References
Halfmann,
P.J.,
M. Hatta,
S. Chiba,
T. Maemura,
S. Fan, M. Takeda,
N. Kinoshita, S.I. Hattori , Y. Sakai-Tagawa,
K. Iwatsuki-Horimoto,
M. Imai, Y. Kawaoka,
2020: Transmission of SARS-CoV-2 in Domestic Cats. The New England
journal of medicine, doi: 10.1056/NEJMc2013400.
d’Orengiani A.L.,
L. Duarte, N. Pavio, S. Le
Poder, 2015 : Characterisation of different forms of the accessory gp3
canine coronavirus type I protein identified in
cats. Virus
Res. 202, 160-7
Shi, J., Wen Z, Zhong G and et. al., Susceptibility of ferrets, cats,
dogs, and other domesticated animals to SARS-coronavirus 2Science, [published online ahead of print, 2020 Apr 8]
2020;eabb7015. doi:10.1126/science.abb7015
Sit,
T.H.C., C.J.
Brackman, Ip
SM, K.W.S. Tam, P.Y.T. Law, To
EMW,
V.Y.T. Yu, L.D. Sims,
D.N.C.
Tsang, D.K.W. Chu, Perera
RAPM, Poon
LLM, M. Peiris. Infection
of dogs
with SARS-CoV-2. Nature. 2020
May 14. doi: 10.1038/s41586-020-2334-5. [Epub ahead of print
Temmam, S., A. Barbarino, D. Maso, S. Behillil, V. Enouf, C. Huon, A.
Jaraud, L. Chevallier, M. Backovic, P. Pérot, P. Verwaerde, L. Tiret, S.
Van der Werf and M. Eloit, 2020: Absence of SARS-CoV-2 infection in cats
and dogs in close contact with a cluster of COVID-19 patients in a
veterinary campus. bioRxiv 2020.04.07.029090; doi:
https://doi.org/10.1101/2020.04.07.029090
Vanhomwegen, J., C. Beck, P. Despres, A. Figuerola, R. Garcia, S.
Lecollinet, M. Lopez-Roig, J. C. Manuguerra and J. Serra-Cobo, 2017:
Circulation of Zoonotic Arboviruses in Equine Populations of Mallorca
Island (Spain). Vector Borne Zoonotic Dis, 17, 340-346.
Wu, F., S. Zhao, B. Yu, Y. M. Chen, W. Wang, Z. G. Song, Y. Hu, Z. W.
Tao, J. H. Tian, Y. Y. Pei, M. L. Yuan, Y. L. Zhang, F. H. Dai, Y. Liu,
Q. M. Wang, J. J. Zheng, L. Xu, E. C. Holmes and Y. Z. Zhang, 2020: A
new coronavirus associated with human respiratory disease in China.Nature, 579, 265-269.
Zhang, Q., H. Zhang, K. Huang, Y. Yang, X. Hui, J. Gao, X. He, C. Li, W.
Gong, Y. Zhang, C. Peng, X. Gao, H. Chen, Z. Zou, Z. Shi and M. Jin,
2020: SARS-CoV-2 neutralizingserum antibodies in catsV: A serological
investigation. BioRxiv, 2020.04.01.021196.
Zou, L., F. Ruan, M. Huang, L. Liang, H. Huang, Z. Hong, J. Yu, M. Kang,
Y. Song, J. Xia, Q. Guo, T. Song, J. He, H. L. Yen, M. Peiris and J. Wu,
2020: SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected
Patients. The New England journal of medicine, 382, 1177-1179
Figure 1. Phylogenetic analysis of French cat SARS-CoV-2 genome
sequence. Multiple sequence alignment of 43 SARS-CoV-2 genomes
(available in GISAID database) was obtained using MAFFT version 7.023b
(Katoh and Standley 2013). The unrooted phylogenetic tree was
constructed using RAxML (Stamatakis et al 2008) with general
time-reversible plus gamma distribution substitution model and a rapid
bootstrap (i.e. model GTR + I + G, bootstrap = 1000). Nextstrain clades
are indicated next to the corresponding nodes and branches are colored
distinctly.
Figure 2. Comparison of SARS-CoV-2 antibody levels detected in
the acute and convalescent serum samples of the SARS-CoV-2 positive cat
and a panel of 10 negative control sera using a pentaplex Multiplex
Immunoassay (MIA). The pentaplex MIA comprised a mixture of microspheres
coupled to the nucleoproteins (NP) of SARS-CoV-2, SARS-CoV, 229E and
NL63 and the spike protein (S) of MERS-CoV. The relative antibody levels
in the serum samples are expressed as median fluorescence intensities
(MFI).