REFERENCES
1. Fokkens WJ, Lund VJ, Hopkins C, et al. European Position Paper on
Rhinosinusitis and Nasal Polyps 2020. Rhinology. 2020;58(Suppl
S29):1-464.
2. van der Veen J, Seys SF, Timmermans M, et al. Real-life study showing
uncontrolled rhinosinusitis after sinus surgery in a tertiary referral
centre. Allergy. 2017;72(2):282-290.
3. Djukic V, Dudvarski Z, Arsovic N, Dimitrijevic M, Janosevic L.
Clinical outcomes and quality of life in patients with nasal polyposis
after functional endoscopic sinus surgery. European Archives of
Oto-Rhino-Laryngology. 2015;272(1):83-89.
4. Van Zele T, Holtappels G, Gevaert P, Bachert C. Differences in
initial immunoprofiles between recurrent and nonrecurrent chronic
rhinosinusitis with nasal polyps. Am J Rhinol Allergy.2014;28(3):192-198.
5. De Schryver E, Calus L, Bonte H, et al. The quest for autoreactive
antibodies in nasal polyps. J Allergy Clin Immunol.2016;138(3):893-895 e895.
6. Tan BK, Li QZ, Suh L, et al. Evidence for intranasal antinuclear
autoantibodies in patients with chronic rhinosinusitis with nasal
polyps. J Allergy Clin Immunol. 2011;128(6):1198-1206 e1191.
7. Cao PP, Zhang YN, Liao B, et al. Increased local IgE production
induced by common aeroallergens and phenotypic alteration of mast cells
in Chinese eosinophilic, but not non-eosinophilic, chronic
rhinosinusitis with nasal polyps. Clin Exp Allergy.2014;44(5):690-700.
8. Song J, Wang H, Zhang Y-N, et al. Ectopic lymphoid tissues support
local immunoglobulin production in patients with chronic rhinosinusitis
with nasal polyps. Journal of Allergy and Clinical Immunology.2018;141(3):927-937.
9. Lau A, Lester S, Moraitis S, et al. Tertiary lymphoid organs in
recalcitrant chronic rhinosinusitis. Journal of Allergy and
Clinical Immunology. 2017;139(4):1371-1373.
10. Neyt K, Perros F, GeurtsvanKessel CH, Hammad H, Lambrecht BN.
Tertiary lymphoid organs in infection and autoimmunity. Trends
Immunol. 2012;33(6):297-305.
11. Drayton DL, Liao S, Mounzer RH, Ruddle NH. Lymphoid organ
development: from ontogeny to neogenesis. Nat Immunol.2006;7(4):344-353.
12. Cupedo T, Kraal G, Mebius RE. The role of CD45+CD4+CD3- cells in
lymphoid organ development. Immunol Rev. 2002;189:41-50.
13. Bracke KR, Verhamme FM, Seys LJ, et al. Role of CXCL13 in cigarette
smoke-induced lymphoid follicle formation and chronic obstructive
pulmonary disease. Am J Respir Crit Care Med.2013;188(3):343-355.
14. de Chaisemartin L, Goc J, Damotte D, et al. Characterization of
chemokines and adhesion molecules associated with T cell presence in
tertiary lymphoid structures in human lung cancer. Cancer Res.2011;71(20):6391-6399.
15. Salomonsson S, Larsson P, Tengner P, Mellquist E, Hjelmstrom P,
Wahren-Herlenius M. Expression of the B cell-attracting chemokine CXCL13
in the target organ and autoantibody production in ectopic lymphoid
tissue in the chronic inflammatory disease Sjogren’s syndrome.Scand J Immunol. 2002;55(4):336-342.
16. Di Carlo E, D’Antuono T, Contento S, Di Nicola M, Ballone E,
Sorrentino C. Quilty effect has the features of lymphoid neogenesis and
shares CXCL13-CXCR5 pathway with recurrent acute cardiac rejections.Am J Transplant. 2007;7(1):201-210.
17. Yamamoto K, Nishiumi S, Yang L, et al. Anti-CXCL13 antibody can
inhibit the formation of gastric lymphoid follicles induced by
Helicobacter infection. Mucosal Immunol. 2014;7(5):1244-1254.
18. Fleige H, Ravens S, Moschovakis GL, et al. IL-17-induced CXCL12
recruits B cells and induces follicle formation in BALT in the absence
of differentiated FDCs. Journal of Experimental Medicine.2014;211(4):643-651.
19. Rangel-Moreno J, Carragher DM, de la Luz Garcia-Hernandez M, et al.
The development of inducible bronchus-associated lymphoid tissue depends
on IL-17. Nat Immunol. 2011;12(7):639-646.
20. Miljkovic D, Psaltis AJ, Wormald PJ, Vreugde S. Chronic
Rhinosinusitis with Polyps Is Characterized by Increased Mucosal and
Blood Th17 Effector Cytokine Producing Cells. Front Physiol.2017;8:898.
21. Ma J, Shi LL, Deng YK, et al. CD8(+) T cells with distinct
cytokine-producing features and low cytotoxic activity in eosinophilic
and non-eosinophilic chronic rhinosinusitis with nasal polyps.Clin Exp Allergy. 2016;46(9):1162-1175.
22. Zhai GT, Wang H, Li JX, et al. IgD-activated mast cells induce IgE
synthesis in B cells in nasal polyps. J Allergy Clin Immunol.2018;142(5):1489-1499 e1423.
23. Barone F, Nayar S, Campos J, et al. IL-22 regulates lymphoid
chemokine production and assembly of tertiary lymphoid organs.Proc Natl Acad Sci U S A. 2015;112(35):11024-11029.
24. Osorio F, LeibundGut-Landmann S, Lochner M, et al. DC activated via
dectin-1 convert Treg into IL-17 producers. Eur J Immunol.2008;38(12):3274-3281.
25. Zhang Z, Biagini Myers JM, Brandt EB, et al. beta-Glucan exacerbates
allergic asthma independent of fungal sensitization and promotes
steroid-resistant TH2/TH17 responses. J Allergy Clin Immunol.2017;139(1):54-65 e58.
26. Ryu JH, Yoo JY, Kim MJ, et al. Distinct TLR-mediated pathways
regulate house dust mite-induced allergic disease in the upper and lower
airways. J Allergy Clin Immunol. 2013;131(2):549-561.
27. Zhang XH, Zhang YN, Li HB, et al. Overexpression of miR-125b, a
novel regulator of innate immunity, in eosinophilic chronic
rhinosinusitis with nasal polyps. Am J Respir Crit Care Med.2012;185(2):140-151.
28. Seys LJ, Verhamme FM, Schinwald A, et al. Role of B Cell-Activating
Factor in Chronic Obstructive Pulmonary Disease. Am J Respir Crit
Care Med. 2015;192(6):706-718.
29. Hahnlein JS, Nadafi R, de Jong T, et al. Impaired lymph node stromal
cell function during the earliest phases of rheumatoid arthritis.Arthritis Res Ther. 2018;20(1):35.
30. Fletcher AL, Malhotra D, Acton SE, et al. Reproducible isolation of
lymph node stromal cells reveals site-dependent differences in
fibroblastic reticular cells. Front Immunol. 2011;2:35.
31. Deteix C, Attuil-Audenis V, Duthey A, et al. Intragraft Th17
infiltrate promotes lymphoid neogenesis and hastens clinical chronic
rejection. J Immunol. 2010;184(9):5344-5351.
32. Peters A, Pitcher LA, Sullivan JM, et al. Th17 cells induce ectopic
lymphoid follicles in central nervous system tissue inflammation.Immunity. 2011;35(6):986-996.
33. Libbey JE, Tsunoda I, Fujinami RS. Possible role of interleukin-17
in a prime/challenge model of multiple sclerosis. Journal of
Neurovirology. 2012;18(6):471-478.
34. Endres R, Alimzhanov MB, Plitz T, et al. Mature follicular dendritic
cell networks depend on expression of lymphotoxin beta receptor by
radioresistant stromal cells and of lymphotoxin beta and tumor necrosis
factor by B cells. J Exp Med. 1999;189(1):159-168.
35. Tumanov A, Kuprash D, Lagarkova M, et al. Distinct role of surface
lymphotoxin expressed by B cells in the organization of secondary
lymphoid tissues. Immunity. 2002;17(3):239-250.
36. Ansel KM, Ngo VN, Hyman PL, et al. A chemokine-driven positive
feedback loop organizes lymphoid follicles. Nature.2000;406(6793):309-314.
37. Suto H, Katakai T, Sugai M, Kinashi T, Shimizu A. CXCL13 production
by an established lymph node stromal cell line via lymphotoxin-beta
receptor engagement involves the cooperation of multiple signaling
pathways. Int Immunol. 2009;21(4):467-476.
38. Yu P, Wang Y, Chin RK, et al. B cells control the migration of a
subset of dendritic cells into B cell follicles via CXC chemokine ligand
13 in a lymphotoxin-dependent fashion. J Immunol.2002;168(10):5117-5123.
39. van de Pavert SA, Olivier BJ, Goverse G, et al. Chemokine CXCL13 is
essential for lymph node initiation and is induced by retinoic acid and
neuronal stimulation. Nat Immunol. 2009;10(11):1193-1199.
40. Ansel KM, Cyster JG. Chemokines in lymphopoiesis and lymphoid organ
development. Curr Opin Immunol. 2001;13(2):172-179.
41. Fletcher AL, Acton SE, Knoblich K. Lymph node fibroblastic reticular
cells in health and disease. Nat Rev Immunol. 2015;15(6):350-361.
42. Malhotra D, Fletcher AL, Astarita J, et al. Transcriptional
profiling of stroma from inflamed and resting lymph nodes defines
immunological hallmarks. Nat Immunol. 2012;13(5):499-510.
43. Onder L, Danuser R, Scandella E, et al. Endothelial cell-specific
lymphotoxin-beta receptor signaling is critical for lymph node and high
endothelial venule formation. J Exp Med. 2013;210(3):465-473.
44. Motallebzadeh R, Rehakova S, Conlon TM, et al. Blocking lymphotoxin
signaling abrogates the development of ectopic lymphoid tissue within
cardiac allografts and inhibits effector antibody responses. FASEB
J. 2012;26(1):51-62.
45. Ruddle NH. Lymphotoxin and TNF: how it all began-a tribute to the
travelers. Cytokine Growth Factor Rev. 2014;25(2):83-89.
46. Jang IK, Cronshaw DG, Xie LK, et al. Growth-factor receptor-bound
protein-2 (Grb2) signaling in B cells controls lymphoid follicle
organization and germinal center reaction. Proc Natl Acad Sci U S
A. 2011;108(19):7926-7931.
47. Gevaert P, Holtappels G, Johansson SG, Cuvelier C, Cauwenberge P,
Bachert C. Organization of secondary lymphoid tissue and local IgE
formation to Staphylococcus aureus enterotoxins in nasal polyp tissue.
Allergy. 2005;60(1):71-79