References
Ahmed, S. F., Quadeer, A. A., & McKay, M. R. (2020). Preliminary identification of potential vaccine targets for the COVID-19 Coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses, 12(3), E254.
Baez-Santos, Y. M., St. John, S. E., & Mesecar, A. D. (2015). The SARS- coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Research, 115, 21-38.
Bai. Y., Yao, L., Wei, T., Tian, F., Jin, D. Y., Chen, L., & Wang, M. (2020). Presumed Asymptomatic Carrier Transmission of COVID-19. Journal of American Medical Association. https://doi.org/10.1001/jama.2020.2565.
Balfour, H. (2020). Coronavirus update: recent developments in vaccine research. Drug Target Review. https://www.drugtargetreview.com/news/56607/coronavirus-update-recent-developments-in-vaccine-research/ Accessed online 06/04/2020 12:09 PM
Bijlenga, G. (2005). Proposal for vaccination against SARS coronavirus using avian infectious bronchitis virus strain H from The Netherlands. Journal of Infection 51(3), 263-265.
Bisht, H., Roberts, A., Vogel, L., Bukreyev, A., Collins, P. L., Murphy, B. R., Subbarao, K., & Moss, B. ( 2004). Severe acute respiratory syndrome corona- virus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proceedings of National Academy of Science USA 101, 6641-6646.
Buchholz, U. J., Bukreyev, A., Yang, L., Lamirande, E. W., Murphy, B. R., Subbarao, K., & Collins, P. L. (2004). Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proceedings of National Academy of Science USA 101(26), 9804-9809.
Bukreyev, A., Lamirande, E. W., Buchholz, U. J., Vogel, L. N., Elkins, W. R., St. Claire, M., Murphy, B. R., Subbarao, K., & Collins, P. L. (2004). Mucosal immunisation of African green monkeys (Cercopithecus aethiops ) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet 363, 2122-2127.
Chen, J. (2020). Pathogenicity and transmissibility of 2019-nCoV-A quick overview and comparison with other emerging viruses. Microbes and Infection 22(2), 69-71.
Chen, W. H., Chag, S. M., Poongavanam, M. V., Biter, A. B., Ewere, E. A., Rezende, W., Seid, C. A., Hudspeth, E. M., Pollet, J., McAtee, C. P., et al. (2017). Optimization of the production process and characterization of the yeast-expressed SARS-CoV recombinant receptor-binding domain (RBD219-N1), a SARS vaccine candidate. Journal of Pharmaceutical Science 106(8), 1961-1970.
Chen, W. H., Du, L., Chag, S. M., Ma, C., Tricoche, N., Tao, X., Seid, C. A., Hudspeth, E. M., Lustigman, S., Tseng, C. T., et al. (2014). Yeast- expressed recombinant protein of the receptor-binding domain in SARS-CoV spike protein with deglycosylated forms as a SARS vaccine candidate. Human Vaccines and Immunotherapy 10(3), 648-658.
Chen, W. H., Strych, U., Hotez, P. J., & Bottazzi, M. E. (2020). The SARS-CoV-2 Vaccine Pipeline: an Overview. Current Tropical Medicine Reports. https://doi.org/10.1007/s40475-020-00201-6.
Cheung, E. (2020). China coronavirus: Hong Kong researchers have already developed vaccine but need time to test it, expert reveals. South China Morning Post. https://www.scmp.com/news/hong-kong/health-environment/article/3047956/china-coronavirus-hong-kong-researchers-have. Accessed 28 Feb 2020.
Chowell, G., Abdirizak, F., Lee, S., Lee, J., Jung, E., Nishiura, H., & Viboud, C. (2015). Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study. BMC Medicine 13, 210.
Clover Biopharmaceuticals. (2020). Clover initiates development of recombinant subunit-trimer vaccine for Wuhan coronavirus (2019- nCoV). https://pipelinereview.com/index.php/2020012873644/Vaccines/Clover-InitiatesDevelopment-of-Recombinant-Subunit-Trimer-Vaccine-for-Wuhan Coronavirus-2019-nCoV.html Accessed online 10 May 2020.
Cyranoski, D. (2020). This scientist hopes to test coronavirus drugs on animals in locked-down Wuhan. Nature 577(7792), 607.
Deming, D., Sheahan, T., Heise, M., Yount, B., Davis, N., Sims, A., Suthar, M., Harkema, J., Whitmore, A., Pickles, R., et al. (2006). Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. PLoS Medicine 3, e525.
Desden, D. (2020). Coronavirus vaccine: Everything you need to know. https://www.medicalnewstoday.com/articles/coronavirus-vaccine. Accessed online 06/04/2020.
Dhama, K., Sharun, K., Tiwari, R., Dadar, M., Malik, Y. S., Singh, K. P., & Chaicumpa, W. (2020). COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Human Vaccines and Immunotherapeutics. https://doi.org/10.1080/21645515.2020.1735227.
Elshabrawy, H. A., Coughlin, M. M., Baker, S. C., & Prabhakar, B. S. (2012). Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing. PLoS One 7, e50366.
Enjuanes, L., Dediego, M. L., Alvarez, E., Deming, D., Sheahan, T., & Baric, R. (2008). Vaccines to prevent severe acute respiratory syndrome coronavirus-induced disease. Virus Research 133(1), 45-62.
Etherington, D. (2020). New coronavirus research suggests vaccines developed to treat it could be long-lasting. https://techcrunch.com/2020/03/25/new-coronavirus-research-suggests-vaccines-developed-to-treat-it-could-be-long-lasting/ Accessed online 06/04/2020 12:18 PM
Fast, E., Altman, R. B., & Chen, B. (2020). Potential T-cell and B-cell Epitopes of 2019-nCoV. bioRxiv. doi: https://doi.org/10.1101/2020.02.19.955484
Gillim-Ross, L., & Subbarao, K. (2006). Emerging Respiratory Viruses: Challenges and Vaccine Strategies. Clinical Microbiological Review 19(4), 614-636.
Glaxo Smith Kline press release on 2/24/2020. https://www.gsk. com/en-gb/media/press-releases/clover-and-gsk-announce-research-collaboration-to-evaluate-coronavirus-covid-19-vaccine-candidate-with-pandemic-adjuvant-system.
Gorbalenya, A. E., Baker, S. C., Baric, R. S., de Groot, R. J., Drosten, C., Gulyaeva, A. A., Haagmans, B. L., Lauber, C., Leontovich, A. M., Neuman, B. W., et al. (2020). The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology 5, 536-544.
Graham, R. L., Becker, M. M., Eckerle, L. D., Bolles, M., Denison, M. R., & Baric, R. S. (2012). A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nature Medicine 18, 1820-1826.
Graham, R. L., Donaldson, E. F., & Baric, R. S. (2013). A decade after SARS: strategies for controlling emerging coronaviruses. Nature Reviews Microbiology 11(12), 836-848.
Gralinski, L. E., & Baric, R. S. (2015). Molecular pathology of emerging coronavirus infections. Journal of Pathology 235(2), 185-195.
Guan, W., Ni, Z., Hu, Y., Liang, W., Ou, C., He, J., Liu, L., Shan, H., Lei, C., Hui, D. S., et al. (2020). Clinical characteristics of 2019 novel coronavirus infection in China. New England Journal of Medicine 382, 1708-1720.
He, H., Tang, Y., Qin, X., Xu, W., Wang, Y., Liu, X., Liu, X., Xiong, S., Li, J., Zhang, M., & Duan, M. ( 2005b). Construction of a eukaryotic expression plasmid encoding partial S gene fragments of the SARS-CoV and its potential utility as a DNA vaccine. DNA Cell Biology 24(8), 516-520.
He, Y., Zhou, Y., Siddiqui, P., Niu, J., & Jiang, S. (2005a). Identification of immunodominant epitopes on the membrane protein of the severe acute respiratory syndrome-associated coronavirus. Journal of Clinical Microbiology 43, 3718-3726.
Hoffmann, M., Kleine-Weber, H., Kruger, N., Muller, M., Drosten, C., & Pohlmann, S. (2020). The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv. https://doi.org/10.1101/2020.01.31.929042.
Hu, Z., Song, C., Xu, C., Jin, G., Chen, Y., Xu, X., Ma, H., Chen, W., Lin, Y., Zheng, Y., et al. (2020). Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Science China Life Science 63(5), 706-711.
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223), 497-506.
Hui, D. S., I Azhar, E., Madani, T. A., Ntoumi, F., Kock, R., Dar, O., Ippolito, G., Mchugh, T. D., Memish, Z. A., Drosten, C., et al. (2020). The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. International Journal of Infectious Diseases 91, 264-266.
J&J. (2020). working on coronavirus vaccine. The pharma letter. https:// www.thepharmaletter.com/article/j-j-working-on-coronavirus- vaccine. Accessed 28 Feb 2020.
Jahanafrooz, Z., Baradaran, B., Mosafer, J., Hashemzaei, M., Rezaei, T., Mokhtarzadeh, A., & Hamblin, M. R. (2020). Comparison of DNA and mRNA vaccines against cancer. Drug Discovery Today 25, 552–560.
Jaume, M., Yip, M. S., Kam, Y. W., Cheung, C. Y., Kien, F., Roberts, A., Li, P. H., Dutry, I., Escriou, N., Daeron, M., et al. (2012). SARS CoV subunit vaccine: antibody-mediated neutralisation and enhancement. Hong Kong Medical Journal 18(2), 31-36.
Jiaming, L., Yanfeng, Y., Yao, D., Yawei, H., Linlin, B., Baoying, H., Jinghua, Y., Gao, G. F., Chuan, Q., & Wenjie, T. (2017). The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Vaccine 35(1), 10-18.
Jiang, S., Bottazzi, M. E., Du, L., Lustigman, S., Tseng, C. T., Curti, E., Jones, K., Zhan, B., & Hotez, P. J. (2012). Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome. Expert Reviews of Vaccines 11(12), 1405-1413.
Jiang, S., Du, L., & Shi, Z. (2020). An emerging coronavirus causing pneumonia outbreak in Wuhan, China: calling for developing therapeutic and prophylactic strategies. Emerging Microbes and Infection 9(1), 275-277.
Jiang, S., He, Y., & Liu, S. (2005). SARS vaccine development. Emerging Infectious Diseases 11, 1016-1020.
Jin, H., Xiao, C., Chen, Z., Kang, Y., Ma, Y., Zhu, K., Xie, Q., Tu, Y., Yu, Y., & Wang, B. (2005). Induction of Th1 type response by DNA vaccinations with N, M, and E genes against SARS-CoV in mice. Biochemical and Biophysical Research Communication 328(4), 979-986.
Kim, E., Erdos, G., Huang, S., Kenniston, T. W., Balmert, S. C., Carey, C. D., Raj, V. S., Epperly, M. W., Klimstra, W. B., Haagmans, B. L., et al. (2020). Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine. https://doi.org/10.1016/j.ebiom.2020.102743.
Kim, M. H., Kim, H. J., & Chang, J. (2019). Superior immune responses induced by intranasal immunization with recombinant adenovirus-based vaccine expressing full-length spike protein of Middle East respiratory syndrome coronavirus. PLoS One 14(7), e0220196.
Kim, T. W., Lee, J. H., Hung, C. F., Peng, S., Roden, R., Wang, M. C., Viscidi, R., Tsai, Y. C., He, L., Chen, P. J., et al. (2004). Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. Journal of Virology 78, 4638-4645.
Krammer, F., Margine, I., Tan, G. S., Pica, N., Krause, J. C., & Palese, P. (2012). A carboxy-terminal trimerization domain stabilizes conformational epitopes on the stalk domain of soluble recombinant hemagglutinin substrates. PloS One 7(8), e43603.
Kupferschmidt, K., & Cohen, J. (2020). Will novel virus go pandemic or be contained? Science 367(6478), 610-611.
Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., et al. (2020). Crystal structure of the 2019-nCoV spike receptor-binding domain bound with the ACE2 receptor. BioRxiv. doi: https://doi.org/10.1101/2020.02.19.956235.
Leung, D. T., Tam, F. C., Ma, C. H., Chan, P. K., Cheung, J. L., Niu, H., Tam, J. S., Lim, P. L. (2004). Antibody response of patients with severe acute respiratory syndrome (SARS) targets the viral nucleocapsid. Journal of Infectious Diseases 190, 379-386.
Li, E., Yan, F., Huang, P., Chi, H., Xu, S., Li, G., Liu, C., Feng, N., Wang, H., & Zhao, Y. Y. (2020). Characterization of the immune response of MERS-CoV vaccine candidates derived from two different vectors in mice. Viruses 12(1), E125.
Li, J., Ulitzky, L., Silberstein, E., Taylor, D. R., & Viscidi, R. (2013). Immunogenicity and protection efficacy of monomeric and trimeric recombinant SARS coronavirus spike protein subunit vaccine candidates. Viral Immunology 26(2), 126-132.
Liu, C., Zhou, Q., Li, Y., Garner, L. V., Watkins, S. P., Carter, L. J., Smoot, J., Gregg, A. C., Daniels, A. D., Jervey, S., & Albaiu, D. (2020). Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. ACS Central Science 6, 315-331.
Liu, H., Su, D., Zhang, J., Ge, S., Li, Y., Wang, F., Gravel, M., Roulston, A., Song, Q., Xu, W., et al. (2017). Improvement of Pharmacokinetic Profile of TRAIL via Trimer-Tag Enhances its Antitumor Activity in vivo. Scientific Reports 7(1), 8953.
Liu, J., Sun, Y., Qi, J., Chu, F., Wu, H., Gao, F., Li, T., Yan, J., Gao, G. F. (2010). The membrane protein of severe acute respiratory syndrome coronavirus acts as a dominant immunogen revealed by a clustering region of novel functionally and structurally defined cytotoxic T-lymphocyte epitopes. Journal of Infectious Diseases 202, 1171-1180.
Liu, L., Wei, Q., Lin, Q., Fang, J., Wang, H., Kwok, H., Tang, H., Nishiura, K., Peng, J., Tan, Z., et al. (2019). Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 4(4), 123158.
Liu, M. A. (2019). A Comparison of Plasmid DNA and mRNA as Vaccine Technologies. Vaccines 7(2), E37.
Liu, S. J., Leng, C. H., Lien, S. P., Chi, H. Y., Huang, C. Y., Lin, C. L., Lian, W. C., Chen, C. J., Hsieh, S. L., & Chong, P. (2006). Immunological characterizations of the nucleocapsid protein based SARS vaccine candidates. Vaccine 24(16), 3100-3108.
Liu, W. J., Zhao, M., Liu, K., Xu, K., Wong, G., Tan, W., & Gao, G. F. (2017). T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV. Antiviral Research 137, 82-92.
Liu, X., Shi, Y., Li, P., Li, L., Yi, Y., Ma, Q., & Cao, C. (2004). Profile of antibodies to the nucleocapsid protein of the severe acute respiratory syndrome (SARS)-associated coronavirus in probable SARS patients. Clinical and Vaccine Immunology 11(1), 227-228.
Liu, Y., Gayle, A. A., Wilder-Smith, A., & Rocklov, J. (2020). The reproductive number of COVID-19 is higher compared to SARS coronavirus. Journal of Travel Medicine 27(2). https://doi.org/10.1093/jtm/taaa021.
Marohn, M. E., & Barry, E. M. (2013). Live attenuated tularemia vaccines: Recent developments and future goals. Vaccine 31, 3485-3491.
McBride, R., van Zyl, M., & Fielding, B. C. (2014). The coronavirus nucleocapsid is a multifunctional protein. Viruses 6, 2991-3018.
Minor, P. D. (2015). Live attenuated vaccines: Historical successes and current challenges. Virology 479-480, 379-392.
Moderna press release on 2/24/2020. https://investors. modernatx.com/news-releases/news-release-details/moderna-ships- mrna-vaccine-against-novel-coronavirus-mrna-1273.
Morse, J. S., Lalonde, T., Xu, S., & Liu, W. (2020). Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. Chemistry and Biochemistry 21(5), 730-738.
Neher, R. A., Dyrdak, R., Druelle, V., Hodcroft, E. B., & Albert, J. (2020). Potential impact of seasonal forcing on a SARS-CoV-2 pandemic. Swiss Medical Weekly 150, w20224.
Neuman, B. W., Kiss, G., Kunding, A. H., Bhella, D., Baksh, M. F., Connelly, S., Droese, B., Klaus, J. P., Makino, S., Sawicki, S. G., et al. (2011). A structural analysis of M protein in coronavirus assembly and morphology. Journal of Structural Biology 174(1), 11-22.
Ng, O. W., Chia, A., Tan, A. T., Jadi, R. S., Leong, H. N., Bertoletti, A., & Tan, Y. J. (2016). Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine 34, 2008-2014.
Ng, O. W., & Tan, Y. J. (2017). Understanding bat SARS-like coronaviruses for the preparation of future coronavirus outbreaks - Implications for coronavirus vaccine development. Human Vaccines and Immunotherapeutics 13(1), 186-189.
Nieto-Torres, J. L., DeDiego, M. L., Verdia-Baguena, C., Jimenez-Guardeno, J. M., Regla-Nava, J. A., Fernandez-Delgado, R., Castano-Rodriguez, C., Alcaraz, A., Torres, J., Aguilella, V. M., et al. (2014). Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathogens 10, e1004077.
Novavax press release on 2/26/2020. http://ir.novavax.com/news-releases/news-release-details/novavax-advances-development- novel-covid-19-vaccine.
Pang, H., Liu, Y., Han, X., Xu, Y., Jiang, F., Wu, D., Kong, X., Bartlam, M., & Rao, Z. (2004). Protective humoral responses to severe acute respiratory syndrome-associated coronavirus: Implications for the design of an effective protein-based vaccine. Journal of General Virology 85, 3109-3113.
Pardi, N., Hogan, M. J., Porter, F. W., & Weissman, D. (2018). mRNA vaccines- A new era in vaccinology. Nature Reviews Drug Discovery 17, 261-279.
Perlman, S. (2020). Another decade, another coronavirus. New England Journal of Medicine 382, 760-762.
Rappuoli, R., Black, S., & Bloom, D. E. (2019). Vaccines and global health: In search of a sustainable model for vaccine development and delivery. Science Translational Medicine 11(497), eaaw2888.
Rauch, S., Jasny, E., Schmidt, K. E., & Petsch, B. (2018). New vaccine technologies to combat outbreak situations. Frontiers in Immunology 9, 1963.
Remy, V., Largeron, N., Quilici, S., & Carroll, S. (2014). The economic value of vaccination: Why prevention is wealth. Value in Health 17(7), A450.
Roper, R. L., & Rehm, K. E. (2016). SARS vaccines: where are we? Expert Reviews of Vaccines 8(7), 887-898.
Rothe, C., Schunk, M., Sothmann, P., Bretzel, G., Froeschl, G., Wallrauch, C., Zimmer, T., Thiel, V., Janke, C., Guggemos, W., et al. (2020). Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. New England Journal of Medicine 382, 970-971.
Ryan, J. (2020). Coronavirus vaccines: Drug trials, chloroquine and treatments for COVID-19. https://www.cnet.com/how-to/coronavirus-vaccines-drug-trials-chloroquine-and-treatments-for-covid-19/ Accessed online 06/04/2020.
Saif, L. J. (2017). Coronaviruses of domestic livestock and poultry: Interspecies transmission, pathogenesis and immunity, In: Perlman S, Holmes K. (eds), Nidovirales, Washington, DC: American Society of Microbiology, pp 279-98.
Saif, L. J. (2020). Vaccines for COVID-19: Perspectives, Prospects, and Challenges Based on Candidate SARS, MERS, and Animal Coronavirus Vaccines. European Medical Journal. https://doi.org/10.33590/emj/200324.
Schindewolf, C., & Menachery, V. D. (2019). Middle east respiratory syndrome vaccine candidates: cautious optimism. Viruses 11(1), E74.
Sharma, A., Krause, A., & Worgall, S. (2011). Recent developments for Pseudomonas vaccines. Human Vaccines 7, 999-1011.
Shi, J., Zhang, J., Li, S., Sun, J., Teng, Y., Wu, M., Li, J., Li, Y., Hu, N., Wang, H., et al. (2015). Epitope-based vaccine target screening against highly pathogenic MERS-CoV: an in silico approach applied to emerging infectious diseases. PLoS One 10(12), e0144475.
Shieber, J. (2020). Codagenix raises $20 million for a new flu vaccine and other therapies. Tech Crunch. https://techcrunch.com/2020/01/13/codagenix-raises-20-million-for-a-new-flu vaccine-and-other- therapies/ Accessed 28 Feb 2020.
Stadler, K., Roberts, A., Becker, S., Vogel, L., Eickmann, M., Kolesnikova, L., Klenk, H. D., Murphy, B., Rappuoli, R., Abrignani, S., & Subbarao, K. ( 2005). SARS vaccine protective in mice. Emerging Infectious Diseases 11, 1312-1314.
Tang, F., Quan, Y., Xin, Z. T., Wrammert, J., Ma, M. J., Lv, H., Wang, T. B., Yang, H., Richardus, J. H., Liu, W., et al. (2011). Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: A six-year follow-up study. Journal of Immunology 186, 7264-7268.
Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., & Qian, Z. (2020). On the origin and continuing evolution of SARS-CoV-2. National Science Review. https://doi.org/10.1093/nsr/nwaa036.
Tian, X., Li, C., Huang, A., Xia, S., Lu, S., Shi, Z., Lu, L., Jiang, S., Yang, Z., Wu, Y., et al. (2020). Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerging Microbes and Infection 9, 382-385.
Vlasova, A. N., Kandasamy, S., & Saif, L. J. (2016). “Gnotobiotic neonatal pig model of rotavirus infection and disease” In: Svensson L, Desselberger U, Estes MK (eds). Viral gastroenteritis: molecular epidemiology and pathogenesis. The Netherlands: Elsevier, pp 219-241.
Wan, Y.,  Shang, J.,  Sun, S., Tai, W.,  Chen, J., Geng, Q., He, L., Chen, Y., Wu, J., Shi, Z., et al. (2020). Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. Journal of Virology 94(5), e02015-19.
Wang, N, Shang, J., Jiang, S., & Du, L. (2020). Subunit vaccines against emerging pathogenic human coronaviruses. Frontiers in Microbiology 11, 298. https://doi.org/10.3389/fmicb.2020.00298.
Wang, Q., Zhang, L., Kuwahara, K., Li, L., Liu, Z., Li, T., Zhu, H., Liu, J., Xu, Y., Xie, J., et al. (2016). Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates. ACS Infectious Diseases 2, 361-376.
Woo, P. C., Lau, S. K., Tsoi, H. W., Chen, Z. W., Wong, B. H., Zhang, L., Chan, J. K., Wong, L. P., He, W., Ma, C., et al. (2005). SARS coronavirus spike polypeptide DNA vaccine priming with recombinant spike polypeptide from Escherichia coli as booster induces high titer of neutralizing antibody against SARS coronavirus. Vaccine 23(42), 4959-4968.
World Health Organization (2020). Coronavirus disease (COVID-2019) R&D. Available at: https://www.who.int/blueprint/priority-diseases/key-action/novel-coronavirus/en/. Last Accessed: 13 March 2020.
Worldometer. (2020). https://www.worldometers.info/coronavirus/ Accessed online 20/05/2020 12:12 PM.
Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367(6483), 1260-1263.
Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2011, eabb2507.
Wu, J. T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 395(10225), 689-697.
Xie, Q., He, X., Yang, F., Liu, X., Li, Y., Liu, Y., Yang, Z., Yu, J., Zhang, B., & Zhao, W. (2018). Analysis of the genome sequence and prediction of B-cell epitopes of the envelope protein of Middle East respiratory syndrome-coronavirus. IEEE/ACM Transactions on Computational Biology and Bioinformatics 15(4), 1344-1350.
Yao, H., Lu, X., Chen, Q., Xu, K., Chen, Y., Cheng, L., Liu, F., Wu, Z., Wu, H., Jin, C., et al. (2020). Patient-derived mutations impact pathogenicity of SARS-CoV-2. MedRxiv https://doi.org/10.1101/2020.04.14.20060160
Yu, F., Du, L., Ojcius, D. M., Pan, C., & Jiang, S. (2020). Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. Microbes and Infection 22(2), 74-79.
Yu, W. B., Tang, G. D., Zhang, L., & Corlett, R. T. (2020). Decoding evolution and transmissions of novel pneumonia coronavirus (SARS-CoV-2) using the whole genomic data. Zoological Research. 1-11. https://doi.org/10.24272/j.issn.2095-8137.2020.022.
Zakhartchouk, A. N., Liu, Q., Petric, M., & Babiuk, L. A.( 2005). Augmentation of immune responses to SARS coronavirus by a combination of DNA and whole killed virus vaccines. Vaccine 23(35), 4385-4391.
Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D., & Fouchier, R. A. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New England Journal of Medicine 367(19), 1814-1820.
Zhang, J., Zeng, H., Gu, J., Li, H., Zheng, L., & Zou, Q. (2020). Progress and Prospects on Vaccine Development against SARS-CoV-2. Vaccines 8(2), 153. https://doi.org/10.3390/vaccines8020153.
Zhang, L., & Liu, Y. (2020). Potential interventions for novel coronavirus in China: a systemic review. Journal of Medical Virology 92(5), 479-490.
Zheng, N., Xia, R., Yang, C., Yin, B., Li, Y., Duan, C., Liang, L., Guo, H., & Xie, Q. (2009). Boosted expression of the SARS-CoV nucleocapsid protein in tobacco and its immunogenicity in mice. Vaccine 27(36), 5001-5007.
Zhou, P., Yang, X.L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273.
Zhou, Y., Jiang, S., & Du, L. (2018). Prospects for a MERS-CoV spike vaccine. Expert Reviews of Vaccines 17, 677-686.
Zhou, Y., Yang, Y., Huang, J., Jiang, S., & Du, L. (2019). Advances in MERS-CoV vaccines and therapeutics based on the receptor-binding domain. Viruses 11(1), E60.
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., et al. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine 382(8), 727-733.
Zhu, X., Liu, Q., Du, L., Lu, L., & Jiang, S. (2013). Receptor-binding domain as a target for developing SARS vaccines. Journal of Thoracic Diseases 5(2), S142-S148.