References
Ashworth, D. J., & Alloway, B. J. (2004). Soil mobility of sewage sludge-derived dissolved organic matter, copper, nickel and zinc.Environmental Pollution, 127, 137–144.
Balakrishnan, K., Rajendran, C., & Kulandaivelu, G. (2000). Differential responses of iron, magnesium, and zinc deficiency on pigment composition, nutrient content, and photosynthetic activity in tropical fruit crops. Photosynthetica, 38 (3), 477–479.
Balúchová, B., Bačík, P., Fejdi, P., & Čaplovičová, M. (2011). Mineralogical research of the mineral dust fallout in years 2006–2008 in the area of Jelšava (Slovak Republic). Mineralia Slovaca, 43,327–334 (in Slovak, with English abstract and data description). https://www.academia.edu/3150787/
Bart, D., Burdick, D., Chambers, R., & Hartman, J. M. (2006). Human facilitation of Phragmites australis invasions in tidal marshes: a review and synthesis. Wetlands Ecology and Management, 14,53–65.
Bartkowiak, A., Lemanowicz, J., & Hulisz, P. (2017). Ecological risk assessment of heavy metals in salt-affected soils in the Natura 2000 area (Ciechocinek, north-central Poland). Environmental Science Pollution Research, 24 (35), 27175–27187. doi: 10.1007/s11356-017-0323-5
Beesley, L., Moreno-Jimenez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils.Environmental Pollution, 159 , 3268–3282. doi: 10.1016/j.envpol.2011.07.023
Blanár, D., Guttová, A., Mihál, I., Plášek, V., Hauer, T., Palice, Z., & Ujházy, K. (2019). Effect of magnesite dust pollution on biodiversity and species composition of oak-hornbeam woodlands in the Western Carpathians. Biologia, 74, 1591–1611. doi:10.2478/s11756-019-00344-6
Błońska, E., Lasota, J., & Gruba, P. (2016). Effect of temperate forest tree species on soil dehydrogenase and urease activities in relation to other properties of soil derived from loess and glaciofluvial sand.Ecological Research, 31 (5), 655–664.
Bobro, M., & Hančuľák, J. (1997). Mineralogical properties of imission sediments in the areas of magnesite industry. Acta Montanistica Slovaca, 2 (3), 240–243 (in Slovak). https://www.researchgate.net/publication/26401893/
Brozmanová, M. (2019). Report on air quality and air pollution in the Banská Bystrica region in 2017. Banská Bystrica: Banská Bystrica district office (in Slovak).
Chojnacka, K., Chojnacki, A., Górecka, H., & Górecki, H. (2005). Bioavailability of heavy metals from polluted soils to plants.Science of the Total Environment, 337, 175–182. doi:10.1016/j.scitotenv.2004.06.009
Climate-data.org. (2019, October 13). Climate-data. Retrieved from https://en.climate-data.org/europe/slovakia/region-of-banska-bystrica-1481/.
Crock, J. G., & Severson, R. (1980). Four reference soil and rock samples for measuring element availability in the western energy regions. Geochemistry Survey Circular, 841 , 1–16.
Čurlík, J., & Šefčík, P. (1999). Geochemical atlas of the Slovak Republic . Bratislava: Ministry of environment SR.
Demko, J., Machava, J., & Saniga, M. (2017). Energy Production Analysis of Common Reed – Phragmites australis (Cav.) Trin. Folia Oecologica, 44, 107–113. doi:10.1515/foecol-2017-0013
Dick, W. A., Cheng, L., & Wang, P. (2000). Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biology and Biochemistry, 32, 1915–1919. doi:10.1016/S0038-0717(00)00166-8
El-Naggar, A. H., Usman, A. R., Al-Omran, A., Ok, Y. S., Ahmad, M., & Al-Wabel, M. I. (2015). Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar.Chemosphere, 138 , 67–73. doi: 10.1016/j.chemosphere.2015.05.052
Fazekaš, J., Fazekašová, D., Adamišin, P., Huličová, P., & Benková, E. (2019). Functional diversity of microorganisms in metal- and alkali-contaminated soils of Central and North-eastern Slovakia.Soil & Water Research, 14, 32–39. doi:10.17221/37/2018-SWR
Fazekaš, J., Fazekašová, D., Hronec, O., Benková, E., & Boltižiar, M. (2018). Contamination of Soil and Vegetation at a magnesite mining area of Jelšava-Lubeník (Slovakia). Ecology (Bratislava), 37 (2), 101–111. doi:10.2478/eko-2018-0010
Fazekašová, D., Fazekaš, J., Hronec, O., & Horňak, M. (2017). Magnesium Contamination in Soil at a Magnesite Mining Area of Jelšava-Lubeník (Slovakia). IOP Conf. Ser.: Earth and Environmental Science, 92012012. doi:10.1088/1755-1315/92/1/012012
Fu, S. S., Li, P. J., Feng, Q., Li, X. J., Li, P., Sun, Y. B., & Chen Y. (2011). Soil quality degradation in a magnesite mining area.Pedosphere, 21, 98–106. doi:10.1016/S1002-0160(10)60084-7
Geological map (2019, April 6). Geological map of Spiš-Gemer Ore Mountains in scale 1: 50 000. Bratislava: Geological institute of Dioníz Štúr (in Slovak). Retrieved from https://www.geology.sk/geoinfoportal/mapovy-portal/geologicke-mapy/geologicka-mapa-spissko-gemerskeho-rudohoria-m-150-000/.
Guo, W., Nazim, H., Liang, Z., & Yang, D. (2016). Magnesium deficiency in plants: An urgent problem. The Crop Journal, 4 (2), 83–91. doi:10.1016/j.cj.2015.11.003
Hančulák, J., & Bobro, M. (2004). Influence of Magnesite Industry on Imission Load by Solids in the Area of Jelšava. Acta Montanistica Slovaca, 9 (4), 401–405 (in Slovak, with English abstract and data description). https://www.researchgate.net/publication/26403541/
Holobradý, K. (1981). The investigation of soil intoxication with magnesium and calcium compounds . Final report . Bratislava: Soil science and plant production research institute (in Slovak).
Hronec, O., Tóth, J., & Holobradý, K. (1992). Air pollution in relation to soils and plants of eastern Slovakia . Bratislava: Nature (in Slovak).
Huttmanová, E.,  Adamišin, P.,  Hronec, O., & Chovancová, J. (2015). Possibilities of Soil Revitalization in Slovakia towards Sustainability.Europaean Journal of Sustainable development, 4 (2), 121–128. doi:10.14207/ejsd.2015.v4n2p121
Johnson, J. L., & Temple, K. L. (1964). Some variables affecting the measurements of catalase activity in soil. Soil Science Society of America Journal, 28 (2), 207–209. doi:10.2136/sssaj1964.03615995002800020024x
Kautz, G., Zimmer, M., Zach, P., Kulfan, J., & Topp, W. (2001). Suppression of soil microorganisms by emissions of a magnesite plant in the Slovak Republic. Water air and soil pollution, 125 (1–4), 121–132. doi:10.1023/A:1005272000832.pdf
Kononova, M. M. (1966). Soil organic matter, its nature, origin and role in soil fertility (2nd ed.). Oxford: Pergamon Press.
Lemanowicz, J. (2018). Dynamics of phosphorus content and the activity of phosphatase in forest soil in the sustained nitrogen compounds emissions zone. Environmental Science and Pollution Research, 25 (33), 33773–33782. doi:10.1007/s11356-018-3348-5
Lemanowicz, J. (2019). Activity of selected enzymes as markers of ecotoxicity in technogenic salinization soils. Environmental Science and Pollution Research, 26, 13014–13024. doi:10.1007/s11356-019-04830-x
Loginow, W., Wiśniewski, W., Gonet, S. S., & Cieścińska, B. (1987). Fractionation of organic carbon based on susceptibility to oxidation.Polish Journal of Soil Science, 20, 47–52.
Machín, J., & Navas, A. (2000). Soil pH changes induced by contamination by magnesium oxides dust. Land Degradation and Development, 11, 37–50. doi:10.1002/(SICI)1099-145X(200001/02)11:1<37::AID-LDR366>3.0.CO;2-8
Markert, B. (1992). Presence and significance of naturally occurring chemical elements of the periodic system in the plant organism and consequences for future investigations on inorganic environmental chemistry in ecosystems. Vegetatio , 103 , 1–30.
Mehlich, A. (1984). Mehlich 3 soil test extractant – a modification of Mehlich 2 extractant. Soil Science and Plant Analysis, 15,1409–1416.
Mganga, K. Z., Razavi, B. S., Sanaullah, M., & Kuzyakov, Y. (2019). Phenological stage, plant biomass, and drought stress affect microbial biomass and enzyme activities in the rhizosphere of Enteropogon macrostachyus. Pedosphere, 29 (2), 259–265. doi:10.1016/S1002-0160(18)60799-X
Mihál, I., Blanár, D., & Glejdura, S. (2015). Enhancing knowledge of mycoflora (Myxomycota, Zygomycota, Ascomycota, Basidiomycota) in oak hornbeam forests in the vicinity of the magnesite plants at Lubeník and Jelšava (Central Slovakia). Thaiszia – Journal of Botany, 25 (2), 121–142. https://www.researchgate.net/publication/282666150
Nannipieri, P., Giagnoni, L., Landi, L., & Renella, G. (2011). Role of phosphatase enzymes in soil. Soil Biology, 26, 215–243.
Novozamsky, I., Lexmond, Th. M., & Houba, V. J. G. (1993). A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants. International Journal of Environmental Analytical Chemistry, 51, 47–58.
Nyawade, S. O., Karanja, N. N., Gachene, Ch. K., Gitari, H. I., Schulte-Geldermann, E., & Parker, M. L. (2019). Short-term dynamics of soil organic matter and microbial activity in smallholder potato-legume intercropping systems. Applied Soil Ecology, 142, 123–135. doi:10.1016/j.apsoil.2019.04.015
Parzych, A., & Astel, A. (2018). Accumulation of N, P, K, Mg and Ca in 20 species of herbaceous plants in headwater riparian forest.Desalination and water treatment, 117, 156–167. doi:10.5004/dwt.2018.22202
Parzych, A., Jonczak, J., & Sobisz, Z. (2018). Bioaccumulation of macro- and micronutrients in herbaceous plants of headwater areas - case study from northern Poland. Journal of elementology, 23 (1), 231–245. doi:10.5601/jelem.2017.22.1.1415
Riddle, M., Bergström, L., Schmieder, F., Lundberg, D., Condron, L., & Cederlund, H. (2019). Impact of biochar coated with magnesium (hydr)oxide on phosphorus leaching from organic and mineral soils.Journal of Soils and Sediments 19 , 1875–1889. doi: 10.1007/s11368-018-2197-7
Shuai, W., Chen, N., Li, B., Zhou, D., & Gao, J. (2016). Life cycle assessment of common reed (Phragmites australis (Cav) Trin. ex Steud) cellulosic bioethanol in Jiangsu Province, China. Biomass and Bioenergy, 92, 40–47. doi:10.1016/j.biombioe.2016.06.002
Šály, R., & Minďáš, J. (1995). Air pollution and soil alkalinisation in region Jelšava-Lubeník. In: Proceedigs SFRI 19 . Bratislava: Soil fertility research institute, pp 347–351.
Tabatabai, M. A., & Bremner, J. M. (1969). Use of p–nitrophenol phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1, 301–307. doi:10.1016/0038-0717(69)90012-1
Thalmann, A. (1968). The method for determination of soil dehydrogenase activity by triphenyltetrazolium chloride (TTC). Agriculture research, 21, 249–258.
Turčan Consulting (1992). Design of a comprehensive monitoring system of the Jelšava-Lubeník area (technical study). Banská Bystrica: Turčan – Consulting (in Slovak).
U.S. EPA (1993). Clean Water Act . sec. 503, vol. 58, no. 32. Washington DC: U.S. Environmental Protection Agency.
Vyshpolsky, F., Mukhamedjanov, K., Bekbayev, U., Ibatullin, S., Yuldashev, T., Noble, A. D., Mirzabaev, A., Aw-Hassan, A., & Qadir, M. (2010). Optimizing the rate and timing of phosphogypsum application to magnesiumaffected soils for crop yield and water productivity enhancement. Agricultural Water Management, 97, 1277–1286. doi:10.1016/j.agwat.2010.02.020
Vyshpolski, F., Qadir, M., Karimov, A., Mukhamedjanov, H., Bekbaev, U., Paroda, R., Aw-Hassan, A., & Rarajeh, F. (2008). Enhancing the productivity of high-maganesium soil and water resources in Central Asia through the application of phosphogypsum. Land Degradation and Development, 19, 45–56. doi:10.1002/ldr.814
Wang, L., Tai, P., Chunyun, J., Xiaojun, L., Li, P., & Xiong, X. (2015b). Magnesium Contamination in Soil at a Magnesite Mining Region of Liaoning Province, China. Bulletin of Environmental Contamination and Toxicology, 95 (1), 90–96. doi:10.1007/s00128-015-1530-8
Wang, H. Q., Zhao, Q., Zeng, D. H., Hu, Y. L., & Yu, Z. Y. (2015a). Remediation of a Magnesium-Contaminated Soil by Chemical Amendments and Leaching. Land Degradation and Development, 26, 613–619. doi:10.1002/ldr.2362
Wang, H. Q., Zhao, Q., Zhao, X. R., Wang, W. W., Wang, K. L., & Zeng, D. H. (2014). Assessment of phytoremediation for magnesium-rich dust contaminated soil in a magnesite mining area. Chinese Journal of Ecology, 33 (10), 2782–2788. https://www.researchgate.net/publication/289323190
Wei, L., Razavi, B. S., Wang, W., Zhu, Z., Liu, S., Wu, J., Kuzyakov, Y., & Ge, T. (2019). Labile carbon matters more than temperature for enzyme activity in paddy soil. Soil Biology and Biochemistry, 135 , 134–143. doi:10.1016/j.soilbio.2019.04.016
Yang, D., Zeng, D. H., Zhang, J., Li, L. J., & Mao, R. (2012). Chemical and microbial properties in contaminated soils around a magnesite mine in northeast China. Land Degradation and Development, 23,256–262. doi:10.1002/ldr.1077
Zhang, L., Chen, W., Burger, M., Yang, L., Gong, P., & Wu, Z. (2015). Changes in soil carbon and enzyme activity as a result of different long-term fertilization regimes in a greenhouse field. PLoS ONE, 10 (2), e0118371. doi:10.1371/journal.pone.0118371