References
Ashworth, D. J., & Alloway, B. J. (2004). Soil mobility of sewage
sludge-derived dissolved organic matter, copper, nickel and zinc.Environmental Pollution, 127, 137–144.
Balakrishnan, K., Rajendran, C., & Kulandaivelu, G. (2000).
Differential responses of iron, magnesium, and zinc deficiency on
pigment composition, nutrient content, and photosynthetic activity in
tropical fruit crops. Photosynthetica, 38 (3), 477–479.
Balúchová, B., Bačík, P., Fejdi, P., & Čaplovičová, M. (2011).
Mineralogical research of the mineral dust fallout in years 2006–2008
in the area of Jelšava (Slovak Republic). Mineralia Slovaca, 43,327–334 (in Slovak, with English abstract and data description).
https://www.academia.edu/3150787/
Bart, D., Burdick, D., Chambers, R., & Hartman, J. M. (2006). Human
facilitation of Phragmites australis invasions in tidal marshes:
a review and synthesis. Wetlands Ecology and Management, 14,53–65.
Bartkowiak, A., Lemanowicz, J., & Hulisz, P. (2017). Ecological risk
assessment of heavy metals in salt-affected soils in the Natura 2000
area (Ciechocinek, north-central Poland). Environmental Science
Pollution Research, 24 (35), 27175–27187.
doi:
10.1007/s11356-017-0323-5
Beesley, L., Moreno-Jimenez, E., Gomez-Eyles, J. L., Harris, E.,
Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role
in the remediation, revegetation and restoration of contaminated soils.Environmental Pollution, 159 , 3268–3282. doi:
10.1016/j.envpol.2011.07.023
Blanár, D., Guttová, A., Mihál, I., Plášek, V., Hauer, T., Palice, Z.,
& Ujházy, K. (2019). Effect of magnesite dust pollution on biodiversity
and species composition of oak-hornbeam woodlands in the Western
Carpathians. Biologia, 74, 1591–1611.
doi:10.2478/s11756-019-00344-6
Błońska, E., Lasota, J., & Gruba, P. (2016). Effect of temperate forest
tree species on soil dehydrogenase and urease activities in relation to
other properties of soil derived from loess and glaciofluvial sand.Ecological Research, 31 (5), 655–664.
Bobro, M., & Hančuľák, J. (1997). Mineralogical properties of imission
sediments in the areas of magnesite industry. Acta Montanistica
Slovaca, 2 (3), 240–243 (in Slovak).
https://www.researchgate.net/publication/26401893/
Brozmanová, M. (2019). Report on air quality and air pollution in
the Banská Bystrica region in 2017. Banská Bystrica: Banská Bystrica
district office (in Slovak).
Chojnacka, K., Chojnacki, A., Górecka, H., & Górecki, H. (2005).
Bioavailability of heavy metals from polluted soils to plants.Science of the Total Environment, 337, 175–182.
doi:10.1016/j.scitotenv.2004.06.009
Climate-data.org. (2019, October 13). Climate-data. Retrieved from
https://en.climate-data.org/europe/slovakia/region-of-banska-bystrica-1481/.
Crock, J. G., & Severson, R. (1980). Four reference soil and rock
samples for measuring element availability in the western energy
regions. Geochemistry Survey Circular, 841 , 1–16.
Čurlík, J., & Šefčík, P. (1999). Geochemical atlas of the Slovak
Republic . Bratislava: Ministry of environment SR.
Demko, J., Machava, J., & Saniga, M. (2017). Energy Production Analysis
of Common Reed – Phragmites australis (Cav.) Trin. Folia
Oecologica, 44, 107–113.
doi:10.1515/foecol-2017-0013
Dick, W. A., Cheng, L., & Wang, P. (2000). Soil acid and alkaline
phosphatase activity as pH adjustment indicators. Soil Biology and
Biochemistry, 32, 1915–1919.
doi:10.1016/S0038-0717(00)00166-8
El-Naggar, A. H., Usman, A. R., Al-Omran, A., Ok, Y. S., Ahmad, M., &
Al-Wabel, M. I. (2015). Carbon mineralization and nutrient availability
in calcareous sandy soils amended with woody waste biochar.Chemosphere, 138 , 67–73. doi: 10.1016/j.chemosphere.2015.05.052
Fazekaš, J., Fazekašová, D., Adamišin, P., Huličová, P., & Benková, E.
(2019). Functional diversity of microorganisms in metal- and
alkali-contaminated soils of Central and North-eastern Slovakia.Soil & Water Research, 14, 32–39.
doi:10.17221/37/2018-SWR
Fazekaš, J., Fazekašová, D., Hronec, O., Benková, E., & Boltižiar, M.
(2018). Contamination of Soil and Vegetation at a magnesite mining area
of Jelšava-Lubeník (Slovakia). Ecology (Bratislava), 37 (2),
101–111.
doi:10.2478/eko-2018-0010
Fazekašová, D., Fazekaš, J., Hronec, O., & Horňak, M. (2017). Magnesium
Contamination in Soil at a Magnesite Mining Area of Jelšava-Lubeník
(Slovakia). IOP Conf. Ser.: Earth and Environmental Science, 92012012. doi:10.1088/1755-1315/92/1/012012
Fu, S. S., Li, P. J., Feng, Q., Li, X. J., Li, P., Sun, Y. B., & Chen
Y. (2011). Soil quality degradation in a magnesite mining area.Pedosphere, 21, 98–106.
doi:10.1016/S1002-0160(10)60084-7
Geological map (2019, April 6). Geological map of Spiš-Gemer Ore
Mountains in scale 1: 50 000. Bratislava: Geological institute of Dioníz
Štúr (in Slovak). Retrieved from
https://www.geology.sk/geoinfoportal/mapovy-portal/geologicke-mapy/geologicka-mapa-spissko-gemerskeho-rudohoria-m-150-000/.
Guo, W., Nazim, H., Liang, Z., & Yang, D. (2016). Magnesium deficiency
in plants: An urgent problem. The Crop Journal, 4 (2), 83–91.
doi:10.1016/j.cj.2015.11.003
Hančulák, J., & Bobro, M. (2004). Influence of Magnesite Industry on
Imission Load by Solids in the Area of Jelšava. Acta Montanistica
Slovaca, 9 (4), 401–405 (in Slovak, with English abstract and data
description). https://www.researchgate.net/publication/26403541/
Holobradý, K. (1981). The investigation of soil intoxication with
magnesium and calcium compounds . Final report . Bratislava: Soil
science and plant production research institute (in Slovak).
Hronec, O., Tóth, J., & Holobradý, K. (1992). Air pollution in
relation to soils and plants of eastern Slovakia . Bratislava: Nature
(in Slovak).
Huttmanová, E., Adamišin, P., Hronec, O., & Chovancová, J. (2015).
Possibilities of Soil Revitalization in Slovakia towards Sustainability.Europaean Journal of Sustainable development, 4 (2), 121–128.
doi:10.14207/ejsd.2015.v4n2p121
Johnson, J. L., & Temple, K. L. (1964). Some variables affecting the
measurements of catalase activity in soil. Soil Science Society of
America Journal, 28 (2), 207–209.
doi:10.2136/sssaj1964.03615995002800020024x
Kautz, G., Zimmer, M., Zach, P., Kulfan, J., & Topp, W. (2001).
Suppression of soil microorganisms by emissions of a magnesite plant in
the Slovak Republic. Water air and soil pollution, 125 (1–4),
121–132.
doi:10.1023/A:1005272000832.pdf
Kononova, M. M. (1966). Soil organic matter, its nature, origin
and role in soil fertility (2nd ed.). Oxford: Pergamon Press.
Lemanowicz, J. (2018). Dynamics of phosphorus content and the activity
of phosphatase in forest soil in the sustained nitrogen compounds
emissions zone. Environmental Science and Pollution Research,
25 (33), 33773–33782.
doi:10.1007/s11356-018-3348-5
Lemanowicz, J. (2019). Activity of selected enzymes as markers of
ecotoxicity in technogenic salinization soils. Environmental
Science and Pollution Research, 26, 13014–13024.
doi:10.1007/s11356-019-04830-x
Loginow, W., Wiśniewski, W., Gonet, S. S., & Cieścińska, B. (1987).
Fractionation of organic carbon based on susceptibility to oxidation.Polish Journal of Soil Science, 20, 47–52.
Machín, J., & Navas, A. (2000). Soil pH changes induced by
contamination by magnesium oxides dust. Land Degradation and
Development, 11, 37–50.
doi:10.1002/(SICI)1099-145X(200001/02)11:1<37::AID-LDR366>3.0.CO;2-8
Markert, B. (1992). Presence and significance of naturally occurring
chemical elements of the periodic system in the plant organism and
consequences for future investigations on inorganic environmental
chemistry in ecosystems. Vegetatio , 103 , 1–30.
Mehlich, A. (1984). Mehlich 3 soil test extractant – a modification of
Mehlich 2 extractant. Soil Science and Plant Analysis, 15,1409–1416.
Mganga, K. Z., Razavi, B. S., Sanaullah, M., & Kuzyakov, Y. (2019).
Phenological stage, plant biomass, and drought stress affect microbial
biomass and enzyme activities in the rhizosphere of Enteropogon
macrostachyus. Pedosphere, 29 (2), 259–265.
doi:10.1016/S1002-0160(18)60799-X
Mihál, I., Blanár, D., & Glejdura, S. (2015). Enhancing knowledge of
mycoflora (Myxomycota, Zygomycota, Ascomycota, Basidiomycota) in oak
hornbeam forests in the vicinity of the magnesite plants at Lubeník and
Jelšava (Central Slovakia). Thaiszia – Journal of Botany, 25 (2),
121–142. https://www.researchgate.net/publication/282666150
Nannipieri, P., Giagnoni, L., Landi, L., & Renella, G. (2011). Role of
phosphatase enzymes in soil. Soil Biology, 26, 215–243.
Novozamsky, I., Lexmond, Th. M., & Houba, V. J. G. (1993). A single
extraction procedure of soil for evaluation of uptake of some heavy
metals by plants. International Journal of Environmental
Analytical Chemistry, 51, 47–58.
Nyawade, S. O., Karanja, N. N., Gachene, Ch. K., Gitari, H. I.,
Schulte-Geldermann, E., & Parker, M. L. (2019). Short-term dynamics of
soil organic matter and microbial activity in smallholder potato-legume
intercropping systems. Applied Soil Ecology, 142, 123–135.
doi:10.1016/j.apsoil.2019.04.015
Parzych, A., & Astel, A. (2018). Accumulation of N, P, K, Mg and Ca in
20 species of herbaceous plants in headwater riparian forest.Desalination and water treatment, 117, 156–167.
doi:10.5004/dwt.2018.22202
Parzych, A., Jonczak, J., & Sobisz, Z. (2018). Bioaccumulation of
macro- and micronutrients in herbaceous plants of headwater areas - case
study from northern Poland. Journal of elementology, 23 (1),
231–245.
doi:10.5601/jelem.2017.22.1.1415
Riddle, M., Bergström, L., Schmieder, F., Lundberg, D., Condron, L., &
Cederlund, H. (2019). Impact of biochar coated with magnesium
(hydr)oxide on phosphorus leaching from organic and mineral soils.Journal of Soils and Sediments 19 , 1875–1889. doi:
10.1007/s11368-018-2197-7
Shuai, W., Chen, N., Li, B., Zhou, D., & Gao, J. (2016). Life cycle
assessment of common reed (Phragmites australis (Cav) Trin. ex
Steud) cellulosic bioethanol in Jiangsu Province, China. Biomass
and Bioenergy, 92, 40–47.
doi:10.1016/j.biombioe.2016.06.002
Šály, R., & Minďáš, J. (1995). Air pollution and soil alkalinisation in
region Jelšava-Lubeník. In: Proceedigs SFRI 19 . Bratislava: Soil
fertility research institute, pp 347–351.
Tabatabai, M. A., & Bremner, J. M. (1969). Use of p–nitrophenol
phosphate for assay of soil phosphatase activity. Soil Biology and
Biochemistry, 1, 301–307.
doi:10.1016/0038-0717(69)90012-1
Thalmann, A. (1968). The method for determination of soil dehydrogenase
activity by triphenyltetrazolium chloride (TTC). Agriculture
research, 21, 249–258.
Turčan Consulting (1992). Design of a comprehensive monitoring
system of the Jelšava-Lubeník area (technical study). Banská Bystrica:
Turčan – Consulting (in Slovak).
U.S. EPA (1993). Clean Water Act . sec. 503, vol. 58, no. 32.
Washington DC: U.S. Environmental Protection Agency.
Vyshpolsky, F., Mukhamedjanov, K., Bekbayev, U., Ibatullin, S.,
Yuldashev, T., Noble, A. D., Mirzabaev, A., Aw-Hassan, A., & Qadir, M.
(2010). Optimizing the rate and timing of phosphogypsum application to
magnesiumaffected soils for crop yield and water productivity
enhancement. Agricultural Water Management, 97, 1277–1286.
doi:10.1016/j.agwat.2010.02.020
Vyshpolski, F., Qadir, M., Karimov, A., Mukhamedjanov, H., Bekbaev, U.,
Paroda, R., Aw-Hassan, A., & Rarajeh, F. (2008). Enhancing the
productivity of high-maganesium soil and water resources in Central Asia
through the application of phosphogypsum. Land Degradation and
Development, 19, 45–56.
doi:10.1002/ldr.814
Wang, L., Tai, P., Chunyun, J., Xiaojun, L., Li, P., & Xiong, X.
(2015b). Magnesium Contamination in Soil at a Magnesite Mining Region of
Liaoning Province, China. Bulletin of Environmental Contamination
and Toxicology, 95 (1), 90–96.
doi:10.1007/s00128-015-1530-8
Wang, H. Q., Zhao, Q., Zeng, D. H., Hu, Y. L., & Yu, Z. Y. (2015a).
Remediation of a Magnesium-Contaminated Soil by Chemical Amendments and
Leaching. Land Degradation and Development, 26, 613–619.
doi:10.1002/ldr.2362
Wang, H. Q., Zhao, Q., Zhao, X. R., Wang, W. W., Wang, K. L., & Zeng,
D. H. (2014). Assessment of phytoremediation for magnesium-rich dust
contaminated soil in a magnesite mining area. Chinese Journal of
Ecology, 33 (10), 2782–2788.
https://www.researchgate.net/publication/289323190
Wei, L., Razavi, B. S., Wang, W., Zhu, Z., Liu, S., Wu, J., Kuzyakov,
Y., & Ge, T. (2019). Labile carbon matters more than temperature for
enzyme activity in paddy soil. Soil Biology and Biochemistry,
135 , 134–143.
doi:10.1016/j.soilbio.2019.04.016
Yang, D., Zeng, D. H., Zhang, J., Li, L. J., & Mao, R. (2012). Chemical
and microbial properties in contaminated soils around a magnesite mine
in northeast China. Land Degradation and Development, 23,256–262. doi:10.1002/ldr.1077
Zhang, L., Chen, W., Burger, M., Yang, L., Gong, P., & Wu, Z. (2015).
Changes in soil carbon and enzyme activity as a result of different
long-term fertilization regimes in a greenhouse field. PLoS ONE,
10 (2), e0118371.
doi:10.1371/journal.pone.0118371