Figure 4. Projected overlap of distributions of P. americana and P. pennsylvanica in 2050 at RCP2.6 (top left), RCP4.5 (top right), RCP6.0 (bottom left), and RCP8.5 (bottom right). Red indicates locations that are only suitable for P. americana, blue indicates locations that are only suitable for P. pennsylvanica, and purple indicates locations that are suitable for both taxa.
Data Accessibility:
The data used in this study have been uploaded to the Open Science Framework, and can be accessed at the following doi: https://doi.org/10.17605/OSF.IO/B5H3A.

REFERENCES

Anderson, R. P. (2017). When and how should biotic interactions be considered in models of species niches and distributions? Journal of Biogeography , 44 (1), 8–17. doi: 10.1111/jbi.12825
Araujo, M. B., & Pearson, R. G. (2005). Equilibrium of species’ distributions with climate. FORUM , 28 (5), 693–695.
Araújo, M. B., Pearson, R. G., Thuiller, W., & Erhard, M. (2005). Validation of species-climate impact models under climate change.Global Change Biology , 11 (9), 1504–1513. doi: 10.1111/j.1365-2486.2005.01000.x
Arnold, S. J., & Wade, M. J. (1984). On the Measurement of Natural and Sexual Selection: Theory. Evolution , 38 (4), 709–719. doi: 10.1111/j.1558-5646.1984.tb00344.x
Balduf, W. V. (1939). Food habits of phymata pennsylvanica Americana melin (hemip.). The Canadian Entomologist , 71 (3), 66–74. doi: 10.4039/Ent7166-3
Balduf, W. V. (1941). Life History of Phymata Pennsylvanica Americana Melin (Phymatidae, Hemiptera). Annals of the Entomological Society of America , 34 (1), 204–214. doi: 10.1093/aesa/34.1.204
Bulgarella, M., Trewick, S. A., Minards, N. A., Jacobson, M. J., & Morgan-Richards, M. (2014). Shifting ranges of two tree weta species (Hemideina spp.): Competitive exclusion and changing climate.Journal of Biogeography , 41 (3), 524–535. doi: 10.1111/jbi.12224
Ceccarelli, S., & Rabinovich, J. E. (2015). Global Climate Change Effects on Venezuela’s Vulnerability to Chagas Disease is Linked to the Geographic Distribution of Five Triatomine Species. Journal of Medical Entomology , 52 (6), 1333–1343. doi: 10.1093/jme/tjv119
Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science , 333 (6045), 1024–1026. doi: 10.1126/science.1206432
Darwell, C. T., & Althoff, D. M. (2017). The relative contributions of competition and abiotic tolerances in determining the geographical distributions of four closely related Yucca species in Texas.Journal of Biogeography , 44 (6), 1373–1382. doi: 10.1111/jbi.12907
Dowling, C. R. (2015). Using Maxent modeling to predict habitat of mountain pine beetle in response to climate change . doi: 10.1017/CBO9781107415324.004
Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range-shifting species. Methods in Ecology and Evolution ,1 (4), 330–342. doi: 10.1111/j.2041-210x.2010.00036.x
Elith, J., & Leathwick, J. R. (2009). Species Distribution Models: Ecological Explanation and Prediction Across Space and Time.Annual Review of Ecology, Evolution, and Systematics ,40 (1), 677–697. doi: 10.1146/annurev.ecolsys.110308.120159
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology , 37 (12), 4302–4315. doi: 10.1002/joc.5086
Goldberg, E. E., & Lande, R. (2007). Species’ Borders and Dispersal Barriers. The American Naturalist , 170 (2), 297–304.
Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters ,8 (9), 993–1009. doi: 10.1111/j.1461-0248.2005.00792.x
Guo, Q., Sax, D. F., Qian, H., & Early, R. (2012). Latitudinal shifts of introduced species: Possible causes and implications.Biological Invasions , 14 (3), 547–556. doi: 10.1007/s10530-011-0094-8
Hickling, R., Roy, D. B., Hill, J. K., Fox, R., & Thomas, C. D. (2006). The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology , 12 (3), 450–455. doi: 10.1111/j.1365-2486.2006.01116.x
Hof, A. R., Jansson, R., & Nilsson, C. (2012). How biotic interactions may alter future predictions of species distributions: Future threats to the persistence of the arctic fox in Fennoscandia. Diversity and Distributions , 18 (6), 554–562. doi: 10.1111/j.1472-4642.2011.00876.x
Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology , 415–427. doi: http://dx.doi.org/10.1101/SQB.1957.022.01.039
Leach, K., Montgomery, W. I., & Reid, N. (2016). Modelling the influence of biotic factors on species distribution patterns.Ecological Modelling , 337 , 96–106. doi: 10.1016/j.ecolmodel.2016.06.008
Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., & Ackerly, D. D. (2009). The velocity of climate change. Nature ,462 (7276), 1052–1055. doi: 10.1038/nature08649
Lozier, J. D., Aniello, P., & Hickerson, M. J. (2009). Predicting the distribution of Sasquatch in western North America: Anything goes with ecological niche modelling. Journal of Biogeography ,36 (9), 1623–1627. doi: 10.1111/j.1365-2699.2009.02152.x
Malcolm, J. R., Markham, A., Neilson, R. P., & Garaci, M. (2002). Estimated migration rates under scenarios of global climate change.Journal of Biogeography , 29 (7), 835–849. doi: 10.1046/j.1365-2699.2002.00702.x
Mason, L. G. (1976). Habitat and Phenetic Variation in Phymata Americana Melin (Heteroptera: Phymatidae). II. Climate and Temporal Variation in Color Pattern. Systematic Zoology , 25 (2), 123. doi: 10.2307/2412738
Masonick, P., Michael, A., Frankenberg, S., Rabitsch, W., & Weirauch, C. (2017). Molecular phylogenetics and biogeography of the ambush bugs (Hemiptera: Reduviidae: Phymatinae). Molecular Phylogenetics and Evolution , 114 , 225–233. doi: 10.1016/j.ympev.2017.06.010
Masonick, P., & Weirauch, C. (2020). Integrative species delimitation in Nearctic ambush bugs (Heteroptera: Reduviidae: Phymatinae): insights from molecules, geometric morphometrics and ecological associations.Systematic Entomology , 45 (1), 205–223. doi: 10.1111/syen.12388
Menzel, A., Bairlein, F., Post, E., Beebee, T. J. C., Convey, P., Fromentin, J.-M., … Parmesan, C. (2002). Ecological responses to recent climate change. Nature , 416 (6879), 389–395. doi: 10.1038/416389a
Ning, S., Wei, J., & Feng, J. (2017). Predicting the current potential and future world wide distribution of the onion maggot, Delia antiqua using maximum entropy ecological niche modeling. PLoS ONE ,12 (2), 1–15. doi: 10.1371/journal.pone.0171190
Njiru, M., Mkumbo, O. C., & van der Knaap, M. (2010). Some possible factors leading to decline in fish species in Lake Victoria.Aquatic Ecosystem Health & Management , 13 (1), 3–10. doi: 10.1080/14634980903566253
Parmesan, C. (2006). Ecological and Evolutionary Responses to Recent Climate Change. Annual Review of Ecology, Evolution, and Systematics , 37 (1), 637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100
Parra, J. L., & Monahan, W. B. (2008). Variability in 20th century climate change reconstructions and its consequences for predicting geographic responses of California mammals. Global Change Biology , 14 (10), 2215–2231. doi: 10.1111/j.1365-2486.2008.01649.x
Pfennig, K. S., Kelly, A. L., & Pierce, A. A. (2016). Hybridization as a facilitator of species range expansion. Proceedings of the Royal Society B: Biological Sciences , 283 (1839), 20161329. doi: 10.1098/rspb.2016.1329
Punzalan, D., Rodd, F. H., & Rowe, L. (2008a). Contemporary sexual selection on sexually dimorphic traits in the ambush bug Phymata americana. Behavioral Ecology , 19 (4), 860–870. doi: 10.1093/beheco/arn042
Punzalan, D., Rodd, F. H., & Rowe, L. (2008b). Sexual selection mediated by the thermoregulatory effects of male colour pattern in the ambush bug Phymata americana . Proceedings of the Royal Society B: Biological Sciences , 275 (1634), 483–492. doi: 10.1098/rspb.2007.1585
Punzalan, D., Rodd, F. H., & Rowe, L. (2010). Temporally Variable Multivariate Sexual Selection on Sexually Dimorphic Traits in a Wild Insect Population. The American Naturalist , 175 (4), 401–414. doi: 10.1086/650719
Punzalan, D., & Rowe, L. (2015). Evolution of sexual dimorphism in phenotypic covariance structure in Phymata . Evolution ,69 (6), 1597–1609. doi: 10.1111/evo.12680
Punzalan, D., & Rowe, L. (2017). Hybridisation and lack of prezygotic barriers between Phymata pennsylvanica and americana. Ecological Entomology , 42 (2), 210–220. doi: 10.1111/een.12380
Rebelo, H., & Jones, G. (2010). Ground validation of presence-only modelling with rare species: A case study on barbastelles Barbastella barbastellus (Chiroptera: Vespertilionidae). Journal of Applied Ecology , 47 (2), 410–420. doi: 10.1111/j.1365-2664.2009.01765.x
Rebelo, H., Tarroso, P., & Jones, G. (2010). Predicted impact of climate change on European bats in relation to their biogeographic patterns. Global Change Biology , 16 (2), 561–576. doi: 10.1111/j.1365-2486.2009.02021.x
Swanson, D. R. (2013). A Review of the Ambush Bugs (Heteroptera: Reduviidae: Phymatinae) of Michigan: Identification and Additional Considerations for Two Common Eastern Species. The Great Lakes Entomologist , 46 (3–4), 154–164.
Taylor, S. A., Larson, E. L., & Harrison, R. G. (2015). Hybrid Zones: Windows on Climate Change. Trends in Ecology & Evolution ,30 (7), 398–406. doi: 10.1016/j.tree.2015.04.010
Tiago, P., Pereira, H. M., & Capinha, C. (2017). Using citizen science data to estimate climatic niches and species distributions. Basic and Applied Ecology , 20 , 75–85. doi: 10.1016/j.baae.2017.04.001
Urbani, F., D’Alessandro, P., & Biondi, M. (2017). Using Maximum Entropy Modeling (MaxEnt) to predict future trends in the distribution of high altitude endemic insects in response to climate change.Bulletin of Insectology , 70 (2), 189–200.
Vallejo-Marín, M., & Hiscock, S. J. (2016, September 23). Hybridization and hybrid speciation under global change. The New Phytologist , Vol. 211, pp. 1170–1187. doi: 10.1111/nph.14004
Wang, R., Li, Q., He, S., Liu, Y., Wang, M., & Jiang, G. (2018). Modeling and mapping the current and future distribution of Pseudomonas syringae pv. Actinidiae under climate change in China. PLoS ONE ,13 , 1–21.
Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., … Zimmermann, N. E. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions , 14 (5), 763–773. doi: 10.1111/j.1472-4642.2008.00482.x
Yong, T. (2005). Prey Capture by a Generalist Predator on Flowering and Nonflowering Ambush Sites: Are Inflorescences Higher Quality Hunting Sites? Environmental Entomology , 34 (4), 969–976. doi: 10.1603/0046-225x-34.4.969

BIOSKETCH

VMZ and DP conceived of the study and contributed to the study design. DP collected the Phymata species occurrence data. VMZ collected the environmental data, conducted the modelling work and created the ArcMap figures. All authors contributed to the writing of the manuscript.