Figure 4. Projected overlap of
distributions of P. americana and P. pennsylvanica in 2050 at RCP2.6
(top left), RCP4.5 (top right), RCP6.0 (bottom left), and RCP8.5 (bottom
right). Red indicates locations that are only suitable for P. americana,
blue indicates locations that are only suitable for P. pennsylvanica,
and purple indicates locations that are suitable for both taxa.
Data Accessibility:
The data used in this study have been uploaded to the Open Science
Framework, and can be accessed at the following doi:
https://doi.org/10.17605/OSF.IO/B5H3A.
REFERENCES
Anderson, R. P. (2017). When and how should biotic interactions be
considered in models of species niches and distributions? Journal
of Biogeography , 44 (1), 8–17. doi: 10.1111/jbi.12825
Araujo, M. B., & Pearson, R. G. (2005). Equilibrium of species’
distributions with climate. FORUM , 28 (5), 693–695.
Araújo, M. B., Pearson, R. G., Thuiller, W., & Erhard, M. (2005).
Validation of species-climate impact models under climate change.Global Change Biology , 11 (9), 1504–1513. doi:
10.1111/j.1365-2486.2005.01000.x
Arnold, S. J., & Wade, M. J. (1984). On the Measurement of Natural and
Sexual Selection: Theory. Evolution , 38 (4), 709–719. doi:
10.1111/j.1558-5646.1984.tb00344.x
Balduf, W. V. (1939). Food habits of phymata pennsylvanica Americana
melin (hemip.). The Canadian Entomologist , 71 (3), 66–74.
doi: 10.4039/Ent7166-3
Balduf, W. V. (1941). Life History of Phymata Pennsylvanica Americana
Melin (Phymatidae, Hemiptera). Annals of the Entomological Society
of America , 34 (1), 204–214. doi: 10.1093/aesa/34.1.204
Bulgarella, M., Trewick, S. A., Minards, N. A., Jacobson, M. J., &
Morgan-Richards, M. (2014). Shifting ranges of two tree weta species
(Hemideina spp.): Competitive exclusion and changing climate.Journal of Biogeography , 41 (3), 524–535. doi:
10.1111/jbi.12224
Ceccarelli, S., & Rabinovich, J. E. (2015). Global Climate Change
Effects on Venezuela’s Vulnerability to Chagas Disease is Linked to the
Geographic Distribution of Five Triatomine Species. Journal of
Medical Entomology , 52 (6), 1333–1343. doi: 10.1093/jme/tjv119
Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D.
(2011). Rapid range shifts of species associated with high levels of
climate warming. Science , 333 (6045), 1024–1026. doi:
10.1126/science.1206432
Darwell, C. T., & Althoff, D. M. (2017). The relative contributions of
competition and abiotic tolerances in determining the geographical
distributions of four closely related Yucca species in Texas.Journal of Biogeography , 44 (6), 1373–1382. doi:
10.1111/jbi.12907
Dowling, C. R. (2015). Using Maxent modeling to predict habitat of
mountain pine beetle in response to climate change . doi:
10.1017/CBO9781107415324.004
Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling
range-shifting species. Methods in Ecology and Evolution ,1 (4), 330–342. doi: 10.1111/j.2041-210x.2010.00036.x
Elith, J., & Leathwick, J. R. (2009). Species Distribution Models:
Ecological Explanation and Prediction Across Space and Time.Annual Review of Ecology, Evolution, and Systematics ,40 (1), 677–697. doi: 10.1146/annurev.ecolsys.110308.120159
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial
resolution climate surfaces for global land areas. International
Journal of Climatology , 37 (12), 4302–4315. doi:
10.1002/joc.5086
Goldberg, E. E., & Lande, R. (2007). Species’ Borders and Dispersal
Barriers. The American Naturalist , 170 (2), 297–304.
Guisan, A., & Thuiller, W. (2005). Predicting species distribution:
Offering more than simple habitat models. Ecology Letters ,8 (9), 993–1009. doi: 10.1111/j.1461-0248.2005.00792.x
Guo, Q., Sax, D. F., Qian, H., & Early, R. (2012). Latitudinal shifts
of introduced species: Possible causes and implications.Biological Invasions , 14 (3), 547–556. doi:
10.1007/s10530-011-0094-8
Hickling, R., Roy, D. B., Hill, J. K., Fox, R., & Thomas, C. D. (2006).
The distributions of a wide range of taxonomic groups are expanding
polewards. Global Change Biology , 12 (3), 450–455. doi:
10.1111/j.1365-2486.2006.01116.x
Hof, A. R., Jansson, R., & Nilsson, C. (2012). How biotic interactions
may alter future predictions of species distributions: Future threats to
the persistence of the arctic fox in Fennoscandia. Diversity and
Distributions , 18 (6), 554–562. doi:
10.1111/j.1472-4642.2011.00876.x
Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor
Symposia on Quantitative Biology , 415–427. doi:
http://dx.doi.org/10.1101/SQB.1957.022.01.039
Leach, K., Montgomery, W. I., & Reid, N. (2016). Modelling the
influence of biotic factors on species distribution patterns.Ecological Modelling , 337 , 96–106. doi:
10.1016/j.ecolmodel.2016.06.008
Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B.,
& Ackerly, D. D. (2009). The velocity of climate change. Nature ,462 (7276), 1052–1055. doi: 10.1038/nature08649
Lozier, J. D., Aniello, P., & Hickerson, M. J. (2009). Predicting the
distribution of Sasquatch in western North America: Anything goes with
ecological niche modelling. Journal of Biogeography ,36 (9), 1623–1627. doi: 10.1111/j.1365-2699.2009.02152.x
Malcolm, J. R., Markham, A., Neilson, R. P., & Garaci, M. (2002).
Estimated migration rates under scenarios of global climate change.Journal of Biogeography , 29 (7), 835–849. doi:
10.1046/j.1365-2699.2002.00702.x
Mason, L. G. (1976). Habitat and Phenetic Variation in Phymata Americana
Melin (Heteroptera: Phymatidae). II. Climate and Temporal Variation in
Color Pattern. Systematic Zoology , 25 (2), 123. doi:
10.2307/2412738
Masonick, P., Michael, A., Frankenberg, S., Rabitsch, W., & Weirauch,
C. (2017). Molecular phylogenetics and biogeography of the ambush bugs
(Hemiptera: Reduviidae: Phymatinae). Molecular Phylogenetics and
Evolution , 114 , 225–233. doi: 10.1016/j.ympev.2017.06.010
Masonick, P., & Weirauch, C. (2020). Integrative species delimitation
in Nearctic ambush bugs (Heteroptera: Reduviidae: Phymatinae): insights
from molecules, geometric morphometrics and ecological associations.Systematic Entomology , 45 (1), 205–223. doi:
10.1111/syen.12388
Menzel, A., Bairlein, F., Post, E., Beebee, T. J. C., Convey, P.,
Fromentin, J.-M., … Parmesan, C. (2002). Ecological responses to
recent climate change. Nature , 416 (6879), 389–395. doi:
10.1038/416389a
Ning, S., Wei, J., & Feng, J. (2017). Predicting the current potential
and future world wide distribution of the onion maggot, Delia antiqua
using maximum entropy ecological niche modeling. PLoS ONE ,12 (2), 1–15. doi: 10.1371/journal.pone.0171190
Njiru, M., Mkumbo, O. C., & van der Knaap, M. (2010). Some possible
factors leading to decline in fish species in Lake Victoria.Aquatic Ecosystem Health & Management , 13 (1), 3–10. doi:
10.1080/14634980903566253
Parmesan, C. (2006). Ecological and Evolutionary Responses to Recent
Climate Change. Annual Review of Ecology, Evolution, and
Systematics , 37 (1), 637–669. doi:
10.1146/annurev.ecolsys.37.091305.110100
Parra, J. L., & Monahan, W. B. (2008). Variability in 20th century
climate change reconstructions and its consequences for predicting
geographic responses of California mammals. Global Change
Biology , 14 (10), 2215–2231. doi:
10.1111/j.1365-2486.2008.01649.x
Pfennig, K. S., Kelly, A. L., & Pierce, A. A. (2016). Hybridization as
a facilitator of species range expansion. Proceedings of the Royal
Society B: Biological Sciences , 283 (1839), 20161329. doi:
10.1098/rspb.2016.1329
Punzalan, D., Rodd, F. H., & Rowe, L. (2008a). Contemporary sexual
selection on sexually dimorphic traits in the ambush bug Phymata
americana. Behavioral Ecology , 19 (4), 860–870. doi:
10.1093/beheco/arn042
Punzalan, D., Rodd, F. H., & Rowe, L. (2008b). Sexual selection
mediated by the thermoregulatory effects of male colour pattern in the
ambush bug Phymata americana . Proceedings of the Royal
Society B: Biological Sciences , 275 (1634), 483–492. doi:
10.1098/rspb.2007.1585
Punzalan, D., Rodd, F. H., & Rowe, L. (2010). Temporally Variable
Multivariate Sexual Selection on Sexually Dimorphic Traits in a Wild
Insect Population. The American Naturalist , 175 (4),
401–414. doi: 10.1086/650719
Punzalan, D., & Rowe, L. (2015). Evolution of sexual dimorphism in
phenotypic covariance structure in Phymata . Evolution ,69 (6), 1597–1609. doi: 10.1111/evo.12680
Punzalan, D., & Rowe, L. (2017). Hybridisation and lack of prezygotic
barriers between Phymata pennsylvanica and americana. Ecological
Entomology , 42 (2), 210–220. doi: 10.1111/een.12380
Rebelo, H., & Jones, G. (2010). Ground validation of presence-only
modelling with rare species: A case study on barbastelles Barbastella
barbastellus (Chiroptera: Vespertilionidae). Journal of Applied
Ecology , 47 (2), 410–420. doi: 10.1111/j.1365-2664.2009.01765.x
Rebelo, H., Tarroso, P., & Jones, G. (2010). Predicted impact of
climate change on European bats in relation to their biogeographic
patterns. Global Change Biology , 16 (2), 561–576. doi:
10.1111/j.1365-2486.2009.02021.x
Swanson, D. R. (2013). A Review of the Ambush Bugs (Heteroptera:
Reduviidae: Phymatinae) of Michigan: Identification and Additional
Considerations for Two Common Eastern Species. The Great Lakes
Entomologist , 46 (3–4), 154–164.
Taylor, S. A., Larson, E. L., & Harrison, R. G. (2015). Hybrid Zones:
Windows on Climate Change. Trends in Ecology & Evolution ,30 (7), 398–406. doi: 10.1016/j.tree.2015.04.010
Tiago, P., Pereira, H. M., & Capinha, C. (2017). Using citizen science
data to estimate climatic niches and species distributions. Basic
and Applied Ecology , 20 , 75–85. doi: 10.1016/j.baae.2017.04.001
Urbani, F., D’Alessandro, P., & Biondi, M. (2017). Using Maximum
Entropy Modeling (MaxEnt) to predict future trends in the distribution
of high altitude endemic insects in response to climate change.Bulletin of Insectology , 70 (2), 189–200.
Vallejo-Marín, M., & Hiscock, S. J. (2016, September 23). Hybridization
and hybrid speciation under global change. The New Phytologist ,
Vol. 211, pp. 1170–1187. doi: 10.1111/nph.14004
Wang, R., Li, Q., He, S., Liu, Y., Wang, M., & Jiang, G. (2018).
Modeling and mapping the current and future distribution of Pseudomonas
syringae pv. Actinidiae under climate change in China. PLoS ONE ,13 , 1–21.
Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H.,
Guisan, A., … Zimmermann, N. E. (2008). Effects of sample size on
the performance of species distribution models. Diversity and
Distributions , 14 (5), 763–773. doi:
10.1111/j.1472-4642.2008.00482.x
Yong, T. (2005). Prey Capture by a Generalist Predator on Flowering and
Nonflowering Ambush Sites: Are Inflorescences Higher Quality Hunting
Sites? Environmental Entomology , 34 (4), 969–976. doi:
10.1603/0046-225x-34.4.969
BIOSKETCH
VMZ and DP conceived of the study and contributed to the study design.
DP collected the Phymata species occurrence data. VMZ collected
the environmental data, conducted the modelling work and created the
ArcMap figures. All authors contributed to the writing of the
manuscript.