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Abstract 

Predicting the range of substrates accepted by an enzyme from its amino acid sequence is challenging. 

Although sequence- and structure-based annotation approaches are often accurate for predicting broad 

categories of substrate specificity, they generally cannot predict which specific molecules will be 

accepted as substrates for a given enzyme, particularly within a class of closely related molecules. 

Combining targeted experimental activity data with structural modeling, ligand docking, and 

physicochemical properties of proteins and ligands with various machine learning models provides 

complementary information that can lead to accurate predictions of substrate scope for related 

enzymes. Here we describe such an approach that can predict the substrate scope of bacterial nitrilases, 

which catalyze the hydrolysis of nitrile compounds to the corresponding carboxylic acids and 

ammonia. Each of the four machine learning models (linear regression, random forest, gradient-boosted 

decision trees, and support vector machines) performed similarly (average ROC = 0.9, average 

accuracy = ~82%) for predicting substrate scope for this dataset. The approach is intended to be highly 

modular with respect to physicochemical property calculations and software used for docking and 

modeling. 
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Introduction 

Many enzymes are capable of accepting multiple molecules as substrates. Knowledge of the repertoire 

of substrates for a given enzyme, often referred to as substrate scope, is informative for elucidating 

biochemical pathways and also for metabolic engineering. Standard sequence-based annotation 

methods1 are generally highly effective at identifying (super)family membership, conserved domains, 

sequence signatures, active site residues, and assigning gene ontology (GO) terms for sequences with 

detectable homology to proteins of known function, but fall short of predicting substrate scope. The 

BRENDA enzyme database currently contains manually curated information on ~84,000 enzymes 

including classification nomenclature, biochemical reaction, substrate specificity, structure and other 

attributes, but is limited to experimentally verified systems.2 

 

Beyond the primary amino acid sequence, protein structures provide insight into enzymatic function. 

The overall protein fold, domain architecture, and spatial arrangement of residues involved in substrate 

recognition and catalysis all provide useful clues to function. Homology modeling is often used to 

generate structural models of proteins when suitable templates are available. However, the accuracy of 

modeled structures depends on various factors, including the similarity between the query sequence and 

the template(s). Scoring functions and conformational sampling strategies also play a role in model 

accuracy.3 

 

A combination of molecular docking of putative substrates to an available X-ray crystal structure, QM 

calculations of substrate reactivity, and experimental enzyme activity assays predicted substrate 

specificity of an enoyl-acyl carrier protein reductase (FabI).4 In the absence of a crystal structure, 

homology modeling can be used in the context of ligand docking.5–7 However, molecular docking 

studies often struggle to differentiate between ligands with similar scaffolds due to inaccuracies in the 

models and in scoring functions. In addition, docking is insufficient to predict enzymatic activity 
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because it does not account for chemical reactivity.8 Some of these limitations can be overcome by 

combining complementary information from modeling, docking and other sources. For example, a 

combined analysis of genomic context, homology modeling and metabolite docking was used to 

identify substrate specificities of multiple enzymes encoded in a bacterial gene cluster.9 

 

Machine learning (ML) is widely applicable to a variety of problems from fields such as quantum 

mechanics, physical chemistry, biophysics, and physiology.10 For example, a Gaussian process model 

that incorporated information from protein sequence and contact maps derived from crystal structures 

was used in combination with directed evolution to engineer channelrhodopsin with high light 

sensitivity.11 ML has also shown promise in predicting substrate specificity. For example, a support 

vector machines (SVM) approach was used to predict substrate specificity of adenylation domains in 

non-ribosomal peptide synthases from physicochemical properties of active site amino acids.12 A 

related method extended this approach to predict specificity by incorporating active site structural 

information from sequence alignments to a template from a homologous structure.13 Using SVM 

coupled with an active learning approach to prioritize compounds for experimental testing to provide 

maximal benefit to the model, substrates were predicted for four different enzymes with an accuracy of 

~80%.14 Enzymatic activity of 107 glycosyltransferase superfamily 1 (GT1) sequences from 

Arabidopsis thaliana was predicted with an accuracy of ~90% using a decision tree-based classifier 

that incorporated local sequence information, physicochemical properties of substrate donor and 

acceptor molecules, and experimental activity data.15 

 

Nitrilases are a family of the carbon-nitrogen hydrolase superfamily that catalyze the hydrolysis of 

nitrile compounds to their corresponding carboxylic acids and ammonia (Eq. 1). They are an example 

of an enzyme family with broad scope and are found in a range of eukaryotic and prokaryotic 

organisms. Nitrilases play an important role in many biological processes, such as the degradation of 
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toxic nitrile compounds, metabolism and generation of hormones, and synthesis of signaling 

molecules.16 In the context of plant-microbe interactions, they are believed to play a role in hormone 

synthesis, nutrient assimilation, detoxification, and modulation of plant development and physiology, 

making them attractive for improved food crop production.17 In addition, nitriles are desirable for their 

use in efficient chemo- and enantioselective synthesis of carboxylic acids, making them attractive for 

drug design.18,19 Typically, nitrilases are classified into three categories according to their substrate 

specificities: aliphatic, arylaceto-, and aromatic nitrilases.17,20 In terms of chemistry and reactivity, 

Enzyme Commission numbers have been assigned for aliphatic (EC 3.5.5.7) and arylacetonitrilases 

(EC 3.5.5.5). However, no broad category of aromatic nitrilases has been defined. Thus, existing 

sequence-based annotations are limited in their ability to classify nitrilases. 

 

 

 

Various nitrilase activity assays have been described and are based on either fluorogenic or 

chromogenic substrates or pH indicator methods.21–23 Recently, a chromogenic method was developed 

as a convenient means to screen recombinantly produced nitrilases in crude cell extracts.24 Alleviating 

purification steps facilitates high-throughput screening and evaluation of diverse, potential substrates. 

 

High-throughput methods are essential for evaluating the large number of putative nitrilases being 

identified through genome sequencing techniques. For example, functional screening of microbial 

metagenomes from a wide range of environments has led to the identification of a diverse collection of 

nitrilases. These efforts have facilitated characterization of the relationship between gene sequence and 

substrate specificity based on experimental evaluation of the hydrolysis of diverse nitrile substrates.18 

Three substrates, mandelic acid, phenyl lactic acid and 4-cyano-3-hydroxybutyric acid, were of 
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particular interest due to their potential use in stereospecific pharmaceutical biosynthesis.18 Reactivity 

toward specific substrates as well as enzymatic stereoselectivity were found to be strongly correlated 

with the phylogenetic groupings of individual nitriles in sequence clades or clusters. Because most 

tested nitrilases were identified in metagenomic libraries and affiliation to specific organisms could not 

be determined, it is unknown if substrate specificity is linked to microbial taxonomy. More in depth 

analysis of some of the nitrilase subfamilies identified positive selective pressure for evolving novel 

substrate specificities and enantioselectivity, suggesting that these enzymes can undergo subtle site 

changes that alter their repertoire of accepted substrates.25 Because shifts in substrate specificity and 

enantioselectivity were found associated with distinct sequences in specific subfamilies previously 

characterized for several substrates, we selected nine nitrilases from that study for in-depth enzymatic 

characterization and structural modeling. We also included two closely related putative nitrilases 

identified from bacterial genomes that potentially play roles in interactions with plant roots.26  

 

Here we describe an integrated and modular approach in which we combine protein structural 

modeling, ligand docking, and physicochemical property calculation with experimental activity assays. 

We use this information to train several machine learning classifiers to predict enzyme activity for a set 

of bacterial nitrilases toward a library of 20 nitrile substrates. For this dataset, cross-validation revealed 

that that all four ML methods showed similar performance in predicting substrate scope. 

 

 

 

Materials and Methods 

 

Chemicals and Reagents 
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All reagents and chemicals were purchased from Sigma Aldrich (St. Louis, MO), Bio-Rad (Hercules, 

CA), Pierce (Rockford, IL), ThermoFisher Scientific (Pittsburgh, PA), and New England Biolabs 

(NEB; Ispwich, MA). 

 

Strains and Plasmids 

The gene sequences (see Supporting Information) encoding each of the chosen nitrilases were codon-

optimized for expression in E. coli and were cloned into the pet22(b) vector at the Nde-Sal site by 

GenScript (Piscataway, NJ; https://www.genscript.com, Figure S10). The resulting protein contained a 

C-terminal 6x histidine tag for protein detection. The plasmids were transformed into BL21(DE3) E. 

coli cells for crude extract preparation.  

 

Crude Extract Preparation 

To prepare crude extracts of the recombinant enzymes, nitrilase gene sequences were transformed and 

expressed using E. coli BL21(DE3) host cells as described previously.24,27 Briefly, a 15-mL overnight 

culture of BL21(DE3) cells, with and without plasmids, grown in LB medium, was seeded into 250 mL 

baffled flasks containing 150 mL of 2x YPTG medium (yeast extract, 10 g/L; KH2PO4, 3 g/L; K2HPO4, 

7 g/L; NaCL, 5 g/L; tryptone 16 g/L; and glucose 18 g/L) inoculated with carbenicillin (100 mg mL-1). 

The 2x YPTG cultures were grown at 30C and 250 RPM to an optical density (OD600) = 0.6.  Cells 

were induced with isopropyl-β-D-1-thiogalactopyranoside (IPTG, 1 M) to a concentration of 1 mM to 

express nitrilases. Induced cells were subsequently grown at 30C and 250 RPM to an optical density 

of (OD600) = 2.0. The cells were harvested by centrifugation (10 min, 4C, 5000 RPM) and washed 

with potassium phosphate buffer (pH 7.2). Washed cells were centrifuged (15 min, 4C, 6000 RPM), 

resuspended in potassium phosphate buffer (800 L g-1 wet cell mass), and lysed by sonication (12 x 

{10 s on and 10 s off}, 50% amplitude with ice water cooling). The resulting cell-free extracts (CFEs) 

https://www.genscript.com/
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were cleared by centrifugation (10 min, 4C, 12,000 x g), flash-frozen, and stored at -80°C. Successful 

nitrilase expression was confirmed by Western blot using His-tag antibodies. Total protein content per 

extract was estimated using a Bradford Assay. 

 

Nitrilase Substrates 

We generated a library of 20 commercially available nitriles consisting of 5 aliphatic, 9 aromatic, and 6 

arylaliphatic nitriles (Figure S1). Nitriles were prepared as stock solutions in DMSO at a concentration 

of 100 mM and stored in the dark at room temperature. 

  

Nitrilase Assays 

Substrate-dependent enzyme activity was determined using a variant of the colorimetric assay 

optimized for crude extracts described previously.24 This assay detects the ammonia produced from the 

nitrilase-catalyzed hydrolysis reaction using o-phthalaldehyde (OPA) under acidic conditions. OPA 

was dissolved into methanol (200 mg mL-1) and subsequently diluted (1:100) into sodium tetraborate 

buffer (15 mM, pH 9.5) and stored until needed. Trichloroacetic acid was prepared to a 10% w v-1 

solution and stored until needed. Nitrilase activity assays were prepared by diluting crude extracts into 

potassium phosphate buffer (1:2, 10 L final volume) in 384-well microplates (Corning 3702) and 

adding the desired nitrile substrate (1 L) into each well. Typically, each 384-well microplate 

contained two different crude extract preparations at two dilutions (50% and 25%, diluted (1:2) into 

potassium phosphate buffer). Each crude enzyme preparation was tested against a panel of 20 

substrates and prepared in triplicate. The microplate also contained an array of ammonium chloride 

concentrations (0–10 mM), in triplicate, for comparison to a standard. In addition, wells containing 

potassium phosphate buffer were used as a blank. An Opentrons OT-2 liquid handling robot (Brooklyn, 

NY) was used to assist with plate filling. Details of the automated liquid handling procedure are 
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described in the Supplemental Materials. After filling, the microplates were triple wrapped with 

parafilm and incubated overnight in the dark (18 hours, RT). Next, the Opentrons OT-2 liquid handling 

robot was used to add OPA reagent (36 L, dissolved in DMSO (1:1.4)), and trichloroacetic acid 

(TCA; (7.5 L) to acidify the reaction for color development. In addition, DMSO (40.5 L) was added 

to maintain solubility of OPA. Microplates were sealed with aluminum sealing tape and shaken (12 

min, 40C, 1500 RPM) to ensure solubility of the chromophores. Absorbance at 675 nm was measured 

in a Perkin Elmer 2300 spectrophotometer. 

 

Nitrilase phylogenetic analyses 

Nitrilase sequences were selected for structural and enzymatic analyses based on prior substrate 

specificity data and were aligned along with related sequences from sequenced microbial genomes 

using Muscle v3.828 in Geneious v929. Nitrilase sequences from plants were also included as an 

outgroup. A phylogenetic tree was constructed using FastTree v. 2.1.12.30  

 

Nitrilase 3D modeling 

The amino acid sequences of 12 target nitrilases were aligned with Clustal Omega (Figure S11).31,32 

The GREMLIN web server33,34 was used to search the UniProt20 database35 for sequence homologs of 

each nitrilase, perform coevolution analysis, and identify potential structural templates from the Protein 

Data Bank. We used the 3.1 Å X-ray crystal structure of a bacterial nitrilase (Nit6803) from 

Synechocystis sp. PCC6803 (UniProt ID Q55949, PDB entry 3WUY) as a template and to generate a 

Rosetta symmetry file.36 For all 12 putative nitrilases, the top template was 3WUY and the sequences 

were all covered well by the full Synechocystis sp. PCC6803 sequence (>81%). Structural modeling 

was supplemented with residue-residue contact restraints obtained from the coevolution analysis. We 

used map_align (https://github.com/gjoni/map_align) to align the contact maps to the top ten 

https://github.com/gjoni/map_align
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templates37 identified by hhsearch. Due to the presence of inter-oligomeric contacts, dimer symmetry 

was defined based on 3WUY and this crystal structure was used as the master template for modeling. 

Fragments were obtained from the Robetta server. RosettaCM38 was then used to generate at least 

5,000 models of each protein. We selected the top ten models based on the sum of the Rosetta energy 

and coevolution restraint score and aligned the models to the template dimer. For each protein, we 

selected the model with the lowest Rosetta score that had a low (< 3.5 Å) backbone RMSD to the 

3WUY dimer and an “open” active site in which the volume of the active site (residues within 10 Å of 

C of the catalytic Cys) calculated with POVME 2.039 was greater than 50 Å3. 

 

Docking and docking descriptors 

Three-dimensional structures of each nitrile were obtained from the ZINC database.40 The geometry of 

each nitrile was optimized using density functional theory at the  B3LYP/6-31G(d,p) level of theory in 

the gas phase.41–43 All quantum mechanical (QM) calculations were performed with Gaussian 16, 

revision A.03.44 Restrained electrostatic potential (RESP) charges45–47 were calculated at the HF/6-

31G(d) level of theory in the gas phase. The optimized geometries and RESP charges were then used 

for docking with Rosetta Ligand.48,49 The REF2015 score function50 was used for both homology 

modeling and docking. The center of mass of S from Cys, O2 from Glu and N from Lys in the 

catalytic triad was used as the initial docking site. We generated 5,000 docked models for each nitrile-

nitrilase combination and selected the final docked pose based on the docking energy (interface_delta). 

Additional components of the Rosetta docking score were also included as descriptors for RF. These 

components included the following interfacial interaction energy terms: full-atom vdW attraction 

(fa_atr), electrostatics (fa_elec), vdW repulsion (fa_rep), hydrogen bonding terms (hbond_bb_sc and 

hbond_sc), and solvation energy (fa_sol). 
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Physicochemical descriptors 

“Classical” 2D and 3D physicochemical descriptors were calculated with MOE.51 QM descriptors 

included atomic partial charges computed from natural population analysis52 and Merz-Singh-Kollman 

(MK) charges53,54 on the C and N atoms of the cyano group, highest occupied molecular orbital 

(HOMO) energy, lowest unoccupied molecular orbital (LUMO) energy, molecular dipole moment, and 

molecular volume.  

 

Active site descriptors 

The active site of each enzyme-ligand pair was defined as all protein and ligand atoms within 10 Å of 

the Cα atoms of the catalytic triad. ProtDCal55 was used to calculate active-site descriptors including 

thermodynamic indices of the folded and extended protein state, topographic indices, physicochemical 

and structural composition indices. A list of descriptors and definitions is provided in the Supporting 

Information. 

 

Machine learning and statistical analysis  

 

The scikit-learn package (version 0.22) was used to perform the binary classification analysis using 

four machine learning (ML) methods56 including two decision tree-based ensemble methods: random 

forest (RF)57 and gradient boosted decision trees (GBDT)58, as well as a kernel-based method, support 

vector machines (SVM),59 and logistic regression (LR). For this analysis, experimentally measured 

activities of < 2 mM ammonia (Figures S2) were considered inactive and descriptors with high 

correlation to other descriptors (≥ 0.9) were removed (Figure S12).  

 

A GitHub repository with a jupyter notebook containing all code required to reproduce our analysis is 

available at https://github.com/ZhongyuMou/ML-substrate-scope. The jupyter notebook also provides 

https://github.com/ZhongyuMou/ML-substrate-scope
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additional information about the ML methods and analysis, including data pretreatment, oversampling, 

hyperparameter tuning, and the training and validation of the ML models. All statistical analyses and 

plotting were performed with Python 3.7,60 Pandas,61 Numpy,62 and Matplotlib,63 respectively. 

 

Results 

 

Strategy. We reasoned that protein structural modeling and ligand docking combined with 

physicochemical properties that describe the ligand and its reactivity could be used synergistically to 

predict substrate preferences. Structural modeling provides insight into overall protein folds and the 

arrangement of residues in the active site. Docking scores provide approximations of binding affinities 

but do not account for reactivity, which can be instead quantified by computing QM properties of the 

nitriles that depend on electron density and molecular orbitals. Additional molecular properties of the 

nitriles can be taken into account by calculating classical physicochemical descriptors (e.g., van der 

Waals surface area and related quantities). As a test case we selected bacterial nitrilases, which catalyze 

the hydrolysis of nitriles to form the corresponding carboxylates and ammonia (Eq. 1). To create an 

effective training set, we selected a set of 12 nitrilase sequences (Figure 1) and evaluated their activity 

computationally and experimentally against a set of representative aliphatic, aromatic and arylaliphatic 

nitriles. The various descriptors and experimentally determined activity data were then used the 

machine learning classifiers to predict enzyme substrate scope. 

 

Sequence selection and structural modeling 

Standard sequence-based approaches generally cannot assign substrate preferences at the individual 

molecule level. Thus, we developed a structure- and property-based ML approach to predict substrate 

scope using bacterial nitrilases as a test case. Previously, 137 unique nitrilase sequences were identified 

by screening more than 600 environmental samples from terrestrial and aquatic environments.18 The 
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enzymes were then expressed heterologously and assayed for their ability to catalyze the 

enantioselective hydrolysis of three pharmaceutically relevant nitriles, 3-hydroxyglutaronitrile (3HGN), 

mandelonitrile (MA), and phenylacetaldehyde cyanohydrin (PAC), to form the corresponding 

carboxylic acids. Phylogenetic analysis of these sequences identified six distinct sequence clades that 

exhibited varying reactivities and enantioselectivities toward the three substrates. For example, nitrilase 

1B15 hydrolyzed all three substrates with an enantiomeric excess for the corresponding R isomeric 

product ranging from 33 to 100%. In contrast, 1B16 exhibited S enantioselectivity toward 3HGN and 

PAC, but did not hydrolyze MA. 

 

From this set of 137 nitrilases, we selected a small representative set of nine enzymes from among 

three sequence clades. Greater emphasis was placed on two adjacent subclades (1A and 1B), but we 

also selected one sequence each from clades 2 and 3. To date, only a few structures of nitrilases have 

been determined with X-ray crystallography. One such structure is that of Nit6803 from Synechocystis 

sp. PCC6803 (PDB entry 3WUY),36 which is a member of sequence clade 1B (Figure 1). This enzyme 

hydrolyzes a broad range of nitriles, including aliphatic and aromatic mono- and dinitriles. In addition, 

we included two putative nitrilases identified in the genomes of plant rhizosphere-associated bacteria. 

These enzymes were selected on the basis of their similarity to sequences from subclade 1A and also to 

the structural template Nit6803 (PDB entry 3WUY).36 These 11 sequences (Table S1) have varying 

degrees of sequence identity to Nit6803 and range from 32-71% (Table S2) with a sequence coverage 

of at least 81%. We used the structure of Nit6803 as a template to generate homology models of each 

enzyme. We generated a selected set of 20 nitriles (Figure S1) from among these substrate categories 

based on previous data sets18,24 and docked them to each enzyme model and also to the Nit6803 crystal 

structure (Figure 2). We then calculated various QM and classical physicochemical properties for each 

nitrile and additional active-site properties from the docked poses. 
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Enzyme activity assays. Target nitrilases were expressed heterologously in E. coli and were prepared as 

crude extracts. These enzyme-containing extracts were added to solutions containing a selected nitrile 

and enzymatic activity was measured using a semi-quantitative colorimetric assay (Figure 3) optimized 

for crude extracts based on a previously described method.24 

 

All 12 enzymes were active toward at least one nitrile (Figure 3). In general, catalytically active 

enzymes tend to hydrolyze multiple nitriles with no obvious patterns in activities. Not surprisingly, 

docking scores do not correlate with enzymatic activity (Figure S3). We observed negligible activity 

(i.e., < 2) toward all aliphatic nitriles except for 2-methylglutaronitrile. Interestingly, 1B15 and 1A8 

were the only enzymes that did not display activity toward this nitrile. Furthermore, 1B15 was the only 

enzyme that had no activity toward aliphatic or aromatic nitriles. Thus, 1B15 is specific for 

arylaliphatic nitriles but is only moderately active for 3-phenylpropionitrile and cinnamonitrile. No 

appreciable activity was measured for any enzyme with 2-aminobenzonitrile or 2,6-

dichloroaminobenzonitrile. 2A6 was active toward all arylaliphatic nitriles except cinnamonitrile and 

was the only enzyme that hydrolyzed mandelonitrile and-methylbenzyl cyanide. 

 

Prediction workflow. Having obtained the experimental activity assay data, structural models, docked 

ligand, and calculated descriptors, we trained various binary classification ML models to predict 

substrate scope for bacterial nitrilases (Figure 4). Because the activity assays are semi-quantitative, we 

used a binary classification approach to predict whether a given enzyme is active or inactive toward a 

given nitrile according to a chosen activity threshold. We considered four different activity thresholds 

(1, 2, 3 and 4 mM, Figure S4) for classifying nitrilase activity and selected a threshold of 2 mM 

ammonia to define enzyme-substrate pairs with negligible activity as being essentially inactive. Thus, 

activities below 2 mM were considered inactive. 
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To determine whether the use of oversampling techniques could be used to generate better models, a 

variety of synthetic minority oversampling technique (SMOTE)64 methods were tested. For grid-search 

hyperparameter tuning and cross-validation we used an 80/20 training/test set split. We further tested 

the robustness of the models by performing leave-n-protein-out tests, which were conducted by 

randomly and phylogenetically leaving out n = 1, 2, 3, 4 or 6 proteins during training and then using 

them as test sets. 

 

We analyzed the performance of four different ML methods that are generally considered suitable for 

datasets of this size. These methods included random forest (RF), gradient-boosted decision trees 

(GBDT), logistic regression (LR), and support vector machines (SVM). For this dataset, which has a 

ratio of inactive:active substrates of 2:1 using a cutoff of 2 mM ammonia (Figure S4), oversampling 

did not significantly improve model performance (Figure S5). All four ML methods perform similarly 

as evaluated by performing tenfold cross-validation (Figure 4A). The average areas under the ROC 

curve (ROC_AUC) were all ~0.90 and the models had average accuracies of 79-83%. The methods 

also performed similarly for the test set with the exception of the recall metric, for which GBDT did 

not perform as well as the others (Figure 4B). Although the test set was used to assess classification 

predictions on completely unseen data, it only reflects a single, randomly chosen subset of the data. 

Thus, model performance from the test set does not necessarily reflect the overall robustness of the 

model.  

 

We further assessed the robustness of the different ML methods by leaving out one enzyme at a time, 

training separate models on the remaining eleven enzymes, and then predicting the substrate scope for 

the left-out enzyme (Figure 4C). All four ML methods performed similarly for ROC_AUC, accuracy, 

and precision. However, RF performed the best for F1 and recall. We then randomly removed two, 
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three, four, and six of the twelve proteins and observed that RF performance was similar the other 

methods and for some metrics outperformed GBDT, LR, and SVM (Figure S6). In addition to 

randomly leaving out proteins, we also removed two, three, four, and six proteins according to their 

order and proximity in the phylogenetic tree (Figure 1) to investigate the contribution of phylogenetic 

relationships on model performance. As observed for the random leave-out tests, RF generally 

performed similar to or outperformed the other methods in some metrics (Figure S7). 

 

Discussion 

Here we have developed an approach for predicting substrate scope for enzymes by combining 

structural modeling, docking, physicochemical properties and various machine learning methods. 

Rather than generating a large training set, we sought to explore the limits of accuracy of the model by 

training the ML model on a relatively small amount of targeted in vitro enzyme assay data. The time 

and expense involved with generating and screening enzymes demands effective in silico approaches. 

Here, the use of crude extracts that contain heterologously produced enzymes combined with an 

automated, colorimetric activity assay facilitated construction of an effective training set. The complete 

workflow is shown in Figure 5. Our approach enables accurate predictions of substrate scope for a 

series of aliphatic, aromatic, and arylaliphatic nitriles by including descriptors for the enzymes, 

substrates and their interactions in ML models.  

 

Given a phylogenetic tree and sparse activity data, it may be difficult to identify trends in substrate 

scope. In some cases, sequences that have high sequence identity show similar trends in substrate 

preference. For example, 1A1 and 1A2 are closely related (85% identical) and their substrate scopes 

differ only for the substrate 4-(dimethylamino)benzonitrile (Figure 3). 1B16 and 3WUY are also 

closely related (71% identical) and show similar patterns in activity (90% overlap in substrate scope). 

However, PMI28 and 1A8 are 88% identical but differ markedly in their respective substrate scopes. 
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PMI28 displays activity toward 12 of the 20 nitriles spanning all three classes, making it one of the 

most active enzymes tested. In contrast, 1A8 is only active toward two aromatic nitriles. In other cases, 

distantly related sequences share similar substrate preferences. For example, 1A17 and 3WUY (51% 

identical) have the same substrate scope except that 4-nitrophenylacetonitrile is not hydrolyzed by 

3WUY. Therefore, predictions of the substrate scope of an enzyme often cannot be made based on 

phylogenic analysis alone. In addition, subtle changes in the amino acid composition of the active site 

or in the chemical structure of the substrate may lead to differences in activity. In the present case, 

active enzymes tend to have high activity for many nitriles. However, in other cases it will not be 

known beforehand how much of the specificity space will be covered by the proteins or the substrate 

library. In such cases, active learning approaches,14 in which the training data are augmented iteratively 

to optimize model performance, are expected to be particularly useful. 

 

Substituent effects play an important role in determining reactivity. For example, 2-aminobenzonitrile 

and 2,6-dichloroaminobenzonitrile are both aromatic nitriles with substituents that are ortho to the 

cyano group. In contrast to the other aromatic nitriles, these two molecules were not hydrolyzed by any 

of the nitrilases tested. This large difference in reactivity may be due to the steric hindrance of the ortho 

functional groups or substituent effects. The two dinitriles were readily hydrolyzed by most enzymes, 

with the exceptions of 1A8 and 1B15 toward 2-methylglutaronitrile and 1A1, 1A2, and 1B15 toward 

isophthalonitrile. These dinitriles have high activities compared to the mononitriles, suggesting that 

both nitrile groups in the dinitriles were hydrolyzed. In a dinitrile, the conversion of one nitrile 

substituent to a carboxylate will alter the solubility and electrostatic properties of the resulting 

intermediate, which could affect the binding affinity and reactivity of the secondary substrate.  

 

In a previously proposed catalytic mechanism for nitrilases,65 the first step of the reaction consists of a 

series of proton transfer steps involving the catalytic Cys, the cyano group, and an ordered water 



19 

 

molecule, resulting in the formation of a thioimidate intermediate (Figure S8). Geometries of catalytic 

residues across a given enzyme family tend to be well conserved (i.e. RMSD < 0.5 Å) and it has been 

shown that incorporating this information in the form of geometric constraints can improve model 

quality.66 Furthermore, docking results can potentially be improved by including additional restraints 

that account for specific interactions between the enzyme and putative substrates (i.e., selecting for 

catalytically relevant orientations). As enzymes preferentially bind transition states over ground states 

of substrates, it could be beneficial to include information about transition states in the docking 

calculations. Performing docking with a transition state mimic is a promising approach that can provide 

improved accuracy compared to ground state docking.67 Most of the nitrile substrates considered in the 

present work are relatively rigid and extensive conformational sampling was not required. However, 

for other cases with more flexible ligands, conformational sampling may be critical and should 

therefore be included. 

 

RF models performed as well as, or in some cases better than, the other three ML methods. Unlike 

kernel-based methods (i.e., SVM), decision tree-based methods (i.e., RF) allow for calculation of 

variable importance of each descriptor. For the nitrilase example, we used an 80:20 split of the data and 

calculated the variable importance for 20 independent runs initiated with different random seeds (Table 

S3). Descriptors from all four categories were present in the top 10 most important descriptors over the 

20 runs (Figure 6 and Figure S9). Thus, including complementary information from each category 

indeed contributes to the predictive value of the model. QM descriptors do not appear frequently in the 

top 10, suggesting that descriptors intended to account for chemical reactivity are not as important as 

other properties for obtaining accurate predictions. In the present case, the QM descriptors are all 

similar among the 20 nitriles. For example, the natural population analysis (NPA) partial charge on the 

nitrile carbon ranges from 0.25 to 0.3. In contrast, MOE descriptors capture more global properties of 

the substrate molecules and are therefore more informative for classification. Although there are more 
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ligand descriptors (MOE and QM) than those that contain information about the ligand in the context of 

the protein from the docked pose, docking and ProtDcal descriptors comprise the majority of the top 10 

lists (Figure 6). Thus, for this system the descriptors that encode information from the structural 

models and docked poses are informative for accurately predicting substrate scope. 

 

The approach developed here was designed to be highly modular, with readily swappable 

computational components. For example, protein modeling could be performed with other software 

such as I-TASSER,68–70 MODELLER,71–74 SWISS-MODEL,75 PHYRE2,76 and others. Similarly, 

ligand docking could be performed with software such as GOLD,77 Glide,78 DOCK,79 AutoDock 

Vina,80 and many others. Alternatives for calculating physicochemical descriptors include Rcpi,81 

Dragon,82 PaDEL,83 Mordred84 and essentially any quantum chemistry software. As expected, single 

amino acid substitutions can cause large changes in reactivity or specificity that would not be identified 

based on a phylogenetic analysis of the full sequence. In principle, our approach can capture these 

subtle effects if they lead to substantial changes in active site properties. Compared to sequence-based 

approaches,85 the modular, structure-based machine learning approach described here is more flexible, 

and should be readily extensible to enable prediction of substrate scope for many classes of enzymes. 

In addition, the experimental assays used are scalable for high-throughput applications. The application 

of advanced computational methods will lead to a better understanding of enzyme structure-function 

relationships and metabolic processes. 

 

Accession Codes 

The NCBI accession numbers for the nitrilase sequences used in this study are: AAR97463 (3A2), 

AAR97509 (2A6), AAR97476 (1B15), AAR97423 (1B16), AAR97447 (1A27), AAR97388 (1A17), 

AAR97501 (1A8), AAR97472 (1A2), AAR97500 (1A1), EJM49671 (PMI26_00172), EJM57398 

(PMI28_02655). 
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Associated Content 

The Supporting Information is available free of charge on the Wiley Publications website at DOI: XXX 

 

Nitrilase models, optimized geometries of nitriles, all data files, Rosetta inputs, and scripts for 

operating the liquid handling robot are provided in a GitHub repository at 

https://github.com/ZhongyuMou/ML-substrate-scope. 
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Figure Legends 

 

Figure 1. Phylogenetic tree of a family of nitrilases that encompass the enzymes used in this study 

(grey) and characterized in refs 15 and 22 as well as identified in rhizosphere bacteria (ref 23). The 

scale bar indicates the inferred number of substitutions per site. Enzymes for which an X-ray structure 

is available are indicated with a red star. Two putative nitrilases from plant root-associated bacteria are 

indicated with a black star. 

 

Figure 2. (A) Structural model of a representative nitrilase (PMI26) with the catalytic triad of chain A 

shown as ball and stick and colored by element. (B) Residues within 10 Å of the catalytic triad. (C) 

Selected docked poses of nitriles are shown as sticks and colored by element with different colored 

carbons for each nitrile. Side chain carbons of the catalytic triad are shown in green. 

 

Figure 3. Activity data (ammonia concentration in mM) for putative nitrilases with 20 nitrile substrates 

obtained from cell extracts at 50% dilution. Background color to the activity data values is added as a 

visual aid in estimating relative enzyme-substrate activity. A sequence distance tree generated with 

Clustal Omega31,32 is shown on the left. Similar activity patterns were observed with cell extracts at 

25% dilution (Figure S2). 

 

Figure 4. Machine learning model metrics. (A) Tenfold cross-validation (B) 80/20 test set and (C) 

leave-one-protein-out tests for a set of bacterial nitrilases and nitrile substrates. Error bars indicate the 

standard error of the mean (s.e.m.) with n = 10 for A and n = 12 for C. 

 

Figure 5. Graphical overview of the structure-based approach to predict the substrate scope of 

enzymes. After target selection, homology models are generated for docking and descriptor calculation 
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and targets are cloned, expressed, and extracted for screening. The experimental activity data and 

calculated descriptors are then used to train an RF classification model that can then be used to predict 

substrate scope. 

 

Figure 6. (A) Number of descriptors per category used for ML model building. (B) Descriptor counts 

for the top 10 features in 20 random seeds. Descriptors are colored by category (MOE = orange, QM = 

gray, docking = blue, ProtDCal = red). Error bars indicate the standard error of the mean (s.e.m.) with n 

= 20. 
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