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Diverse engineering fields request flash calculations like isother-

mal flash, isenthalpic flash, and isentropic flash. They can

be cast as minimization of a thermodynamic state-function

and solved by Michelsen’s Q-function approach. Flash cal-

culations for open systems, i.e. systemswhere chemical po-

tentials are specified instead of the mole numbers for some

components, also belong to this scope. By analyzing the

construction of Q-functions through Legendre transforms,

we extend this approach to the flash for open systems in

the absence or presence of chemical reactions, resulting in

general formulations for various specifications. For systems

without reactions, the classical framework using mole num-
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bers as independent variables is employed; for those with

reactions, themodified-RAND framework is employed. We

present examples for open systems at constant tempera-

ture and pressure. Using the Q-function minimization, we

can solvemulticomponent non-reactive or reactive systems

at a specified chemical potential with quadratic convergence

over a wide range of conditions.
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1 | INTRODUCTION

Phase equilibrium calculation is essential to process simulation in many engineering disciplines and scientific ar-

eas, such as chemical engineering, petroleum engineering, mechanical engineering, and geochemistry. The calculation

determines the partitioning of species between equilibrium phases, and it is often coupled with mass- and energy-

balances for process analysis and design. In a broad sense, phase equilibrium calculation also covers reaction equilib-

rium although the term usually refers to the situations with phase equilibrium only.

Phase equilibrium calculation covers a wide range of topics, like flash, saturation point, phase diagrams, critical

loci, and even composition gradients in a petroleum reservoir. It is impossible to make a full list but a classification of

these calculations, like the one given by Michelsen in 1993[1], helps us to differentiate their different characteristics.

Michelsen showed that for a mixture with a given feed composition, its single-stage equilibrium calculation requires

just two specifications, which is somewhat similar to the Duhem theorem. He classified the equilibrium calculation

problems into three types[1]: flash specifications or specifications leading to thermodynamic state function minimiza-

tion, phase fraction specifications, and other specifications. The first type refers to isothermal (TP) flash, isenthalpic

(PH) flash, isentropic (PS) flash, etc. The second type is represented by saturation point calculation but the specified
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phase fraction can also be a value between 0 and 1. The last type includes somewhat exotic specifications like (P ,V )

and (T ,H ) and indirect specifications like critical point calculation. Among the three types, only the first type always

corresponds to a unique minimum of a thermodynamic state function, and thus can be solved in a robust manner with

the help of stability analysis[2].

Among all the flash specifications, TP flash is the most widely used and has well-developed algorithms especially

for two-phase calculation. The modern algorithms for isothermal flash are characterized by utilizing stability analysis

for robustness and a second-order method for efficiency. Since its solution corresponds to a minimum in the Gibbs

energy, it is advantageous to design the algorithm as Gibbs energy minimization. As an example of the modern flash

algorithms, Michelsen’s algorithm[3] consists of two important steps: stability analysis[2] and phase split[4]. In the

phase split part, mole numbers in a certain phase are selected as independent variables in a second-order minimization

of the Gibbs energy. A noteworthy variation of the classical TP flash algorithms is the reduced variables methods or

reductionmethods [5, 6, 7, 8, 9, 10, 11]. Themethods consist in using a different set of independent variables (reduced

variables) to reduce significantly the size of the Jacobian matrix in certain situations. Most of these algorithms are not

formulated as minimization butMichelsen et al. (2013) [12] showed that this is possible for a special reduced variables

formulation [11]. According to some recent studies[12, 13], the speed gain of the reduced variables methods is rather

modest over the classical methods. Another markedly different and promising approach for phase split calculation is

the RAND-based methods [14, 15, 16, 17]. These methods are designed to calculate chemical and phase equilibrium

simultaneously. Even for situations with only phase equilibrium, the RAND-based methods also show advantages

for multiphase flash due to their smaller and structured matrices. These methods can also utilize the Gibbs energy

minimization to guide the convergence.

For other state-function based flash specifications, Michelsen in 1999[18] provided a systematic approach to han-

dle these problems. These flash specifications include PH, PS, VT, UV and VS. Michelsen pointed out that all these

specifications, just as the TP specification, can be formulated as minimization of a certain thermodynamic state func-

tion, thus corresponding to a unique solution. He proposed different Q -functions for these problems1. Since most of

these Q -functions correspond to a saddle point, he suggested using nested loops for a robust solution. In addition,

1Michelsen used objective functions denoted by Q in his other algorithms as well, e.g., his multiphase flash algorithm and his chemical equilibrium algorithm,
we use Q -functions specifically for the functions that he introduced in his 1999 paper [18].
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he showed how to establish a common Jacobian to solve all the specifications using an efficient Newton method.

Although his discussion was only for two-phase flash examples with the conventional selection of the independent

variables (mole numbers), the approach is not limited by the number of phases or the selection of independent vari-

ables. For instance, Paterson et al. illustrated how to use his approach for multiphase PH flash [19] and how to solve

other flash specifications under the RAND framework[20].

In contrast with Michelsen’s Q -function approach, another way to handle other flash specifications is to perform

unconstrained minimization of the state function by use of its natural variables as the independent variables in the

flash formulation. This is actually practiced in the classical TP flash where (T , P ,n)-based thermodynamics is used.

For (T , P ,n)-based thermodynamics, the thermodynamic properties are evaluated at given (T , P ,n) as we normally

do for an equation of state (EoS). In the classical TP flash,T and P are fixed and n is the set of independent variables

in the flash formulation. The resulting procedure is an unconstrained Gibbs energy minimization. Similarly, the other

five specifications become unconstrained minimization if their flash formulations are based on their respective natural

variables. Except for VT flash using a (T ,V ,n)-based formulation, the others are seldom investigated in the literature.

A reason for this is that estimating properties at (T ,V ,n) is natural for most equations of state, whereas estimating

properties, especially derivatives, at (P ,H ,n) , (P , S ,n) , (U ,V ,n) , and (V , S ,n) is possible but cumbersome. Never-

theless, the approach was tried by Brantferger et al.[21] and Sun et al.[22] for PH flash and Castier[23] for UV flash.

Recently, Paterson et al. generalized the approach for all specifications under the classical framework[16] and the

RAND framework[20, 24].

The flash specifications discussed above correspond to extrema in thermodynamic state functions in non-open

systems. It should be noted that thermodynamic state functions or potentials can also be introduced for open systems

through the Legendre transform[25, 26, 27, 28]. In these new potentials 2, mole numbers are replaced by their conju-

gate chemical potentials as the new natural variables. Depending on how many mole numbers are left in the natural

variables for the new potentials, the corresponding system can be semi-open to completely open. We propose here to

utilize these new potentials to extend the flash-type calculations to open systems. The new equilibrium calculations

are still called “flash” although the original flash concept refers to the separation in a flash drum with a given feed.

2In Michelsen’s discussion on state function-based flash specifications, the state functions are actually various thermodynamic potentials.
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Nevertheless, like the classical flash with a given feed, the new flash for open systems is also under the first type of

Michelsen’s classification because all the new flash calculations can be formulated as thermodynamic state-function

minimization.

Equilibrium in an open system is in fact quite common in thermodynamics related subjects. A well-known ex-

ample in statistical mechanics is the grand canonical ensemble where chemical potentials (µ) , total volume (V ) and

temperature (T ) are held constant. The macroscopic system corresponding to the grand canonical ensemble needs

to minimize the grand potential, also called Landau potential [29]. Alberty gave a comprehensive discussion on using

the Legendre transform in chemical thermodynamics [26, 27, 28] and proposed several non-classical thermodynamic

potentials useful for many scientific and engineering problems. Some of Alberty’s examples are for open systems,

such as reactions in a vessel connected to a reservoir of a given component by a semi-permeable membrane and

biochemical reactions held at constant chemical potentials. Another area that often requires flash in open systems is

geochemistry, such as equilibrium calculations with complex speciation and mineral precipitations at constant partial

pressure of carbon dioxide or at constant pH[30].

In this work, we illustrate how to perform these extended “flash” calculations for open systems in the absence or

presence of chemical reactions by extending Michelsen’s Q -function approach. We first briefly review the Legendre

transform and the construction of thermodynamic state functions needed in later discussion. Then, we analyze the

general theory underlyingMichelsen’sQ -function construction and the role of the Legendre transform. After that, we

show how Michelsen’s Q -functions can be extended to open systems. With the extended Q -functions, we present

the detailed algorithms for open-system flash without and with reactions. For open system without reactions, we

adopt the classical framework using mole numbers as independent variables; for open systems with reactions, we

adopt the RAND framework instead. Finally, we present examples for open systems without and with reactions.

2 | LEGENDRE TRANSFORM IN THERMODYNAMICS

The Legendre transform is an important mathematical manipulation used in classical mechanics, statistical me-

chanics and thermodynamics. The Legendre transform g = g (x ′, y ) of a strictly convex and continuous function
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f = f (x , y ) is defined as [31]:

g
(
x ′, y

)
= f (x , y ) −

(
∂f

∂x

)
y

x (1)

It can be shown that x ′ =
(
∂f
∂x

)
y
and x = −

(
∂g
∂x ′

)
y
. If f = f (x , y ) has a unique minimum, so does g = g (x ′, y ) .

In thermodynamics, the Legendre transform is used to generate more convenient state functions. In the Gibbs

formalism, the fundamental relation of thermodynamics is written for the internal energy U as a function of natural

extensive variables only, including entropy S , volume V and number of moles of the system n. The integral and

differential forms forU (S ,V , n) are given in Table 1. Using the Legendre transform, we can create fromU (S ,V , n) three

new thermodynamic state functions, i.e., A (T ,V ,n) , H (S , P ,n) and G (T , P ,n) , with new sets of natural variables.

Each Legendre transform replaces an extensive variablewith an intensive one. A single transform is needed to obtainA

andH , and two transforms to obtainG . These new functions retain the same amount of information asU (S ,V ,n)[25],

e.g., the equilibrium condition can be formulated as the minima in these functions under different constraints. In

addition to the Gibbs formalism, the less commonMassieu formalism is useful to our later discussion on state function-

based flash calculations[32]. The Massieu formalism starts with entropy S (U ,V ,n) as a function of U ,V and n, with

its differential and integral expressions also given in Table 1. From S , we can create A/T with one Legendre transform,

and G/T with two. We here introduce a modification of the Massieu formalism by assuming the original expression

for S is in (H , P , n) instead of (U ,V , n) . Under the modified Massieu formalism, S is converted to G/T and A/T

after one and two transforms, respectively. It should be noted that for the transform to A/T , we actually replace

an intensive variable with an extensive one, which is the opposite to what we usually perform for thermodynamic

functions. Table 1 listed the aforementioned potentials where the mole numbers of the system are kept constant.

In Section 3.2, we will utilize these potentials and create new potentials for open systems based on them. For a

more comprehensive discussion of potentially useful potentials introduced by the Legendre transform, the readers

are referred to Alberty’s papers[27, 26, 28]. Apart from flash for open systems discussed here, Alberty also discussed

processes with gravitational and centrifugal work, with surface work, and with electrical work.
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TABLE 1 Thermodynamic potentials and their natural variables for a closed system.

Formalism Potential and Natural Variables Integral Form Differential Form

Gibbs U (S ,V ,n) U = T S − PV +
∑NC
i=1 µi n i dU = T dS − P dV +

∑NC
i=1 µi dn i

Gibbs H (S , P ,n) H = U + PV = T S +
∑NC
i=1 µi dn i dH = T dS +V dP +

∑NC
i=1 µi dn i

Gibbs A (T ,V ,n) A = U −T S = −PV +
∑NC
i=1 µi dn i dA = −SdT − P dV +

∑NC
i=1 µi dn i

Gibbs G (T , P ,n) G = U −T S + PV =
∑NC
i=1 µi dn i dG = −SdT +V dP +

∑NC
i=1 µi dn i

Massieu −S (U ,V ,n) −S = −UT −
PV
T +

∑NC
i=1

µi n i
T −dS = −

(
1
T

)
dU −

(
P
T

)
dV +

∑NC
i=1

( µi
T

)
dn i

Massieu A/T (1/T ,V ,n) A
T = −S + U

T = − PVT +
∑NC
i=1

µi n i
T d

(
A
T

)
= Ud

(
1
T

)
− P
T dV +

∑NC
i=1

µi
T dn i

Massieu G/T (1/T , P /T ,n) G
T = −S + U

T + PV
T =

∑NC
i=1

µi
T dn i d

(
G
T

)
= Hd

(
1
T

)
+V d

(
P
T

)
+

∑NC
i=1

µi
T dn i

Modified Massieu −S (H , P ,n) −S − H
T +

∑NC
i=1

µi n i
T −dS = − 1

T dH + V
T dP +

∑NC
i=1

µi
T dn i

Modified Massieu G/T (1/T , P ,n) G
T =

∑NC
i=1

µi n i
T d

(
G
T

)
= H

T d
(
1
T

)
+ V
T dP +

∑NC
i=1

µi
T dn i

Modified Massieu A/T (1/T ,V /T ,n) A
T = − PVT +

∑NC
i=1

µi n i
T d

(
A
T

)
= U

T d
(
1
T

)
− P d

(
V
T

)
+

∑NC
i=1

µi
T dn i

3 | GENERAL EXPRESSION FOR THE Q -FUNCTION

3.1 | State Function-based Flash Specifications Studied by Michelsen

Michelsen[18] discussed six different state function-based flash specifications (T , P ) , (T ,V ) , (P ,H ) , (P , S ) , (V , S )

and (U ,V ) . Except for (V , S ) , the other five flash specifications have important practical applications. All these

flash specifications correspond to the minimization of a thermodynamic state function. Michelsen proposed two ap-

proaches to handle the problem. He showed that each flash specification corresponds to a Q -function. The solution

to the flash problem is at the stationary point of the Q -function, and the stationary point is usually a saddle point,

except for (T , P ) specification in (T , P )-based thermodynamics and (T ,V ) and (T , P ) specifications in (T ,V )-based

thermodynamics. For the specifications corresponding to a saddle problem, Michelsen suggested using a nested loop,

e.g. solving a (T , P )-flash in the inner loop and amaximization of theQ -function in the outer loop. ThisQ -function ap-

proach provides robustness, but it is not very efficient. Michelsen suggested using a Newton approach for an efficient

solution, and he showed that all the six flash specifications share a common Jacobian matrix.

The Q -functions suggested by Michelsen can be introduced through the method of Lagrange multipliers. Let us

take the (U ,V )-flash as an example. If (T , P )-based thermodynamics is used, the minimization formulation is the

following:

min
T ,P ,n1,n2,··· ,nNP

−S
(
T , P ,n1,n2, · · · ,nNP

)
(2)
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subject to:

U −U spec = 0 (3a)

V −V spec = 0 (3b)

ni ,1 + ni ,2 + · · · + ni ,NP − zi = 0, i ∈ [1, 2, · · · ,NC ] (3c)

The problem consists in a minimization with respect to (NC × NP + 2) variables. The linear constraints (Equation 3c)

are used to remove NC dependent phase mole numbers, leaving just two non-linear constraints: Equations 3a and

3b. A Lagrangian function can be constructed and the problem becomes the finding of the stationary points of the

following function:

L = −S − λU
(
U −U spec) − λU (

V −V spec) (4)

At the solution, the two Lagrange multipliers should be given by:

λU = −
(
∂S

∂U

)
V ,n

= − 1
T

(5a)

λV = −
(
∂S

∂V

)
U ,n

= − P
T

(5b)

The above derivatives can be obtained more easily from Massieu’s formulation. Also note that Equations 5a and 5b

are valid only if the derivatives, as well as the values of P and T , are taken at the solution. However, if we use P and

T as normal variables to express the two multipliers and substitute them into Equation 4, we obtain the expression

for the Q -function:

Q = −S + 1

T

(
U −U spec) + P

T

(
V −V spec) (6a)

Q = −S + U
T
+
PV

T
− U

spec

T
− PV

spec

T
(6b)
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Q =
1

T

(
G −U spec − PV spec) (6c)

The Q -function is not equivalent to the Lagrangian function, since Equations 5a and 5b are valid only at the solution.

Nonetheless, we can show that the solution is at the saddle point of this Q -function, meaning that if we perform a

(P ,T )-flash in the inner loop and solve for T and P in the outer loop, the outer loop is a maximization of Q . It is

also interesting to notice that in Equation 4, we have essentially applied the Legendre transform first to change from

(−S ) to (G/T ) , by the terms (-λUU ) and (-λVV ), and from (G/T ) to Q , by the terms λUU spec and λVV spec . Hence, the

nature of the problem is not changed through this manipulation. Both transforms applied here are based onMassieu’s

formulation of thermodynamic functions. For the transform from (−S ) to (G/T ), it involves:

−S −
(
∂ (−S )
∂U

)
V ,n

U −
(
∂ (−S )
∂V

)
U ,n

V = −S + 1

T
U +

P

T
V =

G

T
(7)

The transform from (G/T ) to Q is the reverse process, but it is a rigorous transform only at the solution. In other

words, the Q -function has the same value as the entropy at the solution. The other Q -functions in Michelsen’s work,

no matter if (T , P )-based or (T ,V )-based, can be obtained in a similar manner.

3.2 | General Construction Procedure for the Q -function

We can generalize the construction of a Q -function through the method of Lagrange multipliers for a flash prob-

lem in which a given thermodynamic function Υ needs to be minimized. For simplicity, we first discuss (T , P )-based

thermodynamicswhere the solution of the (T , P )-flash can be formulated as an unconstrainedminimization and forms

the inner loop of the final Q -function-based approach. The state function Υ has a different set of natural variables

from the set (T , P ,n) for the Gibbs energy, but Υ and G are linked through a series of Legendre transforms. We

denote the different natural variables of Υ by qk , and Υ and G should be linked by Legendre transforms to ensure

both functions contain essentially the same information:

G = Υ −
Nvar∑
k=1

(
∂Υ

∂qk

)
qi,k ,i=1,··· ,Nvar

qk (8)

In the above equation,
(
∂Υ
∂qk

)
are conjugate variables of qk , i.e., some variables in the set (T , P ,n) . Nvar is the number

of variables being transformed. The variables qk will appear as non-linear constraints in the minimization using the
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method of Lagrange multipliers:

L = Υ −
Nvar∑
k=1

λqk

(
qk − q speck

)
(9)

At the solution, we have:

λqk = −
(
∂Υ

∂qk

)
qi,k ,i=1,··· ,Nvar

(10)

The Q -function is, then, constructed as:

Q = Υ −
Nvar∑
k=1

(
∂Υ

∂qk

)
qi,k ,i=1,··· ,Nvar

qk +
Nvar∑
k=1

(
∂Υ

∂qk

)
qi,k ,i=1,··· ,Nvar

q spec
k

(11a)

Q = G +
Nvar∑
k=1

(
∂Υ

∂qk

)
qi,k ,i=1,··· ,Nvar

q spec
k

(11b)

Actually, Equation 9 becomes slightly more complex if qk is an intensive variable, e.g., chemical potential (detailed

discussion can be found in Section 4). In such a case, the conjugate variable for qk ,
(
∂Υ
∂qk

)
, is an extensive variable,

e.g., mole number. For any thermodynamicmodel, the thermodynamic properties are always calculated for each phase.

Therefore, we need to distinguish
(
∂Υl

∂q l
k

)
and q l

k
for different phases and we add a superscript l to both Υ and q l

k
to

denote this. For a system with NP phases, this leads to constraints on q l
k
:

q lk − q
spec
k

= 0 (12)

Since all q l
k
will be equal to q spec

k
at the solution, we can denote it by qk , their corresponding terms in the Lagrange

function can be combined in the construction of the Q -function, yielding:

NP∑
l=1

λ
q l
k

(
q lk − q

spec
k

)
=

(
qk − q speck

) NP∑
l=1

(
∂Υl

∂qk

)
qi,k ,i=1,··· ,Nvar

(13)

If q l
k
is an intensive variable, its conjugate,

(
∂Υl

∂qk

)
, is a homogeneous Euler function of degree one, such that:

(
∂Υ

∂qk

)
qi,k ,i=1,··· ,Nvar

=

NP∑
l=1

(
∂Υl

∂qk

)
qi,k ,i=1,··· ,Nvar

(14)
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Finally, Equation 12 becomes:

NP∑
l=1

λ
q l
k

(
q lk − q

spec
k

)
=

(
∂Υ

∂qk

)
qi,k ,i=1,··· ,Nvar

(
qk − q speck

)
(15)

The term
(
∂Υ
∂qk

)
in Equation 14 represents the total extensive property for the system. We can see that the final

expression for the Q -function 11b is actually preserved. The above complication can be illustrated when we perform

a two-phase (T , P )-flash using (T ,V )-based thermodynamics. The constraints on pressure need to be written for

both gas and liquid phases:

P v − P spec = 0 (16a)

P l − P spec = 0 (16b)

The conjugate variables for P v and P l areV v and P l, respectively. The Q -function is constructed as follows:

Q = G −V v
(
P v − P spec

)
−V l

(
P l − P spec

)
(17a)

Q = G −
(
V v +V l

) (
P v − P spec

)
(17b)

Q = A + P specV (17c)

In summary, for a flash problem corresponding to minimization of a thermodynamic state function Υ, if we choose

to use thermodynamics based on the natural variables of another state function Ξ, e.g., G for (T , P )-based thermo-

dynamics and A for (T ,V )-based thermodynamics, in the solution process, and Υ and Ξ are related by Legendre

transforms:

Ξ = Υ −
Nvar∑
k=1

(
∂Υ

∂qk

)
qi,k ,i=1,··· ,Nvar

qk (18)
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Then, we have the Q -function in the form:

Q = Ξ +
Nvar∑
k=1

(
∂Ψ

∂qk

)
qi,k ,i=1,··· ,Nvar

q spec
k

(19)

In the solution of this flash problem, the Legendre transform is used to find out which thermodynamic function should

be minimized for the specification, and it is also used in the construction of the Q -function. When working with the

common flash specifications, one does not need to be aware of the underlying Legendre transform reasoning, since

the involved thermodynamic relations are familiar. For the generalization of this approach, it is convenient to use the

concept. In Table 2, we list the Q -functions introduced by Michelsen for six flash specifications together with their Υ

and Ξ functions, and the corresponding Legendre transforms.

It is interesting to note that amongMichelsen’s Q-functions, except for three situations, i.e., TP flash using (T , P )-

based thermodynamics, TV flash and TP flash using (T ,V )-based thermodynamics, all the others give a saddle point

problem. We attempt to interpret this using the following form of Equation 20:

Q = Ξ +
Nvar∑
k=1

pk q
spec
k

(20)

where pk are the conjugate variables for qk and the natural variables for Ξ. We first look at the situation where p

consists of extensive variables only. For a two-phase flash with an arbitrary specification, we use r to denote all

the independent variables except those fixed by the specifications, and p is a subset of r. If r consists of extensive

variables only, the Hessian for Q assumes the following form:


A B

BT C


=


∂2 (Ξv+Ξl )

∂r2v
− ∂2Ξl
∂rl∂pl

− ∂2Ξl
∂rl∂pl

∂2Ξl
∂p2l


(21)

The subscripts v and l stand for vapor and liquid phase, respectively. For a state-function obtained from the Legendre

transform, it is positive semi-definite (PSD) at the equilibrium in the space or subspace spanned by its extensive

variables, but negative semi-definite at the equilibrium in the space or subspace spanned by its intensive variables[33].

The PSD for all the extensive variables is required also by the local phase stability. The submatrices A and C are

therefore both PSD. If we designed nested loops where the inner one iterates over rv and the outer one over pl in a
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TABLE 2 Thermodynamic potentials and their natural variables for a closed system.

State Function Ξ State Function Υ

and its Natural Variables and its Natural Variables Legendre Transform 1 Legendre Transform 2 Q -function

G (T , P ,n) G (T , P ) - - G

G (T , P ,n) A (T ,V ) - −PV spec G − PV spec

G (T , P ,n) H (S , P ) T S spec - G +T S spec

G (T , P ,n) U (S ,V ) T S spec −PV spec G +T S spec − PV spec

G/T (T , P ,n)∗ −S (U ,V ) −U spec/T −PV spec/T (G −U spec − PV spec)/T

(T , P ,n)∗ −S (H , P ) −H spec/T - (G − H spec)/T

A (T ,V ,n) A (T ,V ) - - A

A (T ,V ,n) G (T , P ) - −PV spec A + P specV

A (T ,V ,n) U (S ,V ) T S spec - A +T S spec

A (T ,V ,n) H (S , P ) T S spec +P specV A +T S spec + P specV

A/T (T ,V ,n)♦ −S (U ,V ) −U spec/T (A −U spec)/T

A/T (T ,V ,n)♦ −S (H , P ) −H spec/T −P specV /T (A − H spec + P specV )/T

∗ The original variables are (1/T ) and P .
♦ The original variables are (1/T ) andV .

decoupled manner, both the inner and the outer are minimization. If p and r consist of both extensive and intensive

variables, the submatrices are no longer positive semi-definite at the solution and will be a saddle problem by nature.

For the TP flash using (V ,T )-based thermodynamics, the independent variables (vapor phase moles, vapor volume

and liquid volume) are all extensive and the flash can be formulated as minimization of the Q -function.

4 | OPEN SYSTEM FLASH WITHOUT REACTIONS

The classical state function-based flash specifications were developed for closed systems with constant overall

mole number. Since Legendre transforms can be used to create other state functions for open systems, the "flash"

concept in a general sense, i.e., determination of the component partitioning between phases through minimization,

can be extended to open systems.

We construct these new state functions from a basis functions, e.g., the Helmholtz energy A or the Gibbs energy

G . Each transform forms a new set of natural variables, where the number of moles of a certain component in the

old set is replaced by its conjugate potential. The mole numbers that are not replaced are still conserved in the flash

calculation. However, those replaced by chemical potentials are no longer conserved and the system, as a whole, is

no longer a closed one. We start by analyzing the state functions generated from the Helmholtz energy. The new
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state function from A after k transforms assumes:

A (k ) = A −
k∑
i=1

µi ni (22)

Or we can write it in its differential form:

dA (k ) = −SdT − P dV +
k∑
i=1

ni dµi −
NC −k∑
i=1

µi dni (23)

Here, we used the superscript "(k )" to denote that k transforms have been applied to the original state function (A in

this case). We can make NC transforms for A and obtain the so-called Landau potential or grand-potential (Φ):

Φ = A −
NC∑
i=1

µi ni = −PV (24)

Such a potential is the macroscopic counterpart to the grand canonical ensemble in statistical mechanics, where the

system is completely open, with chemical potentials specified and none of the mole numbers are conserved. The

corresponding flash problem will be a (µ,V ,T ) one.

The state functions obtained by transforming G are:

G (k ) = G −
k∑
i=1

µi ni (25)

or in its differential form:

dA (k ) = −SdT +V dP +
k∑
i=1

ni dµi −
NC −k∑
i=1

µi dni (26)

However, if NC transforms of this kind are performed, we get a zero potential as a result:

G −
NC∑
i=1

µi ni = 0 (27)

Its differential form is actually the Gibbs-Duhem equation:

SdT +V dP +

NC∑
i=1

µi dni = 0 (28)

It indicates that, at constant T and P , we can specify the maximum of NC − 1 chemical potentials or, in other words,
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TABLE 3 Q -functions for open systems.

Model Variables and State Function State Function to Minimize Q -function

G (T , P ,n) G (NS ) (T , P ,n,µ) G −∑NS
m=1 µ

spec
m nm

G (T , P ,n) A (NS ) (T ,V ,n,µ) G − PV spec −∑NS
m=1 µ

spec
m nm

G (T , P ,n) H (NS ) (S , P ,n,µ) G +T S spec −∑NS
m=1 µ

spec
m nm

G (T , P ,n) U (NS ) (S ,V ,n,µ) G +T S spec − PV spec −∑NS
m=1 µ

spec
m nm

G/T (T , P ,n)∗ −S (NS ) (U ,V ,n,µ) (G −U spec − PV spec −∑NS
m=1 µ

spec
m nm )/T

G/T (T , P ,n)∗ −S (NS ) (H , P ,n,µ) (G − H spec −∑NS
m=1 µ

spec
m nm )/T

A (T ,V ,n) A (NS ) (T ,V ,n,µ) A −∑NS
m=1 µ

spec
m nm

A (T ,V ,n) G (NS ) (T , P ,n,µ) A + P specV −∑NS
m=1 µ

spec
m nm

A (T ,V ,n) U (NS ) (S ,V ,n,µ) A +T S spec −∑NS
m=1 µ

spec
m nm

A (T ,V ,n) H (NS ) (S , P ,n,µ) A +T S spec + P specV −∑NS
m=1 µ

spec
m nm

A/T (T ,V ,n)♦ −S (NS ) (U ,V ,n,µ) (A −U spec −∑NS
m=1 µ

spec
m nm )/T

A/T (T ,V ,n)♦ −S (NS ) (H , P ,n,µ) (A − H spec + P specV −∑NS
m=1 µ

spec
m nm )/T

∗ The original variables are (1/T ) and P .
♦ The original variables are (1/T ) andV .

we need to specify at least one mole number for the system.

For the flash specifications based on the new state functions, we can construct the corresponding Q -functions

again by using Equation 18. For any flash specification in Table 2, it can be extended to a corresponding flash for an

open system where k chemical potentials are kept constant. The new function Q -function is:

Q = Q closed −
k∑
i=1

µspec
i

ni (29)

Here, we add the superscript "closed" to denote the Q -functions listed in Table 2. We discuss below the case where

the chemical potential of NS components is kept constant, while the mole numbers of all components can vary. The

updated Q -functions are given in Table 3. Note that the superscript (NS ) denotes that the Legendre transform µmnm

is applied NS times. For example, G (NS ) (T , P ,n′,µ′) means that the Υ function is obtained by applying the Legendre

transform (−µmnm ) to G and G (NS ) needs to be minimized at constant T , P ,n†,µ†, where n† stands for all the mole

numbers except for m. These Q -functions can be used in a similar manner to those in Michelsen’s work.

For efficient solution of these problems, Newton’s method is needed. The stationary point conditions of a Q -

function are essentially the same as the equal fugacity criteria plus various constraints such as ln fm − ln f specm = 0. We

limit our discussion to the six (T , P )-based flash specifications in Table 2 and 3 using (T , P )-based thermodynamics
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and assume that there are two phases at most. At the stationary point, the derivatives of the Q -function w.r.t. the

vapor-phase mole numbers, lnT , ln P and the overall mole number of component m should be equal to zero. The

gradient w.r.t. the same independent variables can have expressions with different scaling factors, depending on

whether the Q -function is from G or G/T . They will be rescaled to give the same dimensionless form, and further

differentiation of the rescaled gradient expressions provides the Jacobian for the Newton method. It turns out that

all the six specifications share a common expression of the Jacobian:



M gT gP gN

(gT )T ETT ET P gT N

(gP )T EPT EP P gPN

(gN )T gNT gNP gNN





∆v

∆ lnT

∆ ln P

∆z


=



rg

rT

rP

rN


(30a)

Mi ,j =
δi ,j

vj
+
1

β v

(
∂ ln ϕ̂v

i

∂vj
− 1

)
+

δi ,j

z j − vj
+
1

β l

(
∂ ln ϕ̂l

i

∂l j
− 1

)
, i ∈ [1, · · · ,NC ], j ∈ [1, · · · ,NC ] (30b)

gT ,i = T

(
∂ ln ϕ̂v

i

∂T
−
∂ ln ϕ̂l

i

∂T

)
, i ∈ [1, · · · ,NC ] (30c)

gP ,i = P

(
∂ ln ϕ̂v

i

∂P
−
∂ ln ϕ̂l

i

∂P

)
, i ∈ [1, · · · ,NC ] (30d)

gN ,i ,m = −
δi ,m

zm − vm
− 1

β l

(
∂ ln ϕ̂l

i

∂lm
− 1

)
, i ∈ [1, · · · ,NS ], m ∈ [1, · · · ,NS ] (30e)

gNN ,m,n =
δn,m

zm − vm
+
1

β l

(
∂ ln ϕ̂l

m

∂ln
− 1

)
,m ∈ [1, · · · ,NS ], n ∈ [1, · · · ,NS ] (30f)

gNT ,m = T

(
∂ ln ϕ̂l

m

∂T

)
, m ∈ [1, · · · ,NS ] (30g)

gNP ,m = P
©­«
∂ ln ϕ̂l

j

∂P

ª®¬ , m ∈ [1, · · · ,NS ] (30h)
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ETT = −CP
R

(30i)

ET P = EPT =
P

R

∂V

∂T
(30j)

EP P =
P 2

RT

∂V

∂P
(30k)

rg ,j = ln f̂ vj − ln f̂
l
j , j ∈ [1, · · · ,NC ] = 0 (30l)

In the above equations, we have:

zi =

NC∑
i=1

(l i + vi ) (31a)

β l =
NC∑
i=1

l i (31b)

β v =
NC∑
i=1

vi (31c)

One should note that:

β v + β l = F =

NC∑
i=1

zi (32)

but F is not necessarily equal to 1 for the open system. Different flash specifications have different rT , rP and rN ,

which are listed in Table 4.

Here we discuss specifically the (T , P ,n†,µ†) situation. For such a situation, the independent variables for result-

ing formulation Equations 29 and 30a are all extensive, including the vapor phase mole numbers and the total feed

moles for those components with specified chemical potentials.

The problem can be cast as a Q -function minimization. For the two-phase situation with the chemical potential

of component 1 specified, we suggest the following procedure to initialize the calculation: At the given T and P , a

set of Wilson K -factors are calculated, and the Rachford-Rice equation is solved to yield initial phase fractions (β l
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and β v) and initial vapor and liquid phase compositions. Then, the mole fractions of the vapor and liquid phases are

used to update the fugacity coefficients using the equation of state. After that, the liquid and vapor mole fractions of

component 1 (x1 and y1) and the total mole number of component 1 (z1) are updated by:

x1 =
f spec1

ϕ̂ l1P
(33a)

y1 =
f spec1

ϕ̂v1P
(33b)

z1 = x1 × β l + y1 × β v (33c)

The new compositions are used to update the K -values. They are obtained from the ratio of fugacity coefficients

calculated by the SRK EoS. They will be used as input for the next round of the Rachford-Rice equation solving. After

five iterations of the above procedure, we switch to the second-order approach using Equation 30a. We remark that

if the composition derivatives in Equation 30a are dropped, the iteration scheme becomes a first order one.

5 | OPEN SYSTEM FLASH WITH REACTIONS

The new Q -functions defined in Section 4 can be used for systems with both phase equilibrium and reaction

equilibrium. The extension to open systems follows the same formula (Equation 29), although reaction equilibrium

brings extra complexity to the solution procedure. The methods for solving chemical and phase equilibrium fall into

two main categories, stoichiometric and non-stoichiometric approaches[34]. In our recent studies, RAND-based non-

stoichiometric methods have been developed and tested. We chose to construct the open system flash solution based

on the modified RAND approach discussed by Paterson et al.[15, 17] and Tsanas et al.[14].

The modified RAND method differs from other CPE methods in that it uses elemental chemical potentials (λ̂ and

λ for dimension and dimensionless version of it, respectively) as independent variables instead of phasemole numbers.

This greatly reduces the size of the system and leads to a more structured matrix for multiphase systems. The phase

mole numbers needed for evaluating thermodynamic properties are expressed from the elemental chemical potentials,

which involves a slightly more complicated derivation. We follow the derivation of the modified RAND formulation

of Paterson et al.[24] and extend it to open systems, where the chemical potentials of NS components are fixed and
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TABLE 4 rT , rP and rN functions for the two-phase flash.

Spec. rT rP rN ,j

(T , P ,n) - - -

(T ,V ,n) - P (V −V spec)/RT -

(S , P ,n) (S − S spec)/R - -

(S ,V ,n) (S − S spec)/R P (V −V spec)/RT -

(U , P ,n) (U spec + PV spec − H )/RT - -

(U ,V ,n) (U spec + PV spec − H )/RT P (V −V spec)/RT -

(H , P ,n) (H − H spec)/RT - -

(H ,V ,n) (H − H spec)/RT P (V −V spec)/RT -

(T , P ,n†,µ†) - - ln f̂ lj − ln f̂
spec
j

(T ,V ,n†,µ†) - P (V −V spec)/RT ln f̂ lj − ln f̂
spec
j

(S , P ,n†,µ†) (S − S spec)/R - ln f̂ lj − ln f̂
spec
j

(S ,V ,n†,µ†) (S − S spec)/R P (V −V spec)/RT ln f̂ lj − ln f̂
spec
j

(U , P ,n†,µ†) (U spec + PV spec − H )/RT - ln f̂ lj − ln f̂
spec
j

(U ,V ,n†,µ†) (U spec + PV spec − H )/RT P (V −V spec)/RT ln f̂ lj − ln f̂
spec
j

(H , P ,n†,µ†) (H − H spec)/RT - ln f̂ lj − ln f̂
spec
j

(H ,V ,n†,µ†) (H − H spec)/RT P (V −V spec)/RT ln f̂ lj − ln f̂
spec
j

† The size of vector µ is NS , whereas the size of vectorn is NC − NS

these NS components are allowed to enter or leave the system. Paterson et al.’s derivation leads to a system of size

NE + NP + 2, for six specifications in a closed system. Our extension adds another NS equations in the system. Since

the derivation presented here shares a lot of similarities with the derivation of Paterson et al.[24], we focus on the

most critical steps and emphasize the differences. In non-stoichiometric methods in closed systems at constantT and

P , we choose to work with an augmented objective function, formed by the sum of the Gibbs energy and an element

balance constraint. We have:

L =

NC∑
i=1

NP∑
j=1

ni ,j µi ,j +

NE∑
l=1

λ̂l
©­«
NC∑
i=1

Al ,i
©­«
NP∑
j=1

ni ,j
ª®¬ − b l ª®¬ (34)

In reactive systems, every equilibrated reaction reduces the degree of freedomof the systemby one. In non-stoichiometric

methods, this is taken into account by the second term of the right-hand side Equation 34. The system is, then, fully

characterized by the mole numbers of the elements in the system (b) and its full specification is (T , P , b) . Elements

are abstract entities that are conserved throughout the flash calculation and they can be understood as the building

blocks of the actual components. The addition of the second term of the right-hand side of Equation 34 to the Gibbs
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energy does not change the nature of the potential. Its function is to account for the elemental balance constraint,

characteristic of reactive systems.

A Q -function for a reactive system can be constructed by adding the second term of the right-hand side of

Equation 34 to theQ -functions presented in the previous sections. Here, we take theQ -function for the
(
S ,V , b†,µ†

)
-

specification, as an example:

Q =

NC∑
i=1

NP∑
j=1

ni ,j µi ,j +

NE∑
l=1

λ̂l
©­«
NC∑
i=1

Al ,i
©­«
NP∑
j=1

ni ,j
ª®¬ − b l ª®¬ +T S spec − PV spec −

NS∑
k=1

ntotk µspec
j

(35)

The stationary conditionswith respect to the number ofmoles in each phase (ni ,j ) and the elemental chemical potential

(λ̂), we have:

µi ,j −
NE∑
k=1

Ak ,i λ̂k = 0, i ∈ [1, · · · ,NC ] , j ∈ [1, · · · ,NP ] (36a)

NC∑
i=1

Al ,i
©­«
NP∑
j=1

(
ni ,j

)ª®¬ − b l = 0, l ∈ [1, · · · ,NE ] (36b)

The two sets of equations can be obtained from the stationary condition of the Lagrangian, as Paterson et al.[24] did.

Equations 36a and 36b also have a clear physical meaning. The first equation represents that the chemical potential

of component i in all phases is equal to its chemical potential calculated from the elemental chemical potentials. The

second one represents the elemental conservation equation. For an open system, Equation 36a does not change, but

Equation 36b needs to be modified. We will introduce this difference later, when it is relevant.

The chemical potential term in Equation 36a can be linearized in terms of mole numbers, temperature and pres-

sure. After some manipulations, we get:

∆nj = xj∆β j + βjMj

(
A

Tλ −
µj

RT

)
(37)

Multiplying Equation 37 by 1T and using the relations 1T∆nj = ∆β j , 1Txj = 1 and 1TMj = x
T
j
, we get:

xTj

(
A

Tλ − ej∆T − γj∆P
)
= gj , j ∈ [1, · · · ,NP ] (38)

The equation relates the reduced equilibrium elemental potentials (λ) to the reduced molar Gibbs energy of each
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phase:

gj =
1

RT

NC∑
i=1

xi ,j µi ,j , j ∈ [1, · · · ,NP ] (39)

Linearization of Equation 36b is less straightforward because the system is not closed anymore and the number of

moles of elements is no longer constant throughout the whole flash calculation. We express them, as follows:

b = Antot (40)

In this equation,ntot is a vector of size NC that collects the total mole numbers of all components in the whole system.

We, then, can rewrite Equation 36b as:

NC∑
i=1

Ak ,i
©­«
NP∑
j=1

(
ni ,j

)
− ntoti

ª®¬ = 0 (41)

Hence, we linearize it with respect to the variables for which we are finding the stationary point of the function, which

are the set of ni ,j and the total mole numbers of the components whose chemical potential were specified (ntotm ). We

have:

NC∑
i=1

Al ,i
©­«
NP∑
j=1

(
ni ,j + ∆ni ,j

)
− ntoti − ∆n

tot
i

ª®¬ = 0 (42a)

A
©­«
NP∑
j=1

∆nj
ª®¬ = A

spec∆nspec (42b)

where, Aspec is the formula matrix only for the NS components and it is of the size NE ×NS and ∆nspec is the change

in the overall mole numbers for the NS components. The introduction of the matrix and the vector simplifies the

problem, as we do not have to carry on with the total mole numbers of species that are being conserved in the system.

Substitution of Equation 37 into Equation 42b gives:

A
©­«
NP∑
j=1

βjMj
ª®¬ ATλ +AX∆β −A

©­«
NP∑
j=1

βjMj ej
ª®¬∆T −

A
©­«
NP∑
j=1

βjMj νj
ª®¬∆P −A

spec∆nspec = A
©­«
NP∑
j=1

βjMj

µj

RT

ª®¬ (43)
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IfT and P are constant and the system is closed, Equations 39 and 43 provide theNE +NP equations for themultiphase

reaction equilibrium.

Regarding the specifications for entropy and pressure, the stationary conditions can be obtained by differentiation

of Equation 35 with respect toT and P , respectively. They are in dimensionless form:

S − S spec
RT

= 0 (44a)

V spec −V
RT

= 0 (44b)

Linearization of them with respect to the variables (T , P , ni ,j and nspecm ) yields:

S − S spec
RT

+
Cp

RT 2
∆T − 1

RT

(
∂V

∂T

)
∆P −

NP∑
j=1

eTj ∆nj = 0 (45a)

V spec −V
RT

− 1

RT

(
∂V

∂T

)
∆T − 1

RT

(
∂V

∂P

)
∆P −

NP∑
j=1

νTj ∆nj = 0 (45b)

For the enthalpy and internal energy specifications, a similar approach can be used, and we would get the following

as a result of the linearization:

H − H spec

RT 2
+
Cp

RT 2
∆T − 1

RT

[(
∂V

∂T

)
− V
T

]
∆P −

NP∑
j=1

ξTj ∆nj = 0 (46a)

H −U spec − PV spec

RT 2
+
Cp

RT 2
∆T − 1

RT

[(
∂V

∂T

)
+
V spec −V

T

]
∆P −

NP∑
j=1

ξTj ∆nj = 0 (46b)

The linearizations presented in Equations 45a, 45b, 46a and 46b are the same as in Paterson et al. (2018) and those

equations do not change for open systems. The relation between ξj and ej is given by:

ξj =
∂

(µi
T

)
∂T

=
1

T

(
∂µj

∂T

)
−
µj

T 2
=
1

T
ej −

µj

T 2
(47)

Furthermore, it can be shown that:

NP∑
j=1

µT
j

RT 2
∆nj =

1

T

NP∑
j=1

(
A

Tλ
)T
∆nj =

λT

T
A

©­«
NP∑
j=1

∆nj
ª®¬ (48)
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Unlike in a closed system, we do not have A

(∑NP
j=1

∆nj

)
= 0 throughout the whole process, but the equality is valid

at the solution. Therefore, we can also replace ξj with ej as in Paterson et al.[24]. With other simplifications that

Paterson et al.[24] performed, we can rewrite the four equations in two general equations:

Cp

RT 2
∆T − 1

RT

(
∂V

∂T

)
∆P −

NP∑
j=1

eTj ∆nj = rT (49a)

− 1

RT

(
∂V

∂T

)
∆T − 1

RT

(
∂V

∂P

)
∆P −

NP∑
j=1

νTj ∆nj = rP (49b)

In short, the final forms of these two equations do not change for the open system. The final expressions for these

two equations can be obtained by substituting Equation 37 into them and reformulating the equations.

Finally, we differentiate Equation 35 with respect to all nspecm . Since vector b is related to n through Equation 40,

we have the following stationary conditions:

(
A

spec
m

)T
λ − µ

spec
m

RT
= 0, m ∈ [1, · · · ,NS ] (50)

Equation 50 also has a clear physical meaning. It shows that the chemical potential in any phase of the component

whose chemical potential is held constant (componentm), should be equal to the specified chemical potential, through

the elemental chemical potentials (λ) of the elements that are the building blocks of component m.

The assemblage of Equations 43, 39, 49a, 49b and 50 produces a system of NP + NE + NS + 2 equations:



A
∑nP
j=1

βjMjA
T AX cT cP Aspec

(AX)T 0 s1 s2 0T

(cT )T sT1 Cx Ω 0T

(cP )T sT2 Ω Ψ 0T

(Aspec)T 0 0 0 0





λ

∆β

∆T

∆P

∆nspec



=



u1

u2

u3

u4

µspec



(51)

In this system of equations, we have:

u1 = A
©­«
nP∑
j=1

βjMj

µj

RT

ª®¬ (52a)
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u2,j =

NC∑
i=1

xi ,j
µi ,j

RT
, j ∈ [1, · · · , nP ] (52b)

u3 = rT −
NP∑
j=1

βj e
T
jMj

µj

RT
(52c)

u4 = rP −
NP∑
j=1

βj τ
T
j Mj

µj

RT
(52d)

cT = A

NP∑
j=1

βjMj ej (52e)

cP = A

NP∑
j=1

βjMj τj (52f)

s1,j = −xTj ej (52g)

s2,j = −xTj τj , j ∈ [1, · · · , nP ] (52h)

Ω =

NP∑
j=1

βj e
T
jMj τj −

1

RT

∂V

∂T
=

NP∑
j=1

βj τ
T
j Mj ej −

1

RT

∂V

∂T
(52i)

Ψ =

NP∑
j=1

βj τ
T
j Mj τj −

1

RT

∂V

∂P
(52j)

Cx =
CP

RT 2
+

NP∑
j=1

βj e
T
jMj ej (52k)

Here, rT and rP have slightly different expressions than the ones presented in Table 4, because the independent

variables in that case were lnT and ln P . The expressions for this case are shown in Table 5.

In this work, we have only implemented the (T , P , b†,µ†) specification for a system modelled by (T , P )-based

thermodynamics. We use the initial estimate procedure developed earlier for state function minimization problems
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TABLE 5 rT and rP functions for the RAND method.

Specification rT rP

(T , P ,n) - -

(T ,V ,n) - (V −V spec)/RT

(S , P ,n) (S − S spec)/RT -

(S ,V ,n) (S − S spec)/RT (V −V spec)/RT

(U , P ,n) (U spec +V spec − H )/RT 2 -

(U ,V ,n) (U spec +V spec − H )/RT 2 (V −V spec)/RT

(H , P ,n) (H − H spec)/RT 2

(H ,V ,n) (H − H spec)/RT 2 (V −V spec)/RT

proposed by Tsanas et al.[15]. It consists of the minimization of a given function with respect to λ at constant total

mole numbers of the system. After a step in λ, the mole fractions of each species in each phase are updated until the

stationary conditions of the function are met.

6 | RESULTS AND DISCUSSION
6.1 | Open System Flash without Reactions

In this section, we present the results of a (T , P )-based implementation of the algorithm outlined in Section 4. A

five-component hydrocarbonmixture of methane, ethane, propane, n-octance and n-nonane is used with their critical

properties given in Table 6. The SRK EoS is used in all the calculations.

For the reference calculation, two-phase flash at the (T , P ,n)-specification is performed using the second-order

algorithm suggested byMichelsen [28]. Before switching to the second-order calculation, five successive substitutions

are performedwithout acceleration (Equation 33). The results are summarized in Figure 1. Figure 1 (a) shows the vapor

phase fraction in this typical phase envelope for a hydrocarbon mixture. Figure 1 (b) presents the number of iterations

used in the second-order step. Figure 1 (c) shows the natural logarithm of the fugacity of methane. Those fugacity

values are to be used in the subsequent calculation to specify the chemical potential in an open system.

For the open system flash with a specified chemical potential for methane, the specification is (T , P ,n†, µC1 ) . The

system has essentially a semi-permeablemembrane allowing themethane exchangewith a reservoir having a constant

fugacity of methane. We actually use a subset of the equations in Equation 30 becauseT and P are already specified

here. It should be noted that we only use the fugacity of methane from the (T , P ,n)-flash to specify the problem but
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not its results in assisting the (T , P ,n†, µC1 )-flash calculation. The calculation algorithm used for the (T , P ,n†, µC1 )-

flash is as described in Section 4. The algorithm is a second-order Q -function minimization procedure, but we can

reduce it to a first-order one by dropping the composition derivatives of the fugacity coefficients in the Jacobian. The

results for the first-order and the second-order calculations are presented in Figures 2 and 3, respectively, for com-

parison. Both the first-order and the second-order calculations converge and give essentially the same vapor fraction

values as in Figure 1. However the first-order one uses much more iterations especially close to the critical point. The

number of iterations for the second-order (T , P ,n†, µC1 )-flash is comparable to the corresponding (T , P ,n)-flash and

the number of iterations is counted after five initial iterations with the initialization method for an open system (see

Section 4). The number of iterations does not exceed 18 even close to the critical point. Table 7 presents a calculation

example at 336.5 K and 6MPa. The (T , P ,n)-flash and the two methods for the (T , P ,n†, µC1 )-flash converge to the

same vapor phase fraction. The convergence behavior of the two constant methane fugacity calculations are shown

in Figure 4. As expected, they show the first-order and the second-order convergence, respectively. Figure 4 (c) also

shows that both methods converge to a minimum of the Q -function.

As another example for the open flash at a constant fugacity of methane, we use the same mixture, but instead

of using the methane fugacity at each T and P from Figure 1 (c), we simply specify the methane fugacity to a single

fixed value in order to test the algorithm. This test can also generate the two-phase region under a constant methane

fugacity condition, which is different from our classical TP phase diagram. In the open flash, we fix the moles of all

the species except for methane. The system has 0.1, 0.1, 0.2, 0.2 moles of ethane, propane, n-octane and n-nonane,

respectively. Methane is free to enter or leave the system, thus making the overall mole fraction of the system vary in

the finally presented TP phase diagram for this open system. Figure 5 shows the phase envelope for ln(f1/MPa) = 0.6.

The pure methane saturation line is also presented in the same figure. The PT phase diagram for the open system is

obviously very different from the normal PT phase diagram in Figure 1, with the two-phase region smaller for the open

system. The most distinctive feature of the new phase envelope is that it stretches all the way to the pure methane

saturation line. Figure 5 (a) shows the vapor phase fraction at different temperatures and pressures. Its value varies

from 0 and 1, and there is a critical point around 550 K and 6 MPa to where various vapor phase fraction lines tend

to converge. The number of iterations, depicted in Figure 5 (b), shows that the most difficult part to converge is close
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TABLE 6 SRK parameters for the components used in the analysis of the open system case without chemical
reaction ∗.

Component Tc / K Pc/MPa ω

Methane 190.6 4.60 0.008

Ethane 305.4 4.88 0.098

Propane 369.8 4.24 0.152

n-Octane 568.8 2.51 0.394

n-Nonane 594.6 2.31 0.440

∗ Binary interaction parameters were all set to 0.

TABLE 7 Solution for the phase equilibrium problem at 336.5 K and 6 MPa.

Method β z1 Q

(T , P ,n) Flash 0.3142819433 0.4000000000 -

First Order (T , P ,n†, µC1 ) Flash 0.3142819433 0.4000000000 -2.4691265452

Second Order (T , P ,n†, µC1 ) Flash 0.3142819433 0.4000000000 -2.4691265452

† The size of vectorn is NC − 1

to the tail of the phase envelope. In this region, the system behavior changes abruptly with small changes inT and P ,

giving challenges to initialization in this area. Figure 5 (c) shows the total mole fraction of methane in the system. It

can be seen that, in the area close to the saturation line, the system consists of nearly pure methane. This means that

at thoseT and P , methane enters the system to such a large extent that the other components at fixed mole numbers

become traces. Finally, the dotted and the dash-dotted lines show that the phase envelope meets the saturation line

at the saturation temperature and pressure at the specified fugacity of methane.

6.2 | Open System Flash with Reactions

For the open flash with reactions, we exemplify it with the system containing propene, water, 1-propanol and

propane. Similar systems have been studied previously [15, 35, 36, 37] There is only one equilibrium reaction in the

system:

H2O + C3 H6 −−−⇀↽−−− C3 H7OH (53)

Its equilibrium constant (K ) is assumed to be temperature independent an equal to 23 (K = 23)[37]. The pressure of

the system is fixed at 1 bar. The SRK EoS is used in the calculation, and the model parameters are provided in Table 8.
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(a) β v (b) iterations

(c) ln (f1/MPa)

F IGURE 1 Phase envelope calculated using the two-phase second order (T , P ,n) flash: (a) vapor phase fraction
in the two-phase region; (b) the number of iterations needed in the second-order step; (c) the natural logarithm of
the fugacity of methane, which is used to specify the calculation at the fixed methane fugacity.

(a) β v (b) iterations

F IGURE 2 Phase envelope calculated using the two-phase first order (T , P ,n†, µC1 )-flash: (a) vapor phase
fraction in the two-phase region; (b) the number of iterations needed in the first-order step.
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(a) β v (b) iterations

F IGURE 3 Phase envelope calculated using the two-phase second order (T , P ,n†, µC1 )-flash: (a) vapor phase
fraction in the two-phase region; (b) the number of iterations needed in the second-order step.

(a) |∆z1 | (b) |∆β |

(c) Q−Qmin
RT

F IGURE 4 Evolution of various quantities in the open flash at 336.5 K and 6 MPa using the first-order (red dots)
and the second-order (blue triangles) methods: (a) absolute value of the change of the total mole number of
methane z1; (b) absolute value of the change of the vapor phase amount β v; (c) the difference between the
dimensionless Q -function at the current iteration and its minimum value.
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(a) β v (b) iterations

(c) z1/
∑
zi

F IGURE 5 Phase envelope calculated using the two-phase second order (T , P ,n†, µC1 )-flash at
ln(f1/MPa) = 0.6: (a) vapor phase fraction in the two-phase region; (b) the number of iterations needed in the
second-order step. (c) total mole fraction of methane in the system (z1/

∑
zi ).

As a reference calculation, the (T , P , b)-flash using the modified RAND approach [15] is performed for the initial

composition of 1 mole propene, 1 mole water and 0.1 mole propane. Propane is an inert and its mole number is con-

served in all calculations. The results at different temperatures are presented in Figure 6, showing a single-phase liquid

region below 270.9 K, two-phase region between 270.9 and 344.6 K, and a single-phase vapor region above 344.6

K. The liquid phase below 270.9 K is rich in propanol, and the other components are present in small molar fractions

(the second most abundant component has its mole fraction lower than 10%). The two-phase region consists of a

propanol-rich liquid phase and a vapor phase of varying composition. The vapor phase above 344.6 K contains mostly

propanol, but now the other components are more abundant than in the liquid below 270.9 K. Besides the variation

of phase fractions, liquid mole fractions, and vapor mole fractions, Figure 6 also shows the chemical potentials that

can be used in the specifying the open system flash calculations.

In the open system flash, we fix the water chemical potential at the values illustrated in Figure 6 (d). The initial

amounts of species are 1 mole propene, 2 moles water and 0.1 mole propane. Water is allowed to leave the system in

order to keep the same element amounts as in the (T , P , b) example. Figure 7 presents the results for the open flash
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TABLE 8 SRK parameters for the components used in the analysis of the open system case with chemical
reaction∗.

Component Tc /K Pc /MPa ω

Propene 365.57 4.67 0.140

Water 647.13 22.055 0.345

1-Propanol 508.3 4.76 0.668

Propane 369.8 4.24 0.152

∗ Binary interaction parameters were all set to 0.

with reaction at 1 bar and the same range of T as before. The phase fractions and equilibrium phase compositions

are essentially the same as those in Figure 6. Figure 7 works as a proof of concept showing that the same results are

achievable using the open system algorithm.

Figure 8 shows the convergence behavior of the (T , P , b†, µwater)-flash using the second-order Q -function mini-

mization at three temperatures (259.9 K, 300.5 K, and 350.1K). At 259.9 K and 350.1 K, the system is in single-phase

regions. There is only a liquid phase and a vapor phase, at 259.9 K and 350.1 K, respectively. At 300.5 K, the system

is in the two-phase region. The error in Figure 8 is defined as

error =

√√√√NP∑
j=1

NC∑
i=1

(
n
q
i ,j
− nq−1

i ,j

)2
(54)

where q is an iteration number. We remark that this type of error calculation may give artificial increases in the error

value. At all the three temperatures, the algorithm converge quadratically.

7 | CONCLUSIONS AND FUTURE WORK

In this work, we analyzed the Q -functions suggested by Michelsen for state function-based flash specifications.

We showed that a Q -function relates the thermodynamic state function to be minimized for a flash specification and

the state function whose natural variables are used in the flash formulation —Michelsen’s paper essentially describes

how to perform state function minimization in (T , P ,n)-based thermodynamics or (T ,V ,n)-based thermodynamics.

The two state-functions are related by Legendre transforms. The Q -function has the same physical meaning at the

solution as the state function to beminimized and it is not equivalent to the Lagrangian function except at the solution.

Based on the analysis, we extended the Q -function approach to open systems. For an open system, it is possible

to define a state function to be minimized with Legendre transforms. We categorized the corresponding equilibrium
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(a) β (b) Liquid Mole Fraction

(c) Vapor Mole Fraction (d) Dimensionless Chemical Potential

F IGURE 6 Open flash calculation with a reaction at fixed (T , P , b) for the system propene (1), water (2),
1-propanol (3) and propane (4). The initial mole numbers are 1 mol of propene, 1 mol of water and 0.1 mol of
propane.

(a) β (b) Liquid Mole Fraction

(c) Vapor Mole Fraction

F IGURE 7 Open flash calculation with a reaction at fixed (T , P , b†, µwater) for the system propene (1), water (2),
1-propanol (3) and propane (4). The initial mole numbers are 1 mol of propene, 1 mol of water and 0.1 mol of
propane.
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F IGURE 8 Convergence behavior of the open flash calculation with a reaction at fixed (T , P , b†, µwater) for three
different temperatures, 259.9 K, 300.5 K and 350.1 K.

calculation through minimizing the state function as the flash-type calculation. New Q -functions can be introduced

to solve the flash problems for open systems. For open systems without reactions, we suggested Q -functions and

a formulation using the classical framework, with the mole numbers as independent variables; for those with reac-

tions, we suggested Q -functions and a formulation using the recently proposed modified RAND framework. For both

situations, a common Jacobian can be obtained to cover various specifications.

Flash for open systems at constant T and P corresponds to Q -function minimization. We discussed specifically

how to solve this type of flash for two-phase non-reactive and reactive situations. We validated our algorithms using

the Q -function minimization for a non-reactive hydrocarbon mixture and a four-component reactive mixture by a

comparison with the classical flash results at the same conditions. For the hydrocarbon mixture where the fugacity of

methane is kept constant, a distinctively different two-phase region is obtained for this system allowing the exchange

of methane with an external reservoir. The algorithms give quadratic convergence for the tested problems.

The general formulations provided in this work include the counterparts for classical PH flash, PS flash, VT flash,

and UV flash although our examples are only for the two-phase open systems at constant T and P . It should also

be noted that the formulations are not limited by the number of phases either. In principle, the formulations lay

out the basis for robust and efficient algorithms for other types of flash, although it requires more detailed study

for the specific problems. Even for the isothermal processes only, the current work has made it possible to develop

more minimization based algorithms for many open system problems, such as, compositional grading in a petroleum

reservoir, membrane separation processes, and geochemical calculations at constant partial pressure or constant pH.

The last one requires additional considerations on electrolyte models, electroneutrality, and mineral precipitations
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which will be discussed in detail in our future paper.
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