References
Halfmann, P.J., M. Hatta, S. Chiba, T. Maemura, S. Fan, M. Takeda, N. Kinoshita, S.I. Hattori , Y. Sakai-Tagawa, K. Iwatsuki-Horimoto, M. Imai, Y. Kawaoka, 2020: Transmission of SARS-CoV-2 in Domestic Cats. The New England journal of medicine,  doi: 10.1056/NEJMc2013400.
d’Orengiani A.L., L. Duarte, N. Pavio, S. Le Poder, 2015 : Characterisation of different forms of the accessory gp3 canine coronavirus type I protein identified in cats. Virus Res. 202, 160-7
Shi, J., Wen Z, Zhong G and et. al., Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2Science, [published online ahead of print, 2020 Apr 8] 2020;eabb7015. doi:10.1126/science.abb7015
Sit, T.H.C., C.J.  Brackman, Ip SM, K.W.S. Tam, P.Y.T. Law, To EMW,  V.Y.T. Yu, L.D. Sims, D.N.C.  Tsang, D.K.W. Chu, Perera RAPM, Poon LLM, M. Peiris. Infection of dogs with SARS-CoV-2. Nature.  2020 May 14. doi: 10.1038/s41586-020-2334-5. [Epub ahead of print
Temmam, S., A. Barbarino, D. Maso, S. Behillil, V. Enouf, C. Huon, A. Jaraud, L. Chevallier, M. Backovic, P. Pérot, P. Verwaerde, L. Tiret, S. Van der Werf and M. Eloit, 2020: Absence of SARS-CoV-2 infection in cats and dogs in close contact with a cluster of COVID-19 patients in a veterinary campus. bioRxiv 2020.04.07.029090; doi: https://doi.org/10.1101/2020.04.07.029090
Vanhomwegen, J., C. Beck, P. Despres, A. Figuerola, R. Garcia, S. Lecollinet, M. Lopez-Roig, J. C. Manuguerra and J. Serra-Cobo, 2017: Circulation of Zoonotic Arboviruses in Equine Populations of Mallorca Island (Spain). Vector Borne Zoonotic Dis, 17, 340-346.
Wu, F., S. Zhao, B. Yu, Y. M. Chen, W. Wang, Z. G. Song, Y. Hu, Z. W. Tao, J. H. Tian, Y. Y. Pei, M. L. Yuan, Y. L. Zhang, F. H. Dai, Y. Liu, Q. M. Wang, J. J. Zheng, L. Xu, E. C. Holmes and Y. Z. Zhang, 2020: A new coronavirus associated with human respiratory disease in China.Nature, 579, 265-269.
Zhang, Q., H. Zhang, K. Huang, Y. Yang, X. Hui, J. Gao, X. He, C. Li, W. Gong, Y. Zhang, C. Peng, X. Gao, H. Chen, Z. Zou, Z. Shi and M. Jin, 2020: SARS-CoV-2 neutralizingserum antibodies in catsV: A serological investigation. BioRxiv, 2020.04.01.021196.
Zou, L., F. Ruan, M. Huang, L. Liang, H. Huang, Z. Hong, J. Yu, M. Kang, Y. Song, J. Xia, Q. Guo, T. Song, J. He, H. L. Yen, M. Peiris and J. Wu, 2020: SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. The New England journal of medicine, 382, 1177-1179
Figure 1. Phylogenetic analysis of French cat SARS-CoV-2 genome sequence. Multiple sequence alignment of 43 SARS-CoV-2 genomes (available in GISAID database) was obtained using MAFFT version 7.023b (Katoh and Standley 2013). The unrooted phylogenetic tree was constructed using RAxML (Stamatakis et al 2008) with general time-reversible plus gamma distribution substitution model and a rapid bootstrap (i.e. model GTR + I + G, bootstrap = 1000). Nextstrain clades are indicated next to the corresponding nodes and branches are colored distinctly.
Figure 2. Comparison of SARS-CoV-2 antibody levels detected in the acute and convalescent serum samples of the SARS-CoV-2 positive cat and a panel of 10 negative control sera using a pentaplex Multiplex Immunoassay (MIA). The pentaplex MIA comprised a mixture of microspheres coupled to the nucleoproteins (NP) of SARS-CoV-2, SARS-CoV, 229E and NL63 and the spike protein (S) of MERS-CoV. The relative antibody levels in the serum samples are expressed as median fluorescence intensities (MFI).