
developed vaccine but need time to test it, expert reveals. South China
Morning Post.
https://www.scmp.com/news/hong-kong/health-environment/article/3047956/china-coronavirus-hong-kong-researchers-have.
Accessed 28 Feb 2020.
Chowell, G., Abdirizak, F., Lee, S., Lee, J., Jung, E., Nishiura, H., &
Viboud, C. (2015). Transmission characteristics of MERS and SARS in the
healthcare setting: a comparative study. BMC Medicine 13, 210.
Clover Biopharmaceuticals. (2020). Clover initiates development of
recombinant subunit-trimer vaccine for Wuhan coronavirus (2019- nCoV).
https://pipelinereview.com/index.php/2020012873644/Vaccines/Clover-InitiatesDevelopment-of-Recombinant-Subunit-Trimer-Vaccine-for-Wuhan
Coronavirus-2019-nCoV.html Accessed online 10 May 2020.
Cyranoski, D. (2020). This scientist hopes to test coronavirus drugs on
animals in locked-down Wuhan. Nature 577(7792), 607.
Deming, D., Sheahan, T., Heise, M., Yount, B., Davis, N., Sims, A.,
Suthar, M., Harkema, J., Whitmore, A., Pickles, R., et al. (2006).
Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV
bearing epidemic and zoonotic spike variants. PLoS Medicine 3, e525.
Desden, D. (2020). Coronavirus vaccine: Everything you need to know.
https://www.medicalnewstoday.com/articles/coronavirus-vaccine.
Accessed online 06/04/2020.
Dhama, K., Sharun, K., Tiwari, R., Dadar, M., Malik, Y. S., Singh, K.
P., & Chaicumpa, W. (2020). COVID-19, an emerging coronavirus
infection: advances and prospects in designing and developing vaccines,
immunotherapeutics, and therapeutics. Human Vaccines and
Immunotherapeutics.
https://doi.org/10.1080/21645515.2020.1735227.
Elshabrawy, H. A., Coughlin, M. M., Baker, S. C., & Prabhakar, B. S.
(2012). Human monoclonal antibodies against highly conserved HR1 and HR2
domains of the SARS-CoV spike protein are more broadly neutralizing.
PLoS One 7, e50366.
Enjuanes, L., Dediego, M. L., Alvarez, E., Deming, D., Sheahan, T., &
Baric, R. (2008). Vaccines to prevent severe acute respiratory syndrome
coronavirus-induced disease. Virus Research 133(1), 45-62.
Etherington, D. (2020). New coronavirus research suggests vaccines
developed to treat it could be long-lasting.
https://techcrunch.com/2020/03/25/new-coronavirus-research-suggests-vaccines-developed-to-treat-it-could-be-long-lasting/
Accessed online 06/04/2020 12:18 PM
Fast, E., Altman, R. B., & Chen, B. (2020). Potential T-cell and B-cell
Epitopes of 2019-nCoV. bioRxiv. doi:
https://doi.org/10.1101/2020.02.19.955484
Gillim-Ross, L., & Subbarao, K. (2006). Emerging Respiratory Viruses:
Challenges and Vaccine Strategies. Clinical Microbiological Review
19(4), 614-636.
Glaxo Smith Kline press release on 2/24/2020. https://www.gsk.
com/en-gb/media/press-releases/clover-and-gsk-announce-research-collaboration-to-evaluate-coronavirus-covid-19-vaccine-candidate-with-pandemic-adjuvant-system.
Gorbalenya, A. E., Baker, S. C., Baric, R. S., de Groot, R. J., Drosten,
C., Gulyaeva, A. A., Haagmans, B. L., Lauber, C., Leontovich, A. M.,
Neuman, B. W., et al. (2020). The species severe acute respiratory
syndrome-related coronavirus: classifying 2019-nCoV and naming it
SARS-CoV-2. Nature Microbiology 5, 536-544.
Graham, R. L., Becker, M. M., Eckerle, L. D., Bolles, M., Denison, M.
R., & Baric, R. S. (2012). A live, impaired-fidelity coronavirus
vaccine protects in an aged, immunocompromised mouse model of lethal
disease. Nature Medicine 18, 1820-1826.
Graham, R. L., Donaldson, E. F., & Baric, R. S. (2013). A decade after
SARS: strategies for controlling emerging coronaviruses. Nature Reviews
Microbiology 11(12), 836-848.
Gralinski, L. E., & Baric, R. S. (2015). Molecular pathology of
emerging coronavirus infections. Journal of Pathology 235(2), 185-195.
Guan, W., Ni, Z., Hu, Y., Liang, W., Ou, C., He, J., Liu, L., Shan, H.,
Lei, C., Hui, D. S., et al. (2020). Clinical characteristics of 2019
novel coronavirus infection in China. New England Journal of Medicine
382, 1708-1720.
He, H., Tang, Y., Qin, X., Xu, W., Wang, Y., Liu, X., Liu, X., Xiong,
S., Li, J., Zhang, M., & Duan, M. ( 2005b). Construction of a
eukaryotic expression plasmid encoding partial S gene fragments of the
SARS-CoV and its potential utility as a DNA vaccine. DNA Cell Biology
24(8), 516-520.
He, Y., Zhou, Y., Siddiqui, P., Niu, J., & Jiang, S. (2005a).
Identification of immunodominant epitopes on the membrane protein of the
severe acute respiratory syndrome-associated coronavirus. Journal of
Clinical Microbiology 43, 3718-3726.
Hoffmann, M., Kleine-Weber, H., Kruger, N., Muller, M., Drosten, C., &
Pohlmann, S. (2020). The novel coronavirus 2019 (2019-nCoV) uses the
SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for
entry into target cells. bioRxiv.
https://doi.org/10.1101/2020.01.31.929042.
Hu, Z., Song, C., Xu, C., Jin, G., Chen, Y., Xu, X., Ma, H., Chen, W.,
Lin, Y., Zheng, Y., et al. (2020). Clinical characteristics of 24
asymptomatic infections with COVID-19 screened among close contacts in
Nanjing, China. Science China Life Science 63(5), 706-711.
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan,
G., Xu, J., Gu, X., et al. (2020). Clinical features of patients
infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223),
497-506.
Hui, D. S., I Azhar, E., Madani, T. A., Ntoumi, F., Kock, R., Dar, O.,
Ippolito, G., Mchugh, T. D., Memish, Z. A., Drosten, C., et al. (2020).
The continuing 2019-nCoV epidemic threat of novel coronaviruses to
global health - The latest 2019 novel coronavirus outbreak in Wuhan,
China. International Journal of Infectious Diseases 91, 264-266.
J&J. (2020). working on coronavirus vaccine. The pharma letter.
https:// www.thepharmaletter.com/article/j-j-working-on-coronavirus-
vaccine. Accessed 28 Feb 2020.
Jahanafrooz, Z., Baradaran, B., Mosafer, J., Hashemzaei, M., Rezaei, T.,
Mokhtarzadeh, A., & Hamblin, M. R. (2020). Comparison of DNA and mRNA
vaccines against cancer. Drug Discovery Today 25, 552–560.
Jaume, M., Yip, M. S., Kam, Y. W., Cheung, C. Y., Kien, F., Roberts, A.,
Li, P. H., Dutry, I., Escriou, N., Daeron, M., et al. (2012). SARS CoV
subunit vaccine: antibody-mediated neutralisation and enhancement. Hong
Kong Medical Journal 18(2), 31-36.
Jiaming, L., Yanfeng, Y., Yao, D., Yawei, H., Linlin, B., Baoying, H.,
Jinghua, Y., Gao, G. F., Chuan, Q., & Wenjie, T. (2017). The
recombinant N-terminal domain of spike proteins is a potential vaccine
against Middle East respiratory syndrome coronavirus (MERS-CoV)
infection. Vaccine 35(1), 10-18.
Jiang, S., Bottazzi, M. E., Du, L., Lustigman, S., Tseng, C. T., Curti,
E., Jones, K., Zhan, B., & Hotez, P. J. (2012). Roadmap to developing a
recombinant coronavirus S protein receptor-binding domain vaccine for
severe acute respiratory syndrome. Expert Reviews of Vaccines 11(12),
1405-1413.
Jiang, S., Du, L., & Shi, Z. (2020). An emerging coronavirus causing
pneumonia outbreak in Wuhan, China: calling for developing therapeutic
and prophylactic strategies. Emerging Microbes and Infection 9(1),
275-277.
Jiang, S., He, Y., & Liu, S. (2005). SARS vaccine development. Emerging
Infectious Diseases 11, 1016-1020.
Jin, H., Xiao, C., Chen, Z., Kang, Y., Ma, Y., Zhu, K., Xie, Q., Tu, Y.,
Yu, Y., & Wang, B. (2005). Induction of Th1 type response by DNA
vaccinations with N, M, and E genes against SARS-CoV in mice.
Biochemical and Biophysical Research Communication 328(4), 979-986.
Kim, E., Erdos, G., Huang, S., Kenniston, T. W., Balmert, S. C., Carey,
C. D., Raj, V. S., Epperly, M. W., Klimstra, W. B., Haagmans, B. L., et
al. (2020). Microneedle array delivered recombinant coronavirus
vaccines: Immunogenicity and rapid translational development.
EBioMedicine. https://doi.org/10.1016/j.ebiom.2020.102743.
Kim, M. H., Kim, H. J., & Chang, J. (2019). Superior immune responses
induced by intranasal immunization with recombinant adenovirus-based
vaccine expressing full-length spike protein of Middle East respiratory
syndrome coronavirus. PLoS One 14(7), e0220196.
Kim, T. W., Lee, J. H., Hung, C. F., Peng, S., Roden, R., Wang, M. C.,
Viscidi, R., Tsai, Y. C., He, L., Chen, P. J., et al. (2004). Generation
and characterization of DNA vaccines targeting the nucleocapsid protein
of severe acute respiratory syndrome coronavirus. Journal of Virology
78, 4638-4645.
Krammer, F., Margine, I., Tan, G. S., Pica, N., Krause, J. C., &
Palese, P. (2012). A carboxy-terminal trimerization domain stabilizes
conformational epitopes on the stalk domain of soluble recombinant
hemagglutinin substrates. PloS One 7(8), e43603.
Kupferschmidt, K., & Cohen, J. (2020). Will novel virus go pandemic or
be contained? Science 367(6478), 610-611.
Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi,
X., Wang, Q., Zhang, L., et al. (2020). Crystal structure of the
2019-nCoV spike receptor-binding domain bound with the ACE2 receptor.
BioRxiv. doi: https://doi.org/10.1101/2020.02.19.956235.
Leung, D. T., Tam, F. C., Ma, C. H., Chan, P. K., Cheung, J. L., Niu,
H., Tam, J. S., Lim, P. L. (2004). Antibody response of patients with
severe acute respiratory syndrome (SARS) targets the viral nucleocapsid.
Journal of Infectious Diseases 190, 379-386.
Li, E., Yan, F., Huang, P., Chi, H., Xu, S., Li, G., Liu, C., Feng, N.,
Wang, H., & Zhao, Y. Y. (2020). Characterization of the immune response
of MERS-CoV vaccine candidates derived from two different vectors in
mice. Viruses 12(1), E125.
Li, J., Ulitzky, L., Silberstein, E., Taylor, D. R., & Viscidi, R.
(2013). Immunogenicity and protection efficacy of monomeric and trimeric
recombinant SARS coronavirus spike protein subunit vaccine candidates.
Viral Immunology 26(2), 126-132.
Liu, C., Zhou, Q., Li, Y., Garner, L. V., Watkins, S. P., Carter, L. J.,
Smoot, J., Gregg, A. C., Daniels, A. D., Jervey, S., & Albaiu, D.
(2020). Research and Development on Therapeutic Agents and Vaccines for
COVID-19 and Related Human Coronavirus Diseases. ACS Central Science 6,
315-331.
Liu, H., Su, D., Zhang, J., Ge, S., Li, Y., Wang, F., Gravel, M.,
Roulston, A., Song, Q., Xu, W., et al. (2017). Improvement of
Pharmacokinetic Profile of TRAIL via Trimer-Tag Enhances its Antitumor
Activity in vivo. Scientific Reports 7(1), 8953.
Liu, J., Sun, Y., Qi, J., Chu, F., Wu, H., Gao, F., Li, T., Yan, J.,
Gao, G. F. (2010). The membrane protein of severe acute respiratory
syndrome coronavirus acts as a dominant immunogen revealed by a
clustering region of novel functionally and structurally defined
cytotoxic T-lymphocyte epitopes. Journal of Infectious Diseases 202,
1171-1180.
Liu, L., Wei, Q., Lin, Q., Fang, J., Wang, H., Kwok, H., Tang, H.,
Nishiura, K., Peng, J., Tan, Z., et al. (2019). Anti-spike IgG causes
severe acute lung injury by skewing macrophage responses during acute
SARS-CoV infection. JCI Insight 4(4), 123158.
Liu, M. A. (2019). A Comparison of Plasmid DNA and mRNA as Vaccine
Technologies. Vaccines 7(2), E37.
Liu, S. J., Leng, C. H., Lien, S. P., Chi, H. Y., Huang, C. Y., Lin, C.
L., Lian, W. C., Chen, C. J., Hsieh, S. L., & Chong, P. (2006).
Immunological characterizations of the nucleocapsid protein based SARS
vaccine candidates. Vaccine 24(16), 3100-3108.
Liu, W. J., Zhao, M., Liu, K., Xu, K., Wong, G., Tan, W., & Gao, G. F.
(2017). T-cell immunity of SARS-CoV: Implications for vaccine
development against MERS-CoV. Antiviral Research 137, 82-92.
Liu, X., Shi, Y., Li, P., Li, L., Yi, Y., Ma, Q., & Cao, C. (2004).
Profile of antibodies to the nucleocapsid protein of the severe acute
respiratory syndrome (SARS)-associated coronavirus in probable SARS
patients. Clinical and Vaccine Immunology 11(1), 227-228.
Liu, Y., Gayle, A. A., Wilder-Smith, A., & Rocklov, J. (2020). The
reproductive number of COVID-19 is higher compared to SARS coronavirus.
Journal of Travel Medicine 27(2).
https://doi.org/10.1093/jtm/taaa021.
Marohn, M. E., & Barry, E. M. (2013). Live attenuated tularemia
vaccines: Recent developments and future goals. Vaccine 31, 3485-3491.
McBride, R., van Zyl, M., & Fielding, B. C. (2014). The coronavirus
nucleocapsid is a multifunctional protein. Viruses 6, 2991-3018.
Minor, P. D. (2015). Live attenuated vaccines: Historical successes and
current challenges. Virology 479-480, 379-392.
Moderna press release on 2/24/2020. https://investors.
modernatx.com/news-releases/news-release-details/moderna-ships-
mrna-vaccine-against-novel-coronavirus-mrna-1273.
Morse, J. S., Lalonde, T., Xu, S., & Liu, W. (2020). Learning from the
past: possible urgent prevention and treatment options for severe acute
respiratory infections caused by 2019-nCoV. Chemistry and Biochemistry
21(5), 730-738.
Neher, R. A., Dyrdak, R., Druelle, V., Hodcroft, E. B., & Albert, J.
(2020). Potential impact of seasonal forcing on a SARS-CoV-2 pandemic.
Swiss Medical Weekly 150, w20224.
Neuman, B. W., Kiss, G., Kunding, A. H., Bhella, D., Baksh, M. F.,
Connelly, S., Droese, B., Klaus, J. P., Makino, S., Sawicki, S. G., et
al. (2011). A structural analysis of M protein in coronavirus assembly
and morphology. Journal of Structural Biology 174(1), 11-22.
Ng, O. W., Chia, A., Tan, A. T., Jadi, R. S., Leong, H. N., Bertoletti,
A., & Tan, Y. J. (2016). Memory T cell responses targeting the SARS
coronavirus persist up to 11 years post-infection. Vaccine 34,
2008-2014.
Ng, O. W., & Tan, Y. J. (2017). Understanding bat SARS-like
coronaviruses for the preparation of future coronavirus outbreaks -
Implications for coronavirus vaccine development. Human Vaccines and
Immunotherapeutics 13(1), 186-189.
Nieto-Torres, J. L., DeDiego, M. L., Verdia-Baguena, C.,
Jimenez-Guardeno, J. M., Regla-Nava, J. A., Fernandez-Delgado, R.,
Castano-Rodriguez, C., Alcaraz, A., Torres, J., Aguilella, V. M., et al.
(2014). Severe acute respiratory syndrome coronavirus envelope protein
ion channel activity promotes virus fitness and pathogenesis. PLoS
Pathogens 10, e1004077.
Novavax press release on 2/26/2020.
http://ir.novavax.com/news-releases/news-release-details/novavax-advances-development-
novel-covid-19-vaccine.
Pang, H., Liu, Y., Han, X., Xu, Y., Jiang, F., Wu, D., Kong, X.,
Bartlam, M., & Rao, Z. (2004). Protective humoral responses to severe
acute respiratory syndrome-associated coronavirus: Implications for the
design of an effective protein-based vaccine. Journal of General
Virology 85, 3109-3113.
Pardi, N., Hogan, M. J., Porter, F. W., & Weissman, D. (2018). mRNA
vaccines- A new era in vaccinology. Nature Reviews Drug Discovery 17,
261-279.
Perlman, S. (2020). Another decade, another coronavirus. New England
Journal of Medicine 382, 760-762.
Rappuoli, R., Black, S., & Bloom, D. E. (2019). Vaccines and global
health: In search of a sustainable model for vaccine development and
delivery. Science Translational Medicine 11(497), eaaw2888.
Rauch, S., Jasny, E., Schmidt, K. E., & Petsch, B. (2018). New vaccine
technologies to combat outbreak situations. Frontiers in Immunology 9,
1963.
Remy, V., Largeron, N., Quilici, S., & Carroll, S. (2014). The economic
value of vaccination: Why prevention is wealth. Value in Health 17(7),
A450.
Roper, R. L., & Rehm, K. E. (2016). SARS vaccines: where are we? Expert
Reviews of Vaccines 8(7), 887-898.
Rothe, C., Schunk, M., Sothmann, P., Bretzel, G., Froeschl, G.,
Wallrauch, C., Zimmer, T., Thiel, V., Janke, C., Guggemos, W., et al.
(2020). Transmission of 2019-nCoV infection from an asymptomatic contact
in Germany. New England Journal of Medicine 382, 970-971.
Ryan, J. (2020). Coronavirus vaccines: Drug trials, chloroquine and
treatments for COVID-19.
https://www.cnet.com/how-to/coronavirus-vaccines-drug-trials-chloroquine-and-treatments-for-covid-19/
Accessed online 06/04/2020.
Saif, L. J. (2017). Coronaviruses of domestic livestock and poultry:
Interspecies transmission, pathogenesis and immunity, In: Perlman S,
Holmes K. (eds), Nidovirales, Washington, DC: American Society of
Microbiology, pp 279-98.
Saif, L. J. (2020). Vaccines for COVID-19: Perspectives, Prospects, and
Challenges Based on Candidate SARS, MERS, and Animal Coronavirus
Vaccines. European Medical Journal.
https://doi.org/10.33590/emj/200324.
Schindewolf, C., & Menachery, V. D. (2019). Middle east respiratory
syndrome vaccine candidates: cautious optimism. Viruses 11(1), E74.
Sharma, A., Krause, A., & Worgall, S. (2011). Recent developments for
Pseudomonas vaccines. Human Vaccines 7, 999-1011.
Shi, J., Zhang, J., Li, S., Sun, J., Teng, Y., Wu, M., Li, J., Li, Y.,
Hu, N., Wang, H., et al. (2015). Epitope-based vaccine target screening
against highly pathogenic MERS-CoV: an in silico approach applied to
emerging infectious diseases. PLoS One 10(12), e0144475.
Shieber, J. (2020). Codagenix raises $20 million for a new flu vaccine
and other therapies. Tech Crunch.
https://techcrunch.com/2020/01/13/codagenix-raises-20-million-for-a-new-flu
vaccine-and-other- therapies/ Accessed 28 Feb 2020.
Stadler, K., Roberts, A., Becker, S., Vogel, L., Eickmann, M.,
Kolesnikova, L., Klenk, H. D., Murphy, B., Rappuoli, R., Abrignani, S.,
& Subbarao, K. ( 2005). SARS vaccine protective in mice.
Emerging Infectious Diseases 11, 1312-1314.
Tang, F., Quan, Y., Xin, Z. T., Wrammert, J., Ma, M. J., Lv, H., Wang,
T. B., Yang, H., Richardus, J. H., Liu, W., et al. (2011). Lack of
peripheral memory B cell responses in recovered patients with severe
acute respiratory syndrome: A six-year follow-up study. Journal of
Immunology 186, 7264-7268.
Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang,
H., Wang, Y., & Qian, Z. (2020). On the origin and continuing evolution
of SARS-CoV-2. National Science Review.
https://doi.org/10.1093/nsr/nwaa036.
Tian, X., Li, C., Huang, A., Xia, S., Lu, S., Shi, Z., Lu, L., Jiang,
S., Yang, Z., Wu, Y., et al. (2020). Potent binding of 2019 novel
coronavirus spike protein by a SARS coronavirus-specific human
monoclonal antibody. Emerging Microbes and Infection 9, 382-385.
Vlasova, A. N., Kandasamy, S., & Saif, L. J. (2016). “Gnotobiotic
neonatal pig model of rotavirus infection and disease” In: Svensson L,
Desselberger U, Estes MK (eds). Viral gastroenteritis: molecular
epidemiology and pathogenesis. The Netherlands: Elsevier, pp 219-241.
Wan, Y., Shang, J., Sun, S., Tai, W., Chen, J., Geng, Q., He, L.,
Chen, Y., Wu, J., Shi, Z., et al. (2020). Molecular Mechanism for
Antibody-Dependent Enhancement of Coronavirus Entry. Journal of
Virology 94(5), e02015-19.
Wang, N, Shang, J., Jiang, S., & Du, L. (2020). Subunit vaccines
against emerging pathogenic human coronaviruses. Frontiers in
Microbiology 11, 298. https://doi.org/10.3389/fmicb.2020.00298.
Wang, Q., Zhang, L., Kuwahara, K., Li, L., Liu, Z., Li, T., Zhu, H.,
Liu, J., Xu, Y., Xie, J., et al. (2016). Immunodominant SARS coronavirus
epitopes in humans elicited both enhancing and neutralizing effects on
infection in non-human primates. ACS Infectious Diseases 2, 361-376.
Woo, P. C., Lau, S. K., Tsoi, H. W., Chen, Z. W., Wong, B. H., Zhang,
L., Chan, J. K., Wong, L. P., He, W., Ma, C., et al. (2005). SARS
coronavirus spike polypeptide DNA vaccine priming with recombinant spike
polypeptide from Escherichia coli as booster induces high titer of
neutralizing antibody against SARS coronavirus. Vaccine 23(42),
4959-4968.
World Health Organization (2020). Coronavirus disease (COVID-2019) R&D.
Available at:
https://www.who.int/blueprint/priority-diseases/key-action/novel-coronavirus/en/.
Last Accessed: 13 March 2020.
Worldometer. (2020). https://www.worldometers.info/coronavirus/
Accessed online 20/05/2020 12:12 PM.
Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L.,
Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure
of the 2019-nCoV spike in the prefusion conformation. Science 367(6483),
1260-1263.
Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L.,
Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure
of the 2019-nCoV spike in the prefusion conformation. Science 2011,
eabb2507.
Wu, J. T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting
the potential domestic and international spread of the 2019-nCoV
outbreak originating in Wuhan, China: A modelling study. Lancet
395(10225), 689-697.
Xie, Q., He, X., Yang, F., Liu, X., Li, Y., Liu, Y., Yang, Z., Yu, J.,
Zhang, B., & Zhao, W. (2018). Analysis of the genome sequence and
prediction of B-cell epitopes of the envelope protein of Middle East
respiratory syndrome-coronavirus. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 15(4), 1344-1350.
Yao, H., Lu, X., Chen, Q., Xu, K., Chen, Y., Cheng, L., Liu, F., Wu, Z.,
Wu, H., Jin, C., et al. (2020). Patient-derived mutations impact
pathogenicity of SARS-CoV-2. MedRxiv
https://doi.org/10.1101/2020.04.14.20060160
Yu, F., Du, L., Ojcius, D. M., Pan, C., & Jiang, S. (2020). Measures
for diagnosing and treating infections by a novel coronavirus
responsible for a pneumonia outbreak originating in Wuhan, China.
Microbes and Infection 22(2), 74-79.
Yu, W. B., Tang, G. D., Zhang, L., & Corlett, R. T. (2020). Decoding
evolution and transmissions of novel pneumonia coronavirus (SARS-CoV-2)
using the whole genomic data. Zoological Research. 1-11.
https://doi.org/10.24272/j.issn.2095-8137.2020.022.
Zakhartchouk, A. N., Liu, Q., Petric, M., & Babiuk, L. A.( 2005). Augmentation of immune responses to SARS coronavirus by
a combination of DNA and whole killed virus vaccines. Vaccine 23(35),
4385-4391.
Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D., &
Fouchier, R. A. (2012). Isolation of a novel coronavirus from a man with
pneumonia in Saudi Arabia. New England Journal of Medicine 367(19),
1814-1820.
Zhang, J., Zeng, H., Gu, J., Li, H., Zheng, L., & Zou, Q. (2020).
Progress and Prospects on Vaccine Development against SARS-CoV-2.
Vaccines 8(2), 153. https://doi.org/10.3390/vaccines8020153.
Zhang, L., & Liu, Y. (2020). Potential interventions for novel
coronavirus in China: a systemic review. Journal of Medical Virology
92(5), 479-490.
Zheng, N., Xia, R., Yang, C., Yin, B., Li, Y., Duan, C., Liang, L., Guo,
H., & Xie, Q. (2009). Boosted expression of the SARS-CoV nucleocapsid
protein in tobacco and its immunogenicity in mice. Vaccine 27(36),
5001-5007.
Zhou, P., Yang, X.L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H.
R., Zhu, Y., Li, B., Huang, C. L., et al. (2020). A pneumonia outbreak
associated with a new coronavirus of probable bat origin. Nature 579,
270-273.
Zhou, Y., Jiang, S., & Du, L. (2018). Prospects for a MERS-CoV spike
vaccine. Expert Reviews of Vaccines 17, 677-686.
Zhou, Y., Yang, Y., Huang, J., Jiang, S., & Du, L. (2019). Advances in
MERS-CoV vaccines and therapeutics based on the receptor-binding domain.
Viruses 11(1), E60.
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X.,
Huang, B., Shi, W., Lu, R., et al. (2020). A novel coronavirus from
patients with pneumonia in China, 2019. New England Journal of Medicine
382(8), 727-733.
Zhu, X., Liu, Q., Du, L., Lu, L., & Jiang, S. (2013). Receptor-binding
domain as a target for developing SARS vaccines. Journal of Thoracic
Diseases 5(2), S142-S148.