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Abstract. In the paper, we consider the local-in-time and the global-in-time infinity-

ion-mass convergence of bipolar Euler-Maxwell systems by setting the mass of an electron

me = 1 and letting the mass of an ion mi → +∞. We use the method of asymptotic

expansions to handle the local-in-time convergence problem and find that the limiting

process from bipolar models to unipolar models is actually decoupling, but not the van-

ishing of equations for the corresponding the other particle. Moreover, when the initial

data is sufficiently close to the constant equilibrium state, we establish the global-in-time

infinity-ion-mass convergence.

Keywords: Euler-Maxwell system; infinity-ion-mass limit; unipolar; bipolar; local conver-

gence; global convergence.

AMS Subject Classification (2020) : 35B40, 35C20, 35L60, 35Q35.

1. Introduction

In the paper, we consider the local-in-time and global-in-time infinity-ion-mass conver-

gence of the bipolar Euler-Maxwell system, which is an important model in plasma physics.

The infinity-ion-mass limit means letting the ratio of the mass of an ion to that of an electron

tends to infinity. We study these problems in the case of periodic solutions. Let T3 be a torus

in R3. We denote by x = (x1, x2, x3) ∈ R3 the space variable and t > 0 the time variable.

For ν = i, e, where i stands for ions and e stands for electrons, a bipolar Euler-Maxwell
1
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system in a three-dimensional torus is under the form [3, 4, 25]

∂tρν + div(ρνuν) = 0,

mν∂t(ρνuν) +mνdiv(ρνuν ⊗ uν) +∇pν(ρν) = qνρν(E + uν ×B)−mνρνuν ,

∂tE −∇×B = −(qiρiui + qeρeue), divE = qiρi + qeρe,

∂tB +∇× E = 0, divB = 0, t > 0, x ∈ T3,

(1.1)

with initial conditions

t = 0 : (ρν , uν , E,B) = (ρν,0, uν,0, E0, B0), x ∈ T3. (1.2)

Here ⊗ stands for the tensor product, ρi and ui (respectively, ρe and ue) stand for the

density and velocity vector of ions (respectively, electrons), E is the electric field and B is

the magnetic field. The parameters mi and qi = 1 (respectively, me and qe = −1) stand for

the mass and the charge of an ion (respectively, an electron). The pressure functions pν(ρ)

are supposed to be smooth and strictly increasing for all ρ > 0, namely,

p′ν(ρ) > 0, ∀ρ > 0, ν = i, e.

System (1.1) admits an equilibrium state

(ρe, ρi, ue, ui, E,B) = (1, 1, 0, 0, 0, Be),

where Be ∈ R3 is an arbitrary constant vector. For smooth solutions with ρν > 0, the

momentum equations in (1.1) are equivalent to

mν∂tuν +mν(uν · ∇)uν +∇hν(ρν) = qν(E + uν ×B)−mνuν , (1.3)

where h is the enthalpy function, defined by

h′ν(ρ) =
p′ν(ρ)

ρ
.

Since p is strictly increasing, so is h. The terms qν(E+ uν ×B) and mνuν on the right hand

side of (1.3) represents the Lorentz force and the velocity dissipation, respectively.

The bipolar Euler-Maxwell system (1.1) is symmetrizable hyperbolic for ρν > 0, then the

problem (1.1)-(1.2) admits a local smooth solution according to Lax [16] and Kato [14]. For

smooth initial data, the global existence of smooth solutions, which are sufficiently close to

the equilibrium state, to (1.1)-(1.2) was obtained by Peng [19] both in a torus and in the

whole space, while Duan-Liu-Zhu [7] studied the corresponding decay rate problem in the

whole space. In Xu-Xiong-Kawashima [31], the well-posedness of (1.1)-(1.2) was established

in critical Besov spaces. In addition, if there is no velocity dissipation in (1.3), Guo-Ionescu-

Pausader [11] proved the global existence of smooth solutions to (1.1)-(1.2) in the whole
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space with the extra general irrotationality condition

B = ∇× ue = −∇× ui.

We refer to [8, 10, 27] and the reference therein for more related topics.

Physicians observe that in plasma physics, electrons move much more rapidly than ions.

Hence, when establishing unipolar models, they often regard ions as non-moving and becom-

ing a uniform background with a fixed unit density for simplicity. As a result, the equations

for ions are neglected. In fact, if we assume

ρi = b(x), ui = 0, (1.4)

in which b(x) denotes the doping profile, then system (1.1) becomes the following unipolar

Euler-Maxwell model for electrons,

∂tρe + div(ρeue) = 0,

∂tue + (ue · ∇)ue +∇he(ρe) = −E − ue ×B − ue,

∂tE −∇×B = ρeue, divE = b(x)− ρe,

∂tB +∇× E = 0, divB = 0,

(1.5)

which has been widely studied. In Chen-Jerome-Wang [5], a global existence result of weak

solutions in a one-dimensional space was established by using the fractional step Godunov

scheme together with a compensated compactness argument. For smooth initial data, the

global existence of smooth solutions, which are sufficiently close to the equilibrium state,

to (1.5) was obtained in [23, 6, 30]. Moreover, the asymptotic analysis of (1.5) for smooth

solutions is also a well known problem. For the local-in-time convergence of small parameters,

we refer to [20, 21, 22, 6, 23, 30] and the reference therein. By establishing the uniform

global estimates with respect to small parameters, the global-in-time convergence of small

parameters for (1.5) are studied in [23, 24, 28].

Although the unipolar model (1.5) has been formally established, its derivation from the

bipolar model (1.1) is only based on physical observations and assumptions (1.4), which

lacks rigorous proof in mathematics. In other words, we need to prove correctly and explain

clearly why the unipolar model is well-defined and can be regarded as the simplification of

the bipolar model. However, it is not easy. One of the reasons is that there is no general

method and procedure by now to reveal the relationship of the bipolar and the corresponding

unipolar model which is effective for almost all fluid models.

Fortunately, in the perspective of mass, there are reasonable attempts. Based on the

fact that ions are much heavier than electrons, we let the ratio me/mi → 0. There are

two different ways to consider this limiting process. The first is setting me = 1 and letting
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mi → +∞, which is called the infinity-ion-mass limit, and was recently introduced in [29].

The second is setting mi = 1 and letting me → 0, which is called the zero-electron-mass

limit. To some extent, the relationship of the bipolar model and the corresponding unipolar

model can be explained well in both limits, through which the corresponding unipolar model

can both be obtained from the bipolar model.

The zero-electron-mass limit in bipolar models has a long research history, and was first

mathematically introduced in [13] for bipolar drift-diffusion equations. In [9], the local-

in-time convergence of the zero-electron-mass limit was studied in a bounded domain in a

one-dimensional space for the following bipolar Euler-Poisson system,
∂tρν + div(ρνuν) = 0,

mν∂t(ρνuν) +mνdiv(ρνuν ⊗ uν) +∇pν(ρν) = qνρν∇φ−mνρνuν ,

∆φ = ρi − ρe,

(1.6)

where ρν , uν ,mν , pν and qν are defined in the same way as in (1.1), and φ is the scaled

electric potential. See also [29] for the corresponding Cauchy problem in the whole space

of any dimension. Similar to the bipolar Euler-Maxwell system, when ions are regarded as

non-moving, various problems concerning the zero-electron-mass limit have been studied for

the following unipolar Euler-Poisson model for electrons,
∂tρe + div(ρeue) = 0,

me∂t(ρeue) +mediv(ρeue ⊗ ue) +∇pe(ρe) = −ρe∇φ−meρeue,

∆φ = b− ρe,

where b is the doping profile which is assumed to be constant. For the local-in-time conver-

gence, we refer to [1] for the case of periodic solutions and [2] for Cauchy problem with both

well- and ill-prepared initial data. For the convergence of periodic solutions in critical Besov

spaces, we refer to [32, 33]. In Li-Peng-Xi [17], they studied the periodic case when the

doping profile b is not a constant but a function of the space variable x. However, as pointed

out in [29], when the zero-electron-mass limit is applied in bipolar models, it is not proper

to simply ignore the effect of ions, and only make the asymptotic analysis to the equations

for electrons. In fact, rather than staying the same, the equations for ions have a limiting

process, of which the key point is actually decoupling, but not the vanishing of equations.

The zero-electron-mass limit works well in the bipolar Euler-Poisson system, but not for

the bipolar Euler-Maxwell system. This is because there are strong coupling in the form

of the Lorentz force in momentum equations in (1.3). Indeed, when the zero-electron-mass

limit is applied to the bipolar Euler-Poisson model (1.6), formally we get the Boltzmann
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relation ∇he(ρe) = −∇φ. Together with the Poisson equation, we have

ρe −∆he(ρe) = ρi.

This implies the solvability of ρe in the expression of ρi, which leads to the unipolar Euler-

Poisson model for ions that does not contain any information of electrons. By now the

decoupling is successful (See details in [29]). Contrarily, when the zero-electron-mass limit

is applied to the bipolar Euler-Maxwell system (1.1), formally the momentum equation for

electrons becomes

∇he(ρe) = −E − ue ×B.

Due to the Lorentz force on the right hand side, it is obvious that the decoupling is not

successful. However, if setting me = 1 and letting mi → +∞, we can avoid this strong

coupling. In fact, when the infinity-ion-mass limit is applied to the bipolar Euler-Maxwell

system (1.1), the formal limit of the momentum equation for ions becomes

∂tui + (ui · ∇)ui = −ui.

It is a transport equation only for ui, which results in the success in decoupling. See the

details in Section 2. That is why we apply the infinity-ion-mass limit.

The aim of the present paper is to establish both the local-in-time and the global-in-time

convergence of the infinity-ion-mass limit for the bipolar Euler-Maxwell system (1.1), of

which the limiting system is the unipolar Euler-Maxwell model for electrons. The paper is

organized as follows. In Section 2, we give some preliminaries and state our main results.

In Section 3, for sufficiently smooth initial data, we establish the local-in-time convergence.

Section 4 is devoted to the problem of global-in-time convergence.

2. Preliminaries and Main results

2.1. Notations and inequalities. In the paper, we let me = 1 and define the small pa-

rameter ε = m
−1/2
i . Thus the infinity-ion-mass limit means letting ε→ 0. We denote s ≥ 3

an integer and C a generic positive constant independent of the small parameter ε. For a

multi-index α = (α1, α2, α3) ∈ N3, we denote

∂α =
∂|α|

∂xα1
1 ∂x

α2
2 ∂x

α3
3

with |α| = α1 + α2 + α3.

For simplicity, we denote by ‖ · ‖, ‖ · ‖∞ and ‖ · ‖l the usual norms of L2 def
= L2(T3),

L∞
def
= L∞(T3) and H l def= H l(T3) for all integers l ≥ 1, respectively. We will repeatedly

use the fact that for integers s ≥ 3, the embedding Hs−1 ↪→ L∞ is continuous. The inner

product in L2(T3) is denoted as 〈·, ·〉. Throughout the paper, we denote ν = i, e, where i
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stands for ions and e stands for electrons. We first introduce the Moser-type inequalities,

which we will frequently use in later proof.

Lemma 2.1. (Moser-type calculus inequalities [15, 18]) . Let l ≥ 3 be an integer. For all

α ∈ N3 with 1 ≤ |α| ≤ l, if u ∈ H l and v ∈ H |α|, then

‖∂α(uv)− u∂αv‖ ≤ C‖∇u‖l−1‖v‖|α|−1,

‖∂α(uv)‖ ≤ C‖u‖l‖v‖l.

2.2. Results on the local-in-time convergence. We first consider the local-in-time con-

vergence of the infinity-ion-mass limit for the bipolar Euler-Maxwell system. When concern-

ing the local-in-time convergence, it is not necessary to introduce the velocity dissipation

term in the momentum equations (1.3). Hence, (1.1)-(1.2) becomes

∂tρ
ε
i + div(ρεiu

ε
i ) = 0,

∂tu
ε
i + (uεi · ∇)uεi + ε2∇hi(ρεi ) = ε2(Eε + uεi ×Bε),

∂tρ
ε
e + div(ρεeu

ε
e) = 0,

∂tu
ε
e + (uεe · ∇)uεe +∇he(ρεe) = −Eε − uεe ×Bε,

∂tE
ε −∇×Bε = ρεeu

ε
e − ρεiuεi , divEε = ρεi − ρεe,

∂tB
ε +∇× Eε = 0, divBε = 0, t > 0, x ∈ T3,

t = 0 : (ρεν , u
ε
ν , E

ε, Bε) = (ρεν,0, u
ε
ν,0, E

ε
0, B

ε
0), x ∈ T3.

(2.1)

By the theory of Lax [16] and Kato [14] for the symmetrizable hyperbolic system, we have

Proposition 2.1. (Local existence of smooth solutions) Let s ≥ 3 be an integer and the initial

data
(
ρεν,0, u

ε
ν,0

)
∈ Hs with ρεν,0 ≥ 2ρ for some given positive constant ρ > 0 independent of

ε. Assume that the initial data Eε
0 and Bε

0 satisfy the following compatibility condition

divEε
0 = ρεi,0 − ρεe,0, divBε

0 = 0,

then there exists T εe > 0 such that the periodic problem (2.1) has a unique smooth solution

(ρεν , u
ε
ν , E

ε, Bε) defined on the time interval [0, T εe ], satisfying ρεν ≥ ρ and

(ρεν , u
ε
ν , E

ε, Bε) ∈ C ([0, T εe ] ; Hs) ∩ C1
(
[0, T εe ] ; Hs−1) .

2.2.1. Asymptotic expansion. We look for an approximation of solution (ρεν , u
ε
ν , E

ε, Bε) to

(2.1) under the form of a power series in ε. Assume that the initial data of (ρεν , u
ε
ν , E

ε, Bε)

admit an asymptotic expansion with respect to ε,

(ρεν,0, u
ε
ν,0, E

ε
0, B

ε
0)(x) =

∑
j≥0

ε2j
(
ρ̄jν , ū

j
ν , Ē

j, B̄j
)

(x), (2.2)
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where
(
ρ̄jν , ū

j
ν , Ē

j, B̄j
)
j≥0 are sufficiently smooth. Then we make the following ansatz,

(ρεν , u
ε
ν , E

ε, Bε) (t, x) =
∑
j≥0

ε2j
(
ρjν , u

j
ν , E

j, Bj
)

(t, x). (2.3)

In what follows, we use a formal expansion defined by

hν

(∑
j≥0

ε2jρjν

)
= hν

(
ρ0ν
)

+ ε2h′ν(ρ
0
ν)ρ

1
ν +

∑
j≥2

ε2j
[
h′ν(ρ

0
ν)ρ

j
ν + hj−1ν

(
(ρkν)k≤j−1

)]
,

where {hjν}j≥1 are smooth functions depending only on
(
ρkν
)
k≤j. Substituting the expansions

(2.3) into system (2.1) and comparing the coefficients before the powers of ε, we obtain

(1) The leading profiles (ρ0ν , u
0
ν , E

0, B0) from the coefficients of ε0 satisfy the following

system 

∂tρ
0
i + div(ρ0iu

0
i ) = 0,

∂tu
0
i + (u0i · ∇)u0i = 0,

∂tρ
0
e + div(ρ0eu

0
e) = 0,

∂tu
0
e + (u0e · ∇)u0e +∇he(ρ0e) = −(E0 + u0e ×B0),

∂tE
0 −∇×B0 = ρ0eu

0
e − ρ0iu0i , divE0 = ρ0i − ρ0e,

∂tB
0 +∇× E0 = 0, divB0 = 0.

(2.4)

with initial conditions

t = 0 : (ρ0ν , u
0
ν , E

0, B0) = (ρ̄0ν , ū
0
ν , Ē

0, B̄0). (2.5)

The second equation in (2.4) is symmetrizable hyperbolic. Due to the theory of Lax [16]

and Kato [14], a unique local smooth solution u0i exists. Once u0i is known, the first equation

in (2.4) becomes linear. Obviously, a unique local smooth solution ρ0i exists. In conclusion,

a unique local smooth solution (ρ0i , u
0
i ) exists, which satisfies the following

∂tρ
0
i + div(ρ0iu

0
i ) = 0,

∂tu
0
i + (u0i · ∇)u0i = 0,

t = 0 : (ρ0i , u
0
i ) = (ρ̄0i , ū

0
i ), x ∈ T3.

(2.6)

Since (ρ0i , u
0
i ) is known, the remaining equations in (2.4) become

∂tρ
0
e + div(ρ0eu

0
e) = 0,

∂tu
0
e + (u0e · ∇)u0e +∇he(ρ0e) = −(E0 + u0e ×B0),

∂tE
0 −∇×B0 = ρ0eu

0
e − ρ0i (t, x)u0i (t, x), divE0 = ρ0i (t, x)− ρ0e,

∂tB
0 +∇× E0 = 0, divB0 = 0,

t = 0 : (ρ0e, u
0
e, E

0, B0) = (ρ̄0e, ū
0
e, Ē

0, B̄0), x ∈ T3,

(2.7)
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which we call the generalized unipolar Euler-Maxwell system for electrons. Since it is sym-

metrizable hyperbolic for ρe > 0, a unique local smooth solution (ρ0e, u
0
e, E

0, B0) to (2.7)

exists due to the theory of Lax [16] and Kato [14].

(2) When j = 1, the profiles (ρ1ν , u
1
ν , E

1, B1) from the coefficients of ε2 satisfy the following

linear system

∂tρ
1
i + div(ρ0iu

1
i + ρ1iu

0
i ) = 0,

∂tu
1
i + (u0i · ∇)u1i + (u1i · ∇)u0i = −∇hi(ρ0i ) + E0 + u0i ×B0,

∂tρ
1
e + div(ρ0eu

1
e + ρ1eu

0
e) = 0,

∂tu
1
e + (u1e · ∇)u0e + (u0e · ∇)u1e +∇ (h′e(ρ

0
e)ρ

1
e) + E1 + u0e ×B1 + u1e ×B0 = 0,

∂tE
1 −∇×B1 − (ρ1eu

0
e + ρ0eu

1
e) + ρ0iu

1
i + ρ1iu

0
i = 0, divE1 = ρ1i − ρ1e,

∂tB
1 +∇× E1 = 0, divB1 = 0,

(2.8)

with initial conditions

t = 0 : (ρ1ν , u
1
ν , E

1, B1) = (ρ̄1ν , ū
1
ν , Ē

1, B̄1). (2.9)

(3) In general, for j ≥ 2, the profiles (ρjν , u
j
ν , E

j, Bj) are obtained by induction. Assume

that the coefficients
(
ρkν , u

k
ν , E

k, Bk
)
0≤k≤j−1 are smooth and already determined in previous

steps, then the coefficients (ρjν , u
j
ν , E

j, Bj) of order ε2j satisfy the linear system

∂tρ
j
i + div

(
ρ0iu

j
i + ρjiu

0
i

)
= −

j−1∑
k=1

div
(
ρki u

j−k
i

)
,

∂tu
j
i +
(
u0i · ∇

)
uji +

(
uji · ∇

)
u0i

= −∇
(
h′i(ρ

0
i )ρ

j−1
i + hj−2i

(
(ρki )k≤j−2

))
+ Ej−1 −

j−1∑
k=1

(
(uki · ∇)uj−ki

)
+

j−1∑
k=0

(
uki ×Bk−j) ,

∂tρ
j
e + div

(
ρ0eu

j
e + ρjeu

0
e

)
= −

j−1∑
k=1

div
(
ρkeu

j−k
e

)
,

∂tu
j
e +
(
u0e · ∇

)
uje +

(
uje · ∇

)
u0e +∇

(
h′e(ρ

0
e)ρ

j
e + hj−1e

(
(ρke)k≤j−1

))
+ Ej + uje ×B0 + u0e ×Bj

= −
j−1∑
k=1

(
(uke · ∇)uj−ke + uke ×Bj−k) ,

∂tE
j −∇×Bj + ρjiu

0
i + ρ0iu

j
i − (ρjeu

0
e + ρ0eu

j
e) = −

j−1∑
k=1

(
ρki u

j−k
i − ρkeuj−ke

)
,

divEj − ρji + ρje = 0, ∂tB
j +∇× Ej = 0, divBj = 0,

(2.10)
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with the initial conditions(
ρjν , u

j
ν , E

j, Bj
)

(0, x) =
(
ρ̄jν , ū

j
ν , Ē

j, B̄j
)

(x). (2.11)

In (2.8) and (2.10), all the terms on the right hand sides are known. Generally speaking, for

j ≥ 1, we can get
(
ρji , u

j
i

)
from the first two equations in the system (2.8) or (2.10), and then

insert (ρji , u
j
i ) into the remaining equations in the system to get (ρje, u

j
e, E

j, Bj). Hence, linear

systems (2.8)-(2.9) and (2.10)-(2.11) admit unique local smooth solutions (ρjν , u
j
ν , E

j, Bj) for

all j ≥ 1. We then have the following proposition.

Proposition 2.2. Let the conditions in Proposition 2.1 hold. Assume (2.2), in which(
ρ̄jν , ū

j
ν , Ē

j, B̄j
)
j≥0 are sufficiently smooth, then there exists a positive time Ta > 0, which is

independent of the small parameter ε, such that periodic problems (2.4)-(2.5), (2.8)-(2.9) and

(2.10)-(2.11) admit respectively a unique local smooth solution defined in the time interval

[0, Ta]. In other words, there exists a unique asymptotic expansion of the form (2.3) with

profiles (ρjν , u
j
ν , E

j, Bj)j≥0 defined on [0, Ta]× T3 up to any order of the small parameter ε.

2.2.2. Error estimates and main result. Let m ≥ 1 be a fixed integer and denote the ap-

proximate solution of order m by(
ρmν,ε, u

m
ν,ε, E

m
ε , B

m
ε

)
=

m∑
j=0

ε2j
(
ρjν , u

j
ν , E

j, Bj
)
,

where (ρjν , u
j
ν , E

j, Bj)0≤j≤m are constructed in the previous subsection. We define the re-

mainders
(
Rε,m
ρν , R

ε,m
uν , R

ε,m
E

)
by

∂tρ
m
i,ε + div

(
ρmi,εu

m
i,ε

)
= Rε,m

ρi
,

∂tu
m
i,ε +

(
umi,ε · ∇

)
umi,ε + ε2∇hi(ρmi,ε)− ε2(Em

ε + umi,ε ×Bm
ε ) = Rε,m

ui
,

∂tρ
m
e,ε + div

(
ρme,εu

m
e,ε

)
= Rε,m

ρe ,

∂tu
m
e,ε +

(
ume,ε · ∇

)
ume,ε +∇he(ρme,ε) + Em

ε + ume,ε ×Bm
ε = Rε,m

ue ,

∂tE
m
ε −∇×Bm

ε + ρmi,εu
m
i,ε − ρme,εume,ε = Rε,m

E ,

divEm
ε − ρmi,ε + ρme,ε = 0, ∂tB

m
ε +∇× Em

ε = 0, divBm
ε = 0.

It is clear that the convergence rate depends strongly on the order of the remainders with

respect to ε. Since the approximate solution
(
ρmν,ε, u

m
ν,ε, E

m
ε , B

m
ε

)
is sufficiently smooth, a

straightforward computation gives

sup
0≤t≤Ta

‖(Rε,m
ρν , R

ε,m
uν , R

ε,m
E )(t)‖ ≤ Cε2m+2. (2.12)

Let (ρεν , u
ε
ν , E

ε, Bε) be the exact local smooth solution obtained in Proposition 2.1. When

the convergence holds at t = 0, establishing the convergence of the asymptotic expansion
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(2.3) is to prove that

(ρεν , u
ε
ν , E

ε, Bε)−
(
ρmν,ε, u

m
ν,ε, E

m
ε , B

m
ε

)
−→ 0,

and obtain its convergence rate as ε→ 0 on a time interval independent of ε. It is as follows

the main result for the local-in-time convergence for the infinity-ion mass limit, of which the

proof will be given in Section 3.

Theorem 2.1. (Local convergence result) Let the conditions in Proposition 2.1 and 2.2 hold.

Let s ≥ 3 and m ≥ 1 be integers. Assume∥∥∥∥((ρεν,0 − ρmν,ε(0, ·)),
1

ε
(uεi,0 − umi,ε(0, ·)), uεe,0 − ume,ε(0, ·), Eε

0 − Em
ε (0, ·), Bε

0 −Bm
ε (0, ·)

)∥∥∥∥
≤ C1ε

2m+2, (2.13)

where C1 > 0 is a constant independent of ε, then there exists a constant C2 > 0, which

depends on Ta but is independent of ε, such that as ε → 0, we have T εe ≥ Ta, and the local

smooth solution (ρεν , u
ε
ν , E

ε, Bε) to the periodic problem (2.1) satisfies

sup
0≤t≤Ta

∥∥(ρεν , u
ε
ν , E

ε, Bε) (t)−
(
ρmν,ε, u

m
ν,ε, E

m
ε , B

m
ε

)
(t)
∥∥
s
≤ C2ε

2m+1.

In particular, as ε→ 0, we have

(ρεν , u
ε
ν , E

ε, Bε)→ (ρ0ν , u
0
ν , E

0, B0), uniformly in C([0, Ta];H
s),

where (ρ0i , u
0
i ) satisfies (2.6) and (ρ0e, u

0
e, E

0, B0) satisfies the generalized unipolar Euler-

Maxwell system for electrons (2.7).

Remark 2.1. If, as ε→ 0,

uεi,0 ⇀ 0, weakly in Hs,

it is obvious that ū0i = 0. Thus the leading profile u0i satisfies the following∂tu0i + (u0i · ∇)u0i = 0,

t = 0 : u0i (0, ·) = ū0i (·) = 0,

which admits a unique local solution u0i = 0. Hence, combining the first equation in (2.6),

we have ∂tρ
0
i = 0. As a result, ρ0i = ρ0i (x).Consequently, (2.7) becomes

∂tρ
0
e + div(ρ0eu

0
e) = 0,

∂tu
0
e + (u0e · ∇)u0e +∇he(ρ0e) = −(E0 + u0e ×B0),

∂tE
0 −∇×B0 = ρ0eu

0
e, divE0 = ρ0i (x)− ρ0e,

∂tB
0 +∇× E0 = 0, divB0 = 0,

t = 0 : (ρ0e, u
0
e, E

0, B0) = (ρ̄0e, ū
0
e, Ē

0, B̄0), x ∈ T3,
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which is the usual model of the unipolar Euler-Maxwell system for electrons.

2.3. Results on the global-in-time convergence. When considering the global-in-time

convergence, we establish uniform global estimates of the solutions to (1.1)-(1.2) with respect

to ε. Noticing (1.3), the periodic problem (1.1)-(1.2) is equivalent to the following

∂tρ
ε
i + div(ρεiu

ε
i ) = 0,

∂tu
ε
i + (uεi · ∇)uεi + ε2∇hi(ρεi ) = ε2(Eε + uεi ×Bε)− uεi ,

∂tρ
ε
e + div(ρεeu

ε
e) = 0,

∂tu
ε
e + (uεe · ∇)uεe +∇he(ρεe) = −Eε − uεe ×Bε − uεe,

∂tE
ε −∇×Bε = ρεeu

ε
e − ρεiuεi , divEε = ρεi − ρεe,

∂tB
ε +∇× Eε = 0, divBε = 0, t > 0, x ∈ T3,

t = 0 : (ρεν , u
ε
ν , E

ε, Bε) = (ρεν,0, u
ε
ν,0, E

ε
0, B

ε
0), x ∈ T3.

(2.14)

Theorem 2.2. (Uniform global estimates with respect to ε) Let s ≥ 3 be an integer. There

exist positive constants C3 and δ such that for all ε ∈ (0, 1], if

∑
ν=i,e

‖ρεν,0 − 1‖s +
1

ε
‖ρεi,0 − 1‖s−1 + ‖uεe,0‖s +

1

ε
‖uεi,0‖s + ‖Eε

0‖s + ‖Bε
0 −Be‖s ≤ δ,

then for all t > 0, (2.14) admits a unique global solution (ρεν , u
ε
ν , E

ε, Bε) satisfying

∑
ν=i,e

‖ρεν(t)− 1‖2s +
1

ε2
‖ρεi (t)− 1‖2s−1 +

1

ε2
‖uεi (t)‖2s + ‖uεe(t)‖2s + ‖Eε(t)‖2s + ‖Bε(t)−Be‖2s

+

∫ t

0

(∑
ν=i,e

‖∇ρεν(τ)‖2s−1 +
1

ε2
‖uεi (τ)‖2s + ‖uεe(τ)‖2s + ‖Eε(τ)‖2s−1 + ‖∇Bε(τ)‖2s−2

)
dτ

≤ C3

(
‖ρεi,0 − 1‖2s + ‖ρεe,0 − 1‖2s + ‖uεe,0‖2s +

1

ε
‖uεi,0‖2s + ‖Eε

0‖2s + ‖Bε
0‖2s
)
.

Theorem 2.3. (Uniform global convergence) Let (ρεν , u
ε
ν , E

ε, Bε) be the unique global smooth

solution obtained in Theorem 2.2. If, as ε→ 0,

(ρεi,0, ρ
ε
e,0, u

ε
e,0, u

ε
i,0, E

ε
0, B

ε
0) ⇀ (ρ̄0i , ρ̄

0
e, ū

0
e, 0, Ē

0, B̄0), weakly in Hs, (2.15)

then there exist functions (ρ̄i, ρ̄e, ue, Ē, B̄) ∈ L∞(R+;Hs), such that, as ε→ 0, up to subse-

quences,

uεi → 0 strongly in L∞([0, T ];Hs), ∀T > 0, (2.16)

(ρεi , ρ
ε
e, u

ε
e, E

ε, Bε) ⇀ (ρ̄i, ρ̄e, ūe, Ē, B̄), weakly-* in L∞(R+;Hs), (2.17)
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where ρ̄i = ρ̄i(x) depends only on the space variable x, and (ρ̄e, ūe, Ē, B̄) is the unique global

smooth solution of the following unipolar Euler-Maxwell system for electrons

∂tρ̄e + div(ρ̄eūe) = 0,

∂tūe + (ūe · ∇)ūe +∇he(ρ̄e) = −Ē − ūe × B̄ − ūe,

∂tĒ −∇× B̄ = ρ̄eūe, divĒ = ρ̄i(x)− ρ̄e,

∂tB̄ +∇× Ē = 0, divB̄ = 0,

(2.18)

with initial conditions

t = 0 : (ρ̄e, ūe, Ē, B̄) = (ρ̄e,0, ūe,0, Ē0, B̄0). (2.19)

3. Local convergence

3.1. Energy estimates. In this section, we prove Theorem 2.1. Let (ρεν , u
ε
ν , E

ε, Bε) be the

exact local smooth solution obtained in Proposition 2.1, which is defined on the time interval

[0, T εe ]. Since the approximate solution
(
ρmν,ε, u

m
ν,ε, E

m
ε , B

m
ε

)
is defined on the time interval

[0, Ta], we set

T εb = min (T εe , Ta) ,

then the exact solution and the approximate solution are both defined on the time interval

[0, T εb ], on which we denote

(N ε
ν , w

ε
ν , χ

ε, Gε) ,
(
ρεν − ρmν,ε, uεν − umν,ε, Eε − Em

ε , B
ε −Bm

ε

)
.

It is easy to check that (N ε
ν , w

ε
ν , χ

ε, Gε) satisfies

∂tN
ε
i + uεi · ∇N ε

i + ρεidivwεi = −(N ε
i divumi,ε +∇ρmi,ε · wεi )−Rε,m

ρi
,

∂tw
ε
i + (uεi · ∇)wεi + ε2h′i(ρ

ε
i )∇N ε

i

= −(wεi · ∇)umi,ε − ε2
(
h′i(N

ε
i + ρmi,ε)− h′i(ρmi,ε)

)
∇ρmi,ε

+ε2(χε + wεi ×Bm
ε + uεi ×Gε)−Rε,m

ui
,

∂tN
ε
e + uεe · ∇N ε

e + ρεedivwεe = −(N ε
edivume,ε +∇ρme,ε · wεe)−Rε,m

ρe ,

∂tw
ε
e + (uεe · ∇)wεe + h′e(ρ

ε
e)∇N ε

e

= −(wεe · ∇)ume,ε −
(
h′e(N

ε
e + ρme,ε)− h′e(ρme,ε)

)
∇ρme,ε

−(χε + wεe ×Bm
ε + uεe ×Gε)−Rε,m

ue ,

∂tχ
ε −∇×Gε = N ε

eu
ε
e + wεeρ

m
e,ε − (N ε

i u
ε
i + wεi ρ

m
i,ε)−R

ε,m
E ,

divχε = N ε
i −N ε

e , ∂tG
ε +∇× χε = 0, divGε = 0,

(3.1)
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with initial conditions

(N ε
ν , w

ε
ν , χ

ε, Gε)
∣∣
t=0

=
(
ρεν,0 − ρmν,ε(0, ·), uεν,0 − umν,ε(0, ·), Eε

0 − Em
ε (0, ·), Bε

0 −Bm
ε (0, ·)

)
. (3.2)

For ν = i, e, we set

W ε
i =

(
N ε
i

wεi

)
, W ε

e =

(
N ε
e

wεe

)
, W ε =


W ε
i

W ε
e

χε

Gε

 .

We further denote

H1
i,ε =

(
N ε
i divumi,ε + wεi · ∇ρmi,ε

(wεi · ∇)umi,ε + ε2
(
h′i(N

ε
i + ρmi,ε)− h′i(ρmi,ε)

)
∇ρmi,ε

)
,

H1
e,ε =

(
N ε
edivume,ε + wεe · ∇ρme,ε

(wεe · ∇)ume,ε +
(
h′e(N

ε
e + ρme,ε)− h′e(ρme,ε)

)
∇ρme,ε

)
,

H2
i,ε =

(
0

ε2(χε + wεi ×Bm
ε + uεi ×Gε)

)
,

H2
e,ε =

(
0

−χε − wεe ×Bm
ε − uεe ×Gε

)
.

The remaining terms are defined as

Rε
i =

(
Rε,m
ρi

Rε,m
ui

)
, Rε

e =

(
Rε,m
ρe

Rε,m
ue

)
.

For j = 1, 2, 3, we set uεν = (uεν,1, u
ε
ν,2, u

ε
ν,3), and

Aji (ρεi , u
ε
i ) =

(
uεi,j ρεiξ

>
j

ε2h′i (ρ
ε
i ) ξj uεi,jI3

)
,

Aje (ρεe, u
ε
e) =

(
uεe,j ρεeξ

>
j

h′e (ρεe) ξj uεe,jI3

)
,

where I3 is the 3× 3 unit matrix, {ξk}3k=1 is the canonical basis of R3 and the superscript >
denotes the transpose of a vector or a matrix. Thus, the first four equations in (3.1) can be

written as

∂tW
ε
ν +

3∑
j=1

Ajν (ρεν , u
ε
ν) ∂xjW

ε
ν = −H1

ν,ε +H2
ν,ε −Rε

ν , (3.3)

with initial conditions

t = 0 : W ε
ν = W ε

ν,0, (3.4)
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where

W ε
i,0 =

(
N ε
i (0, ·)

wεi (0, ·)

)
=

(
ρεi,0 − ρmi,ε(0, ·)
uεi,0 − umi,ε(0, ·)

)
,

W ε
e,0 =

(
N ε
e (0, ·)

wεe(0, ·)

)
=

(
ρεe,0 − ρme,ε(0, ·)
uεe,0 − ume,ε(0, ·)

)
.

Since ρεν ≥ ρ > 0, system (3.3)-(3.4) is indeed symmetrizable hyperbolic. In fact, if we

introduce the symmetrizers A0
ν(ρ

ε
ν) as

A0
i (ρεi ) =

(
h′i (ρ

ε
i ) 0

0 ε−2ρεi I3

)
, A0

e (ρεe) =

(
h′e (ρεe) 0

0 ρεeI3

)
,

which for j = 1, 2, 3, results in

Ãji (ρεi , u
ε
i ) = A0

i (ρεi )A
j
i (ρεi , u

ε
i ) =

(
h′i (ρ

ε
i )u

ε
i,j p′i (ρ

ε
i ) ξ
>
j

p′i (ρ
ε
i ) ξj ε−2ρεiu

ε
i,jI3

)
,

Ãje (ρεe, u
ε
e) = A0

e (ρεe)A
j
e (ρεe, u

ε
e) =

(
h′e (ρεe)u

ε
e,j p′e (ρεe) ξ

>
j

p′e (ρεe) ξj ρεeu
ε
e,jI3

)
,

then for ρεν > 0, A0
ν is positively definite and Ãjν is symmetric for all 1 ≤ j ≤ 3. Thus, the

theorem of Lax [16] and Kato [14] for the local existence of smooth solutions can also be

applied to (3.3)-(3.4).

By standard arguments, to prove Theorem 2.1, it suffices to establish uniform estimates

of W ε with respect to ε. We denote

W ε
i,∗ =

(
N ε
i

ε−1wεi

)
, W ε

e,∗ =

(
N ε
e

wεe

)
, W ε

∗ =


W ε
i,∗

W ε
e,∗

χε

Gε

 .

The theorem of Lax and Kato for the local existence of smooth solutions implies W ε
∗ ∈

C([0, T εb ];Hs) and the function t → ‖W ε
∗ ‖s is continuous on [0, T εb ]. From the assumption

(2.13), there exists a T ε ∈ [0, T εb ] such that

‖W ε
∗ (t)‖s ≤ C, ∀t ∈ [0, T ε], (3.5)

provided that ε < 1. Actually, we may assume that T ε is the maximum time such that W ε
∗

exists and satisfies (3.5). For ε < 1, the approximate solution established in Proposition 2.2

is sufficiently smooth. This, together with (3.5), implies the exact solution to (2.1) satisfies

‖(ρεν , uεν , Eε, Bε)(t)‖s ≤ C, ∀t ∈ [0, T ε]. (3.6)
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In order to prove that T ε is indeed independent of ε, first we need to show that there exists

a constant µ > 0, such that

sup
0≤t≤T ε

‖W ε
∗ (t)‖s ≤ Cεµ.

In what follows, we always assume that the conditions in Theorem 2.1 hold.

Lemma 3.1. It holds

d

dt

〈
A0
ν(ρ

ε
ν)∂

αW ε
ν , ∂

αW ε
ν

〉
≤ C‖W ε

∗ ‖2s + Cε4m+2. (3.7)

Proof. For a multi-index α ∈ N3 with |α| ≤ s, applying A0
ν(ρ

ε
ν)∂

α to (3.3), making the inner

product of the resulting equations with ∂αW ε in L2(T3), we obtain the following energy

equality for W ε
ν ,

d

dt

〈
A0
ν(ρ

ε
ν)∂

αW ε
ν , ∂

αW ε
ν

〉
= 〈divAν(ρ

ε
ν , u

ε
ν)∂

αW ε
ν , ∂

αW ε
ν 〉 − 2

〈
A0
ν (ρεν) ∂

αW ε
ν , ∂

αH1
ν,ε

〉
+ 2
〈
A0
ν (ρεν) ∂

αW ε
ν , ∂

αH2
ν,ε

〉
− 2
〈
A0
ν (ρεν) ∂

αW ε
ν , ∂

αRε
ν

〉
,

+ 2
〈
A0
ν(ρ

ε
ν)∂

αW ε
ν , J

α
ν,ε

〉
, (3.8)

where

divAν (ρεν , u
ε
ν) = ∂tA

0
ν (ρεν) +

3∑
j=1

∂xj Ã
j
ν (ρεν , u

ε
ν) ,

Jαν,ε = −∂α
(

3∑
j=1

Ajν (ρεν , u
ε
ν) ∂xjW

ε
ν

)
+

3∑
j=1

Ajν(ρ
ε
ν , u

ε
ν)∂

α∂xjW
ε
ν .

Now we deal with each term on the right hand side of (3.8). First, since ∂tρ
ε
ν = −div(ρενu

ε
ν),

we have

‖∂tρεν‖∞ ≤ ‖uεν‖s.

Since ε < 1, in view of the expressions of A0
ν , using (3.6) and the Cauchy-Schwarz inequality,

we have

|
〈
∂t
(
Ai(ρ

ε
i , u

ε
i )H

0
i,ε

)
∂αW ε

i , ∂
αW ε

i

〉
| ≤ C

(
‖N ε

i ‖2 +

∥∥∥∥wεiε
∥∥∥∥2
)
≤ C‖W ε

i,∗‖2|α|,

|
〈
∂t
(
Ae(ρ

ε
e, u

ε
e)H

0
e,ε

)
∂αW ε

e , ∂
αW ε

e

〉
| ≤ C

(
‖N ε

e‖2 + ‖wεe‖
2) ≤ C‖W ε

e,∗‖2|α|,

Hence,

|
〈
∂t
(
Aν(ρ

ε
ν , u

ε
ν)H

0
ν,ε

)
∂αW ε

ν , ∂
αW ε

ν

〉
| ≤ C‖W ε

∗ ‖2|α|. (3.9)

Similarly, in view of the expression Ãjν , we have∣∣∣〈∂xj Ãjν(ρεν , uεν)∂αW ε
ν , ∂

αW ε
ν

〉∣∣∣ ≤ C‖W ε
∗ ‖2|α|,

Thus, combining (3.9), we have

|〈divAν(ρ
ε
ν , u

ε
ν)∂

αW ε
ν , ∂

αW ε
ν 〉| ≤ C‖W ε

∗ ‖2|α|. (3.10)
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Since the approximate solution (ρmν,ε, u
m
ν,ε, E

m
ε , B

m
ε ) is sufficiently smooth, noticing (3.5)-(3.6)

and the expressions of H1
ν,ε, using the Cauchy-Schwarz inequalities and the Moser-type in-

equality in Lemma 2.1, we have∣∣〈A0
i (ρεi ) ∂

αW ε
i , ∂

αH1
i,ε

〉∣∣
≤

∣∣〈h′i(ρεi )∂αN ε
i , ∂

α
(
N ε
i divumi,ε + wεi · ∇ρmi,ε

)〉∣∣
+
∣∣〈ρεi∂α(ε−1wεi ), ∂

α(ε−1 (wεi · ∇)umi,ε) + ∂α(
(
h′i(N

ε
i + ρmi,ε)− h′i(ρmi,ε)

)
∇ρmi,ε)

〉∣∣
≤ C

(
‖N ε

i ‖2 +

∥∥∥∥wεiε
∥∥∥∥2
)

+
∣∣〈ρi∂α(ε−1wεi ), ∂

α(h′′i (ρ
ε
i,∗)N

ε
i∇ρmi,ε)

〉∣∣ ≤ C‖W ε
i,∗‖2|α|,

in which we have used the Taylor formula and ρεi,∗ is between N ε
i + ρmi,ε and ρmi,ε. Similar

estimates can also be established for the term containing H1
e,ε and H2

ν,ε. Thus, we have∣∣〈A0
ν (ρεν) ∂

αW ε
ν , ∂

αH1
ν,ε

〉∣∣+
∣∣〈A0

ν (ρεν) ∂
αW ε

ν , ∂
αH2

ν,ε

〉∣∣ ≤ C‖W ε
∗ ‖2|α|. (3.11)

For the term containing Rε
ν in (3.8), noticing (2.12) and applying the Cauchy-Schwarz in-

equality, we have∣∣〈A0
i (ρεi ) ∂

αW ε
i , ∂

αRε
i

〉∣∣ ≤ C‖W ε
i,∗‖2|α| + C‖ε−1Rε

i‖2|α| ≤ C‖W ε
∗ ‖2|α| + Cε4m+2, (3.12)∣∣〈A0

ν (ρεν) ∂
αW ε

e , ∂
αRε

e

〉∣∣ ≤ C‖W ε
e,∗‖2|α| + C‖Rε

e‖2|α| ≤ C‖W ε
∗ ‖2|α| + Cε4(m+1), (3.13)

If |α| = 0, the term containing Jαν,ε in (3.8) vanishes. For 1 ≤ |α| ≤ s, by using the Moser-type

inequalities in Lemma 2.1 , we have

‖Jαν,ε‖ ≤ C‖∇ρεν‖s−1‖∇uεν‖s−1 ≤ C‖∇uεν‖s−1,

which implies ∣∣〈A0
ν(ρ

ε
ν)∂

αW ε
ν , J

α
ν,ε

〉∣∣ ≤ C‖W ε
∗ ‖2s. (3.14)

Combining (3.8) and the estimates (3.10)-(3.14) yields (3.7). �

Lemma 3.2. It holds

sup
0≤t≤T ε

‖W ε
∗ (t)‖2s ≤ Cε4m+2. (3.15)

Proof. For a multi-index α ∈ N3 with |α| ≤ s, applying ∂α to the Maxwell equations in

(3.1), we have
∂t∂

αχε −∇× ∂αGε = ∂α(N ε
eu

ε
e + wεeρ

m
e,ε)− ∂α(N ε

i u
ε
i + wεi ρ

m
i,ε)− ∂αR

ε,m
E ,

∂t∂
αGε +∇× ∂αχε = 0,

div∂αχε = ∂αN ε
i − ∂αN ε

e , div∂αGε = 0.

(3.16)
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Making the inner product in L2(T3) of the first equation in (3.16) with ∂αχε as well as of

the second equation with ∂αGε, adding the resulting two equations and noting the vector

analysis formula

div(f × g) = (∇× f) · g − (∇× g) · f, ∀f, g ∈ R3,

we have

d

dt

(
‖∂αχε‖2 + ‖∂αGε‖2

)
= 2

〈
∂αχε, ∂α(N ε

eu
ε
e + wεeρ

m
e,ε)− ∂α(N ε

i u
ε
i + wεi ρ

m
i,ε)− ∂αR

ε,m
E

〉
.

Noticing (2.12), applying the Cauchy-Schwarz inequality and the Moser-type inequalities in

Lemma 2.1 to the right hand side of the above energy equality, we have

d

dt

(
‖∂αχε‖2 + ‖∂αGε‖2

)
≤ C‖W ε

∗ ‖2s + Cε4(m+1).

Thus, combining the above estimate and (3.7), we have

d

dt

(∑
ν=i,e

〈
A0
ν(ρ

ε
ν)∂

αW ε
ν , ∂

αW ε
ν

〉
+ ‖∂αχε‖2 + ‖∂αGε‖2

)
≤ C‖W ε

∗ ‖2s + Cε4m+2. (3.17)

Since A0
ν(ρ

ε
ν) is positive definite, we obtain that there exists a constant c1 > 0, such that〈

A0
ν(ρ

ε
ν)∂

αW ε
ν , ∂

αW ε
ν

〉
≥ c1‖W ε

ν,∗‖2.

Consequently, summing (3.17) for all 0 ≤ |α| ≤ s, integrating the resulting equation over

[0, t] for any t ∈ (0, T ε] and noticing (2.13), we have

‖W ε
∗ (t)‖2s ≤ Cε4m+2 +

∫ t

0

‖W ε
∗ (s)‖2sds, ∀t ∈ [0, T ε].

Applying the Gronwall inequality to the above estimate yields (3.15). �

3.2. Proof of Theorem 2.1. It suffices to prove T εe ≥ Ta, i.e., T εb = Ta. Recall that T ε is

the maximum time interval on which W ε
∗ exists and satisfies

‖W ε
∗ (t)‖s ≤ C, ∀t ∈ [0, T ε].

By the definition of T εb , Ta and T ε, we have T ε ≤ T εb ≤ Ta. We want to prove T ε = Ta. If

T ε < Ta, we apply the theorem of Kato for the local existence of smooth solutions with initial

data W ε
∗ (T

ε). Consequently, there exists Tε > T ε and a smooth solution W ε
∗ ∈ C([0, Tε];H

s).

Since the function t → ‖W ε
∗ (t)‖s is continuous on [T ε, Tε], there exists T ′ε ∈ (T ε, Tε], such

that

‖W ε
∗ (t)‖s ≤ C, ∀t ∈ [0, T ′ε].

This is contradictory to the maximality of T ε. Thus, we have proved T ε = T εb = Ta. �
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4. Uniform Global existence and convergence

In this section, we denote by s ≥ 3 an integer and C a generic positive constant inde-

pendent of ε and any time. We first prove Theorem 2.2. In what follows, we will drop the

superscript ε for simplicity and assume that the conditions in Theorem 2.2 hold. Let

nν = ρν − 1, F = B −Be, Uν =

(
nν

uν

)
, U =


Ui

Ue

E

F

 .

For j = 1, 2, 3 and uν = (u1ν , u
2
ν , u

3
ν), we denote

Dj
i (ρi, ui) =

(
uji ρiξ

T
j

ε2h′i(ρi)ξj uiI3

)
,

Dj
e(ρe, ue) =

(
uje ρeξ

T
j

h′e(ρe)ξj ueI3

)
,

and

Qi(ui, E,B) =

(
0

ε2(E + ui ×B)− ui

)
,

Qe(ue, E,B) =

(
0

−E − ue ×B − ue

)
,

where I3 is the unit matrix, {ξk}3k=1 is the canonical basis of R3 and ξ>j is the transpose of

ξj. Then (2.14) becomes

∂tUν +
3∑
j=1

Dj
ν(ρν , uν)∂xjUν = Qν(uν , E,B), (4.1)

with initial conditions

t = 0 : (ρν , uν , E,B) = (ρεν,0, u
ε
ν,0, E

ε
0, B

ε
0), x ∈ T3. (4.2)

System (4.1) is symmetrizable hyperbolic when ρν > 0. Indeed, if we define the symmetrizers

as

D0
i (ρi) =

h′i(ρi) 0

0
1

ε2
ρiI3

 ,

D0
e(ρe) =

(
h′e(ρe) 0

0 ρeI3

)
,
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which are symmetric and positive definite for ρν > 0. The matrix D̃j
ν are defined by

D̃j
i (ρi, ui) = D0

i (ρi)D
j
i (ρi, ui) =

h′i(ρi)uji p′i(ρi)ξ
T
j

p′i(ρi)ξj
1

ε2
ρiu

j
iI3

 ,

D̃j
e(ρe, ue) = D0

i (ρe)D
j
e(ρe, ue) =

(
h′e(ρe)u

j
e p′e(ρe)ξ

T
j

p′e(ρe)ξj ρeu
j
eI3

)
,

which are symmetric.

Without loss of generality, let T > 0 and U be the local smooth solution of (4.1)-(4.2)

defined on the interval [0, T ]. We introduce the total energy and the dissipative energy as

follows

E (t) =
∑
ν=i,e

‖nν‖2s +
1

ε2
‖ni(t)‖2s−1 +

1

ε2
‖ui(t)‖2s + ‖ue(t)‖2s + ‖E(t)‖2s + ‖F (t)‖2s,

D(t) =
∑
ν=i,e

‖∇nν(t)‖2s−1 +
1

ε2
‖ui(t)‖2s + ‖ue(t)‖2s + ‖divE‖2s−1.

Moreover, we set

ET = sup
0≤t≤T

E (t),

which we assume to be uniformly sufficiently small with respect to T and ε. Besides, because

of the smallness of ET , it is reasonable to assume

1

2
≤ ρν ≤

3

2
, and h′ν(ρν) ≥ h0, (4.3)

where h0 is a positive constant independent of the small parameter ε and any time. We first

have

Lemma 4.1. (L2−estimate) It holds

d

dt

∫
T3

ρe|ue|2 +h′e(ρ
∗
e)n

2
e +

1

ε2
ρi|ui|2 +h′i(ρ

∗
i )n

2
i + |E|2 + |F |2dx+ ‖ue‖2 +

1

ε2
‖ui‖2 ≤ 0, (4.4)

in which ρ∗ν is between 1 and ρν.

Proof. The entropy and the corresponding entropy flux for the bipolar Euler system in

(2.14) are 
η0(ρν , uν) =

1

2
ρe|ue|2 +He(ρe) +

1

2ε2
ρi|ui|2 +Hi(ρi),

ψ0(ρν , uν) =
1

2
ρe|ue|2ue + ρehe(ρe)ue +

1

2ε2
ρi|ui|2ui + ρihi(ρi)ui,

in which H ′ν(ρ) = hν(ρ). Then the entropy identity for the bipolar Euler system is

∂tη0(ρν , uν) + divψ0(ρν , uν) + ρe|ue|2 +
1

ε2
ρi|ui|2 = −E(ρeue − ρiui).
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The energy conservation of Maxwell equations in (2.14) is

1

2
∂t
(
|E|2 + |F |2

)
+ div(E × F ) = E(ρeue − ρiui).

Thus, combining the above two equations, we have

∂tη(ρν , uν , E, F ) + divψ(ρν , uν , E, F ) + ρe|ue|2 +
1

ε2
ρi|ui|2 = 0, (4.5)

in which η(ρν , uν , E, F ) = η0 +
1

2
|E|2 +

1

2
|F |2,

ψ(ρν , uν , E, F ) = ψ0 + E × F.

By the Taylor formula, we obtain

Hν(ρν) = Hν(1) + hν(1)nν +
1

2
h′(ρ∗ν)n

2
ν ,

where ρ∗ν is between 1 and ρν . Since ∂tnν = −div(ρνuν), we have

∂tHν(ρν) = −hν(1)div(ρνuν) +
1

2
∂t
(
h′(ρ∗ν)n

2
ν

)
.

Thus, substituting the above into (4.5), integrating the resulting equation over T3 and notic-

ing (4.3) yield (4.4). �

Lemma 4.2. (Higher order estimates) It holds

d

dt

∑
ν=i,e

∑
1≤|α|≤s

〈
∂αUν , D

0
ν∂

αUν
〉

+
d

dt

(∫
T3

ρe|ue|2 +
∑
ν=i,e

h′ν(ρ
∗
ν)n

2
ν +

1

ε2
ρi|ui|2dx+ ‖E‖2s + ‖F‖2s

)
+ ‖ue‖2s +

1

ε2
‖ui‖2s

≤ CE 1/2
T D(t). (4.6)

Proof. For a multi-index α ∈ N3 with 1 ≤ |α| ≤ s, applying ∂α to both sides of (4.1), we

obtain

∂t∂
αUν +

3∑
j=1

Dj
ν(ρν , uν)∂

α∂xjUν = ∂αQ(uν , E,B) + Jαν , (4.7)

in which

Jαν =
3∑
j=1

(Dj
ν(ρν , uν)∂

α∂xjUν − ∂α(Dj
ν(ρν , uν)∂xjUν)).

Since D0
ν and D̃j

ν are symmetric, taking the inner product of (4.7) with D0
ν(ρν)∂

αUν in

L2(T3), we have

d

dt

〈
∂αUν , D

0
ν∂

αUν
〉

= 〈divDν∂
αUν , ∂

αUν〉+ 2
〈
Jαν , D

0
ν∂

αUν
〉

+ 2
〈
∂αQν , D

0
ν∂

αUν
〉

= I1ν + I2ν + I3ν , (4.8)
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with the natural correspondence of I1ν , I2ν and I3ν , and

divDν = ∂tD
0
ν(ρν) +

3∑
j=1

∂xjD̃
j
ν(ρν , uν).

In what follows, we will estimate I1ν , I2ν and I3ν term by term. First, since ∂tnν = −div(ρνuν),

we have

‖∂tnν‖∞ ≤ ‖uν‖s.

Since ε < 1, it follows that〈
∂tD

0
i ∂

αUi, ∂
αUi
〉
≤ C

(
‖∇ni‖2s−1 +

∥∥∥ui
ε

∥∥∥2
s

)∥∥∥ui
ε

∥∥∥
s
,〈

∂tD
0
e∂

αUe, ∂
αUe
〉
≤ C

(
‖∇ne‖2s−1 + ‖ue‖2s

)
‖ue‖s.

Similarly, for 1 ≤ j ≤ 3,〈
∂xjD̃

j
i (ρi, ui)∂

αUi, ∂
αUi

〉
≤ C

(
‖∇ni‖2s−1 +

∥∥∥ui
ε

∥∥∥2
s

)∥∥∥ui
ε

∥∥∥
s
,〈

∂xjD̃
j
e(ρe, ue)∂

αUe, ∂
αUe

〉
≤ C

(
‖∇ne‖2s−1 + ‖ue‖2s

)
‖ue‖s.

Therefore

|I1ν | ≤ C

(
‖∇ni‖2s−1 +

∥∥∥ui
ε

∥∥∥2
s

)∥∥∥ui
ε

∥∥∥
s

+ C
(
‖∇ne‖2s−1 + ‖ue‖2s

)
‖ue‖s ≤ CE 1/2

T D(t). (4.9)

For I2ν , since I2ν = 2
∑3

j=1 I
2
ν,j, with

I2i,j =
〈
h′i(ρi)

(
∂α(uji∂xjni)− u

j
i∂

α∂xjni
)
, ∂αni

〉
+
〈
h′i(ρi)

(
∂α(ρi∂xju

j
i )− ρi∂α∂xju

j
i

)
, ∂αni

〉
+
〈
ρi
(
∂α(h′i(ρi)∂xjni)− h′i(ρi)∂α∂xjni

)
, ∂αuji

〉
+ε−2

〈
ρi
(
∂α(ui∂xjui)− ui∂α∂xjui

)
, ∂αui

〉
,

and

I2e,j =
〈
h′e(ρe)

(
∂α(uje∂xjne)− uje∂α∂xjne

)
, ∂αne

〉
+
〈
h′e(ρe)

(
∂α(ρe∂xju

j
e)− ρe∂α∂xjuje

)
, ∂αne

〉
+
〈
ρe
(
∂α(h′e(ρe)∂xjne)− h′e(ρe)∂α∂xjne

)
, ∂αuje

〉
+
〈
ρe
(
∂α(ue∂xjue)− ue∂α∂xjue

)
, ∂αue

〉
.

Noticing ∇h′ν(ρν) = h′′ν(ρν)∇nν , by the Moser-type inequalities in Lemma 2.1, we have

|I2i,j| ≤ C

(
‖∇ni‖2s−1 +

∥∥∥ui
ε

∥∥∥2
s

)∥∥∥ui
ε

∥∥∥
s
,

|I2e,j| ≤ C
(
‖∇ne‖2s−1 + ‖ue‖2s

)
‖ue‖s,
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which similarly implies

|I2ν | ≤ CE 1/2
T D(t). (4.10)

For I3ν , by using the Moser-type inequalities in Lemma 2.1, we obtain

I3i = 2 〈∂αE, ρi∂αui〉+ 2 〈∂α(ui ×B), ρi∂
αui〉 −

2

ε2
〈ρi∂αui, ∂αui〉

= 2 〈∂αE, ρi∂αui〉 −
2

ε2
〈ρi∂αui, ∂αui〉

+2 〈∂αui ×B, ρi∂αui〉+ 2 〈∂α(ui ×B)− ∂αui ×B, ρi∂αui〉

≤ 2 〈∂αE, ρi∂αui〉 −
1

ε2
‖∂αui‖2 + C‖ui‖s−1‖∇F‖s−1‖∂αui‖

≤ 2 〈∂αE, ρi∂αui〉 −
1

ε2
‖∂αui‖2 + CE 1/2

T D(t),

similarly

I3e ≤ −2 〈∂αE, ρe∂αue〉 − ‖∂αue‖2 + CE 1/2
T D(t).

Substituting (4.9), (4.10) and the above two estimates into (4.8), and adding the resulting

equation for ν = i, e yield

d

dt

∑
ν=i,e

〈
∂αUν , D

0
ν∂

αUν
〉

+
1

ε2
‖∂αui‖2 + ‖∂αue‖2 − 2 〈∂αE, ρi∂αui − ρe∂αue〉 ≤ CE 1/2

T D(t).

(4.11)

Now we estimate 2 〈∂αE, ρi∂αui − ρe∂αue〉. Applying ∂α to the Maxwell equations in

(2.14), we have ∂t∂αE −∇× ∂αF = −∂α(ρiui − ρeue),

∂t∂
αF +∇× ∂αE = 0.

Taking the inner product in L2(T3) of the first equation in the above system with 2∂αE and

of the second equation with 2∂αF , and adding the two resulting equations, we have

d

dt

(
‖∂αE‖2 + ‖∂αG‖2

)
= −2 〈∂αE, ρi∂αui − ρe∂αue〉

−2 〈∂αE, ∂α(ρiui)− ρi∂αui〉+ 2 〈∂αE, ∂α(ρeue)− ρe∂αue〉 ,

in which by the Moser-type inequalities, we obtain

|〈∂αE, ∂α(ρiui)− ρi∂αui〉| ≤ C‖∂αE‖‖∇ρi‖s−1
∥∥∥ui
ε

∥∥∥
s−1
≤ CE 1/2

T D(t),

|〈∂αE, ∂α(ρeue)− ρe∂αue〉| ≤ C‖∂αE‖‖∇ρe‖s−1‖ue‖s−1 ≤ CE 1/2
T D(t).

Hence,

−2 〈∂αE, ρi∂αui − ρe∂αue〉 ≥
d

dt

(
‖∂αE‖2 + ‖∂αG‖2

)
− CE 1/2

T D(t).

Substituting the above into (4.11), adding the resulting equation for all 1 ≤ |α| ≤ s and

combining (4.4) yield (4.6). �
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Lemma 4.3. (Dissipation of ∇nν) It holds∑
|β|≤s−1

d

dt

(
1

ε2
(
‖∂βni‖2 + 2

〈
∂βui, ∂

β∇ni
〉)

+ ‖∂βne‖2 + 2
〈
∂βue, ∂

β∇ne
〉)

+
h0
2
‖∇ni‖2s−1 +

h0
2
‖∇ne‖2s−1 + ‖divE‖2s−1

≤ C
∥∥∥ue
ε

∥∥∥2
s

+ C‖ue‖2s + CE 1/2
T D(t). (4.12)

Proof. For a multi-index β ∈ N3 with |β| ≤ s − 1, multiplying ε−2ρi to both sides of the

momentum equation of ions in (2.14), and applying ∂β to the resulting equation, we have

p′i(ρi)∂
β∇ni − ∂β(ρiE) = −ε−2∂t∂β(ρiui)− ε−2∂β(ρi(ui · ∇)ui)− ε−2∂β(ρiui)

+∂β(ρiui ×B) +
(
p′i(ρi)∂

β∇ni − ∂β(p′i(ρi)∇ni)
)
.

Taking the inner product of the above equation with ∂β∇ni in L2(T3) yields〈
p′i(ρi)∂

β∇ni, ∂β∇ni
〉
−
〈
∂β(ρiE), ∂β∇ni

〉
= −

〈
ε−2∂t∂

β(ρiui), ∂
β∇ni

〉
−
〈
ε−2∂β(ρi(ui · ∇)ui), ∂

β∇ni
〉
−
〈
ε−2∂β(ρiui), ∂

β∇ni
〉

+
〈
∂β(ρiui ×B), ∂β∇ni

〉
+
〈(
p′i(ρi)∂

β∇ni − ∂β(p′i(ρi)∇ni)
)
, ∂β∇ni

〉
. (4.13)

Now we treat each terms in the above equation. First, the estimate for the term containing

∂β(ρiE) on the left hand side requires a little more calculations. Let us first remark that〈
∂β(ρiE), ∂β∇ni

〉
=

〈
ρi∂

βE, ∂β∇ni
〉

+
〈(
∂β(ρiE)− ρi∂βE

)
, ∂β∇ni

〉
,

in which by the Moser-type inequalities, we have∣∣〈(∂β(ρiE)− ρi∂βE
)
, ∂β∇ni

〉∣∣ ≤ C‖E‖s−1‖∇ni‖2s−1 ≤ CE 1/2
T D(t),

and 〈
ρi∂

βE, ∂β∇ni
〉

=
1

2

〈
∂βE, ∂β(∇(ρi)

2)
〉
−
〈
∂βE, ∂β(ρi∇ρi)− ρi∂β∇ρi

〉
≤ 1

2

〈
∂βE, ∂β(∇(ρi)

2)
〉
− CE 1/2

T D(t).

Hence, 〈
∂β(ρiE), ∂β∇ni

〉
≤ 1

2

〈
∂βE, ∂β(∇(ρi)

2)
〉
− CE 1/2

T D(t).

Moreover, noticing (4.3), we have〈
p′i(ρi)∂

β∇ni, ∂β∇ni
〉
≥ 1

2
h0‖∂β∇ni‖2.

Let us move on to the right hand side of (4.13). An integration by parts gives

ε−2
〈
∂t∂

β(ρiui), ∂
β∇ni

〉
= ε−2

d

dt

〈
∂β(ρiui), ∂

β∇ni
〉

+ ε−2
〈
∂βdiv(ρiui), ∂

βdiv(ρiui)
〉

≤ ε−2
d

dt

〈
∂β(ρiui), ∂

β∇ni
〉

+ C
∥∥∥ui
ε

∥∥∥2
s
.
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By applying the Young inequality, the Cauchy-Schwarz inequality and the Moser-type in-

equalities, it is obvious that

ε−2|
〈
∂β(ρi(ui · ∇)ui), ∂

β∇ni
〉
| ≤ C‖∇ni‖s−1

∥∥∥ui
ε

∥∥∥2
s
≤ CE 1/2

T D(t),

ε2|
〈
∂β(ρiui ×B), ∂β∇ni

〉
| ≤ C

∥∥∥ui
ε

∥∥∥2
s

+
h0
4
‖∂β∇ni‖2,

|
〈
p′i(ρi)∂

β∇ni − ∂β(p′i(ρi)∇ni), ∂β∇ni
〉
| ≤ C‖∇ni‖3s−1 ≤ CE 1/2

T D(t).

Next, using the mass equation of ions in (2.14), we have

ε−2
〈
∂β(ρiui), ∂

β∇ni
〉

= −ε−2
〈
∂βdiv(ρiui), ∂

βni
〉

= ε−2
〈
∂t∂

βni, ∂
βρi
〉

=
1

2ε2
d

dt
‖∂βni‖2.

Thus, combining all these estimates, we have

1

ε2
d

dt

(
‖∂βni‖2 + 2

〈
∂βui, ∂

β∇ni
〉)

+
h0
2
‖∂β∇ni‖2 −

〈
∂βE, ∂β(∇(ρi)

2)
〉

≤ C
∥∥∥ui
ε

∥∥∥2
s

+ CE 1/2
T D(t). (4.14)

Similarly, applying the same procedure as above to the momentum equation for electrons,

we obtain the similar estimate for electrons.

d

dt

(
‖∂βne‖2 + 2

〈
∂βue, ∂

β∇ne
〉)

+
h0
2
‖∂β∇ne‖2 +

〈
∂βE, ∂β(∇(ρe)

2)
〉

≤ C ‖ue‖2s + CE 1/2
T D(t). (4.15)

Now it remains to estimate the term
〈
∂βE, ∂β∇((ρi)

2 − (ρe)
2)
〉
. Since

∂βdivE = ∂βρi − ∂βρe,

then〈
∂βE, ∂β∇((ρi)

2 − (ρe)
2)
〉

= −
〈
∂βdivE, ∂β((ρi − ρe)(ρi + ρe))

〉
= −

〈
(ρi + ρe)∂

βdivE, ∂βdivE
〉

−
〈
∂βdivE, ∂β((ρi − ρe)(ρi + ρe))− (ρi + ρe)∂

β(ρi − ρe)
〉
,

in which noticing (4.3), we have〈
(ρi + ρe)∂

βdivE, ∂βdivE
〉
≥ ‖∂βdivE‖2,

and by the Cauchy-Schwarz inequality and the Moser-type inequality, we have

|
〈
∂βdivE, ∂β((ρi − ρe)(ρi + ρe))− (ρi + ρe)∂

β(ρi − ρe)
〉
|

≤ C‖∂βdivE‖‖∇ρi +∇ρe‖s−1‖ρi − ρe‖s−1

≤ CD(t)(‖ρi − 1‖s−1 + ‖ρe − 1‖s−1)

≤ CE 1/2
T D(t).
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Hence, combining these estimates, we have〈
∂βE, ∂β∇((ρi)

2 − (ρe)
2)
〉
≤ −‖∂βdivE‖2 + CE 1/2

T D(t).

Adding (4.14) and (4.15), and combining the above estimate, we have

1

ε2
d

dt

(
‖∂βni‖2 + 2

〈
∂βui, ∂

β∇ni
〉)

+
d

dt

(
‖∂βne‖2 + 2

〈
∂βue, ∂

β∇ne
〉)

+
h0
2
‖∂β∇ni‖2 +

h0
2
‖∂β∇ne‖2 + ‖div∂βE‖2

≤ C
∥∥∥ue
ε

∥∥∥2
s

+ C‖ue‖2s + CE 1/2
T D(t).

Adding the above for all |β| ≤ s− 1 yields (4.12). �

Lemma 4.4. For ∀ t > 0, it holds∑
ν=i,e

‖ρν(t)− 1‖2s + ‖ue(t)‖2s +
1

ε2
‖ui(t)‖2s + ‖E(t)‖2s + ‖B(t)−Be‖2s

+

∫ t

0

∑
ν=i,e

‖∇ρν(τ)‖2s−1 +
1

ε2
‖ui(τ)‖2s + ‖ue(τ)‖2sdτ

≤ C(‖ρεν,0 − 1‖2s +
1

ε2
‖∇ρεi,0‖2s−1 + ‖uεe,0‖2s +

1

ε
‖uεi,0‖2s + |Eε

0‖2s + ‖Bε
0‖2s). (4.16)

Proof. Now let us define the following

E(t) = κε−2‖ni‖2s−1 + κ‖ne‖2s−1 + ‖E‖2s + ‖F‖2s +

∫
T3

ρe|ue|2 +
∑
ν=i,e

h′ν(ρ
∗
ν)n

2
ν +

1

ε2
ρi|ui|2dx

+
∑
ν=i,e

∑
1≤|α|≤s

〈
∂αUν , D

0
ν∂

αUν
〉

+
∑
|β|≤s−1

2κ
(
ε−2
〈
∂βui, ∂

β∇ni
〉

+
〈
∂βue, ∂

β∇ne
〉)
,

and

D(t) = ‖ue‖2s +
1

ε2
‖ui‖2s +

κh0
2
‖∇ni‖2s−1 +

κh0
2
‖∇ne‖2s−1 + κ‖divE‖2s−1,

where κ > 0 is a small constant to be determined later. Using Lemma 4.2-4.3, adding the

two resulting estimates in the way (4.6)+κ(4.12), we have

d

dt
E(t) + D(t) ≤ Cκ

(
‖ue‖2s +

1

ε2
‖ui‖2s

)
+ CE 1/2

T D(t).

Since D(t) is equivalent to D(t), and ET is sufficiently small, a straightforward calculation

implies that there exists a positive constant κ1 > 0, such that

d

dt
E(t) + κ1D(t) ≤ 0,

provided that κ is chosen to be sufficiently small. Integrating the above inequality over [0, t]

for any t ∈ (0, T ] yields

E(t) + κ1

∫ t

0

D(τ)dτ ≤ E(0). (4.17)
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Noticing (4.3) and the fact that D0
ν is positive definite, it is obvious that E(t) is equivalent

to E (t). Thus, from (4.17), we have

E (t) +

∫ t

0

D(τ)dτ ≤ CE (0),

This gives (4.16), which implies the uniform global existence of solution to (2.14) by a

bootstrap argument. �

The proof of Theorem 2.2 follows from the following lemma.

Lemma 4.5. It holds∫ t

0

(
‖E(τ)‖2s−1 + ‖∇F (τ)‖2s−2

)
dτ ≤ CE (0), ∀ t ≥ 0. (4.18)

Proof. Let t > 0 and

E = −∂tue − f, (4.19)

in which

f = (ue · ∇)ue +∇h(ρe) + ue + ue ×B.

Since ε ∈ (0, 1], from (4.16), we obtain∫ t

0

‖f(τ)‖2s−1dτ ≤ CE (0). (4.20)

For a multi-index β ∈ N3 with |β| ≤ s− 1, applying ∂β to both sides of (4.19), we obtain

∂βE = −∂t∂βue − ∂βf.

Taking the inner product of the above with ∂βE in L2(T3) yields

‖∂βE‖2 = −
〈
∂βE, ∂βf

〉
−
〈
∂t∂

βue, ∂
βE
〉
,

in which by the Young inequality,∣∣〈∂βE, ∂βf〉∣∣ ≤ 1

2
‖∂βE‖2 + C‖∂βf‖2,

and by (2.14) and the Moser-type inequalities,〈
∂t∂

βue, ∂
βE
〉

=
d

dt

〈
∂βue, ∂

βE
〉
−
〈
∂βue, ∂t∂

βE
〉

=
d

dt

〈
∂βue, ∂

βE
〉
−
〈
∂βue,∇× ∂βF + ∂β(ρeue − ρiui)

〉
≥ d

dt

〈
∂βue, ∂

βE
〉
− CD(t)− µ‖∇F‖2s−2,

where µ > 0 is a sufficiently small constant to be determined later. Hence,

2
d

dt

〈
∂βue, ∂

βE
〉

+ ‖∂βEε‖2 ≤ Cµ‖∇F‖2s−2 + C‖∂βf‖2 + CD(t).
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Summing for all |β| ≤ s− 1, integrating the resulting equation over [0, t] and noticing (4.16)

and (4.20), we have∫ t

0

‖E(τ)‖2s−1dτ ≤ −2
∑
|β|≤s−1

〈
∂βue(t), ∂

βE(t)
〉

+ CE (0) + Cµ

∫ t

0

‖∇F (τ)‖2s−2dτ

≤ CE (0) + Cµ

∫ t

0

‖∇F (τ)‖2s−2dτ. (4.21)

For a multi-index γ ∈ N3 with |γ| ≤ s− 2, applying ∂γ to the equation for ∂tE in (2.14),

we obtain

∇× ∂γF = ∂t∂
γE − ∂γ(ρeue − ρiui).

Taking the inner product of the above with ∇×∂γF in L2(T3), and using the Maxwell equa-

tions for E and B in (2.14), the Cauchy-Schwarz inequality and the Moser-type inequalities,

we have

‖∇ × ∂γF‖2 =
d

dt
〈∂γE,∇× ∂γF 〉 − 〈∂γE,∇× ∂γF 〉 − 〈∂γ(ρeue − ρiui),∇× ∂γF 〉

≤ d

dt
〈∂γE,∇× ∂γF 〉 − 〈∇ × ∂γE, ∂t∂γF 〉+

1

2
‖∇ × ∂γF‖2 + CD(t)

≤ d

dt
〈∂γE,∇× ∂γF 〉+ ‖∇ × ∂γE‖2 +

1

2
‖∇ × ∂γF‖2 + CD(t),

which implies

‖∇ × ∂γF‖2 ≤ 2
d

dt
〈∂γE,∇× ∂γF 〉+ 2‖∇ × ∂γE‖2 + CD(t).

Summing for all |γ| ≤ s − 2, integrating the resulting equation over [0, t] and using (4.16),

we have∫ t

0

‖∇F (τ)‖2s−2dτ ≤ 2
∑
|γ|≤s−2

〈∂γE(t),∇× ∂γF (t)〉+ C

∫ t

0

‖E(τ)‖2s−1dτ + CE (0)

≤ C

∫ t

0

‖E(τ)‖2s−1dτ + CE (0).

Substituting the above into (4.21), we have∫ t

0

(
‖E(τ)‖2s−1 + ‖∇F (τ)‖2s−2

)
dτ ≤ CE (0),

provided that µ is sufficiently small. This proves (4.18). �

Proof of Theorem 2.3. The uniform estimate (2.15) implies that

uεi −→ 0, strongly in C([0, T ];Hs), ∀T > 0.

Besides, we obtain that the sequences (ρεν − 1)ε>0, (uεe)ε>0, (Eε)ε>0 and (Bε − Be)ε>0 are

uniformly bounded in L∞(R+;Hs). It follows that there exist functions ρ̄ν , ūe, Ē and B̄, such
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that as ε → 0, (2.17) holds. This allows us to pass the limit in the mass and momentum

equations for ions in the sense of distributions. In particular, we have

∂tρi ⇀ ∂tρ̄i,

div(ρεiu
ε
i ) ⇀ 0,

which implies ∂tρ̄i = 0. Thus, ρ̄i is a function that depends only on the space variable x.

Moreover, noticing ε < 1, (ρεe)ε>0 and (uεe)ε>0 are uniformly bounded in L∞(R+;Hs−1),

by a classical compactness theorem [26], (ρεe)ε>0 and (uεe)ε>0 are relatively compact in

C([0, T ];Hs1
loc), for all s1 ∈ (0, s). As a consequence, as ε→ 0, up to subsequences,

(ρεe, u
ε
e)→ (ρ̄e, ūe) strongly in C([0, T ];Hs1

loc). (4.22)

As a result, it is sufficient for us to pass the limit in the mass and momentum equations for

electrons, as well as the Maxwell equations in (2.14) in the sense of distributions, of which

the limiting system is the usual unipolar Euler-Maxwell system for electrons (2.18). Finally,

since (∂tE
ε)ε>0 and (∂tB

ε)ε>0 are uniformly bounded in L∞(R+;Hs−1). Hence, we have

(Eε, Bε)→ (Ē, B̄) strongly in C([0, T ];Hs1
loc).

Combining (2.15) and (4.22) implies (2.19). �
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[20] Y.J. Peng and S. Wang, Convergence of compressible Euler-Maxwell equations to compressible Euler-

Poisson equations, Chinese Ann. Math., 28B (2007) 583–602.

[21] Y.J. Peng and S. Wang, Rigorous derivation of incompressible e-MHD equations from compressible

Euler-Maxwell equations, SIAM J. Math. Anal., 40 (2008) 540–565.

[22] Y.J. Peng and S. Wang, Convergence of compressible Euler-Maxwell equations to incompressible Euler

equations, Comm. Partial Differential Equations, 33 (2008) 349–376.

[23] Y.J. Peng, S. Wang and Q.L. Gu, Relaxation limit and global existence of smooth solutions of com-

pressible Euler-Maxwell equations, SIAM J. Math. Anal., 43 (2011) 944-970.

[24] Y.J. Peng and V. Wasiolek, Global quasi-neutral limit of Euler-Maxwell systems with velocity dissipa-

tion, J. Math. Anal. Appl., 451 (2017) 146–174.

[25] H. Rishbeth and O.K. Garriott, Introduction to Ionospheric Physics, Academic Press, 1969.

[26] J. Simon, Compact sets in the space Lp(0;T ;B), Ann. Mat. Pura Appl., 146 (1987) 65–96.

[27] Z. Tan and Y. Wang, Asymptotic behavior of solutions to the compressible bipolar Euler-Maxwell

system in R3, Commun. Math. Sci., 13 (2015) 1683–1710.

[28] V. Wasiolek, Uniform global existence and convergence of Euler-Maxwell systems with small parameters,

Comm. Pure Appl. Anal., 15 (2016) 2007–2021.

[29] S. Xi and L. Zhao, From bipolar Euler-Poisson system to unipolar Euler-Poisson system in the perspec-

tive of mass, https://arxiv.org/abs/2002.10867.

[30] J. Xu, Global classical solutions to the compressible Euler-Maxwell equations, SIAM J. Math. Anal.,

43 (2011) 2688–2718.

[31] J. Xu, J. Xiong and S. Kawashima, Global well-posedness in critical Besov spaces for two-fluid Euler-

Maxwell equations, SIAM J. Math. Anal., 45 (2013) 1422–1447.



30 L. Zhao

[32] J. Xu and W.A. Yong, Zero-electron-mass limit of hydrodynamic models for plasmas, Proc. Roy. Soc.

Edinburgh Sect. A, 141 (2011) 431–447.

[33] J. Xu and T. Zhang, Zero-electron-mass limit of Euler-Poisson equations, Discrete Contin. Dyn. Syst.,

33 (2013) 4743–4768.


	1. Introduction
	2. Preliminaries and Main results
	2.1.  Notations and inequalities.
	2.2. Results on the local-in-time convergence
	2.3. Results on the global-in-time convergence

	3. Local convergence
	3.1. Energy estimates
	3.2. Proof of Theorem 2.1

	4. Uniform Global existence and convergence
	Acknowledgments.

	References

