References
Abdullah, Weiss, J., & Zhang, H. (2020). Recent advances in the composition, extraction and food applications of plant-derived oleosomes.Trends in Food Science & Technology , 106 , 322-332.
Albu, S., Joyce, E., Paniwnyk, L., Lorimer, J. P., & Mason, T. J. (2004). Potential for the use of ultrasound in the extraction of antioxidants from Rosmarinus officinalis for the food and pharmaceutical industry. Ultrasonics Sonochemistry , 11 (3-4), 261-265.
Aydar, E. F., Tutuncu, S., & Ozcelik, B. (2020). Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. Journal of Functional Foods , 70 , 103975.
Bai, F., Yan, W., Zhang, S., Yu, D., & Bai, L. (2014). Immobilized lipase of reconstructed oil bodies and its potential application in biodiesel production. Fuel , 128 , 340-346.
Bettini, S., Santino, A., Giancane, G., & Valli, L. (2014). Reconstituted oil bodies characterization at the air/water and at the air/oil/water interfaces. Colloids and Surfaces B: Biointerfaces ,122 , 12-18.
Bettini, S., Vergara, D., Bonsegna, S., Giotta, L., Toto, C., Chieppa, M., et al. (2013). Efficient stabilization of natural curcuminoids mediated by oil body encapsulation. RSC Advances , 3 (16), 5422-5429.
Bi, C., Chi, S., Wang, X., Alkhatib, A., Huang, Z., & Liu, Y. (2021). Effect of flax gum on the functional properties of soy protein isolate emulsion gel. Food science & technology , 149 , 111846.
Butz, P., Edenharder, R., Garcı́a, A. F., Fister, H., Merkel, C., & Tauscher, B. (2002). Changes in functional properties of vegetables induced by high pressure treatment. Food Research International ,35 (2), 295-300.
Bueno, M., Gallego, R., Chourio, A. M., Ibáñez, E., Herrero, M., & Saldaña, M. D. A. (2020). Green ultra-high pressure extraction of bioactive compounds from Haematococcus pluvialis and Porphyridium cruentum microalgae. Innovative Food Science & Emerging Technologies , 66 , 102532.
Cao, Y., Zhao, L., Ying, Y., Kong, X., Hua, Y., & Chen, Y. (2015). The characterization of soybean oil body integral oleosin isoforms and the effects of alkaline pH on them. Food Chemistry , 177 , 288-294.
Capuano, E., Pellegrini, N., Ntone, E., & Nikiforidis, C. V. (2018).In vitro lipid digestion in raw and roasted hazelnut particles and oil bodies. Food & Function , 9 .
Chemat, F., Rombaut, N., Meullemiestre, A., Turk, M., Perino, S., Fabiano-Tixier, A., et al. (2017). Review of green food processing techniques. Preservation, transformation, and extraction.Innovative Food Science & Emerging Technologies , 41 , 357-377.
Chen, B., McClements, D. J., Gray, D. A., & Decker, E. A. (2010). Stabilization of soybean oil bodies by enzyme (laccase) cross-linking of adsorbed beet pectin coatings.Journal of Agricultural and Food Chemistry , 58 (16), 9259-9265.
Chen, J. C. F., Tsai, C. C. Y., & Tzen, J. T. C. (1999). Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds. Plant & Cell Physiology , (10), 1079.
Chen, Y., & Ono, T. (2010). Simple extraction method of non-allergenic Intact soybean oil bodies that are thermally stable in an aqueous medium. Journal of Agricultural and Food Chemistry , 58 (12), 7402-7407.
Chiang, C., Chen, Chao, Y., & Tzen, J. T. C. (2005). Efficient system of artificial oil bodies for functional expression and purification of recombinant nattokinase in Escherichia coli . Journal of Agricultural and Food Chemistry , 53 (12), 4799-4804.
Chiang, C., Chen, C., Liou, P., & Chao, Y. (2019). Selective delivery of curcumin to HER2/neu -overexpressing tumor cells using nanoscale oil body. Journal of the Taiwan Institute of Chemical Engineers , 99 , 38-44.
Chiang, C., Lin, C., Lu, T., & Wang, H. (2011). Functionalized nanoscale oil bodies for targeted delivery of a hydrophobic drug.Nanotechnology , 22 (41), 415102.
Chiang, C., Lin, L., Yang, T. Y., & Chao, Y. (2016). Artificial oil body as a potential oral administration system in zebrafish.Journal of the Taiwan Institute of Chemical Engineers , 61 , 46-53.
Chuang, R. L., Chen, J. C., Chu, J., & Tzen, J. T. (1996). Characterization of seed oil bodies and their surface oleosin isoforms from rice embryos. Journal of Biochemistry , 120 (1), 74-81.
De Chirico, S., di Bari, V., Foster, T., & Gray, D. (2018). Enhancing the recovery of oilseed rape seed oil bodies (oleosomes) using bicarbonate-based soaking and grinding media. Food Chemistry ,241 , 419-426.
Dickinson, E. (2012). Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets. Food Hydrocolloids ,28 (1), 224-241.
Ding, J., Xu, Z., Qi, B., Cui, S., Wang, T., Jiang, L., et al. (2019). Fabrication and characterization of soybean oil bodies encapsulated in maltodextrin and chitosan-EGCG conjugates: An in vitro digestibility study. Food Hydrocolloids ,94 , 519-527.
Dobrinčić, A., Repajić, M., Garofulić, I. E., Tuđen, L., Dragović-Uzelac, V., & Levaj, B. (2020). Comparison of different extraction methods for the recovery of Olive leaves polyphenols.Processes , 8 (9), 1008.
Fisk, I. D., Linforth, R. S. T., Taylor, A. J., & Gray, D. A. (2011). Aroma encapsulation and aroma delivery by oil body suspensions derived from sunflower seeds (Helianthus annus ).European Food Research and Technology , 232 (5), 905-910.
Fisk, I. D., Linforth, R., Trophardy, G., & Gray, D. (2013). Entrapment of a volatile lipophilic aroma compound (D-limonene) in spray dried water-washed oil bodies naturally derived from sunflower seeds (Helianthus annus ). Food Research International ,54 (1), 861-866.
Fisk, I. D., & Gray, D. A. (2011). Soybean (Glycine max ) oil bodies and their associated phytochemicals. Journal of Food Science , 76 (9), C1349-C1354.
Fontes-Candia, C., Ström, A., Lopez-Sanchez, P., López-Rubio, A., & Martínez-Sanz, M. (2020). Rheological and structural characterization of carrageenan emulsion gels. Algal Research , 47 , 101873.
Frandsen, G. I., Mundy, J., & Tzen, J. T. C. (2001). Oil bodies and their associated proteins, oleosin and caleosin. Physiologia Plantarum , 112 (3), 301-307.
Furse, S., Liddell, S., Ortori, C. A., Williams, H., Neylon, D. C., Scott, D. J., et al. (2013). The lipidome and proteome of oil bodies from Helianthus annuus (common sunflower). Journal of Chemical Biology , 6 (2), 63-76.
Gallier, S., Gordon, K. C., & Singh, H. (2012). Chemical and structural characterisation of almond oil bodies and bovine milk fat globules.Food Chemistry , 132 (4), 1996-2006.
Gallier, S., & Singh, H. (2012). Behavior of almond oil bodies duringin vitro gastric and intestinal digestion. Food & Function , 3 (5), 547-555.
Gallier, S., Tate, H., & Singh, H. (2013). In vitro gastric and intestinal digestion of a walnut oil body dispersion.Journal of Agricultural and Food Chemistry , 61 (2), 410-417.
Horne, D. S. (1999). Formation and structure of acidified milk gels.International Dairy Journal , 9 (3-6), 261-268.
Hu, X., Karthik, P., & Chen, J. (2021). Enhanced oral oil release and mouthfeel perception of starch emulsion gels. Food Research International , 144 , 110356.
Huang, A. H. C. U. (1996). Oleosins and oil bodies in seeds and other organs.Plant physiology (Bethesda) , 110 (4), 1055-1061.
Huang, A. H. C. (1992). Oil bodies and oleosins in seeds. Annual Review of Plant Physiology and Plant Molecular Biology , 43 (1), 177-200.
Huang, A. H. C. (2018). Plant lipid droplets and their associated proteins: Potential for rapid advances. Plant Physiology ,176 (3), 1894-1918.
Iwanaga, D., Gray, D. A., Fisk, I. D., Decker, E. A., Weiss, J., & McClements, D. J. (2007). Extraction and characterization of oil bodies from soy beans: A natural source of pre-emulsified soybean oil.Journal of Agricultural and Food Chemistry, 55 (21), 8711-8716.
Iwanaga, D., Gray, D., Decker, E. A., Weiss, J., & McClements, D. J. (2008). Stabilization of soybean oil bodies using protective pectin coatings formed by electrostatic deposition.Journal of Agricultural and Food Chemistry , 56 (6), 2240-2245.
Jeevahan, J., & Chandrasekaran, M. (2019). Nanoedible films for food packaging: A review. Journal of Materials Science , 54 (19), 12290-12318.
Jeske, S., Zannini, E., & Arendt, E. K. (2018). Past, present and future: the strength of plant-based dairy substitutes based on gluten-free raw materials.Food Research International , 110 , 42-51.
Jeya Jeevahan, J., Chandrasekaran, M., Venkatesan, S. P., Sriram, V., Britto Joseph, G., Mageshwaran, G., et al. (2020). Scaling up difficulties and commercial aspects of edible films for food packaging: A review.Trends in Food Science & Technology , 100 , 210-222.
Jolivet, P., Roux, E., D Andrea, S., Davanture, M., Negroni, L., Zivy, M., et al. (2004). Protein composition of oil bodies inArabidopsis thaliana ecotype WS. Plant Physiology and Biochemistry , 42 (6), 501-509.
Kapchie, V. N., Wei, D., Hauck, C., & Murphy, P. A. (2008). Enzyme-assisted aqueous extraction of oleosomes from soybeans (Glycine max ). Journal of Agricultural and Food Chemistry ,56 (5), 1766-1771.
Karefyllakis, D., Octaviana, H., van der Goot, A. J., & Nikiforidis, C. V. (2019). The emulsifying performance of mildly derived mixtures from sunflower seeds. Food Hydrocolloids , 88 , 75-85.
Katavic, V., Agrawal, G. K., Hajduch, M., Harris, S. L., & Thelen, J. J. (2006). Protein and lipid composition analysis of oil bodies from two Brassica napuscultivars. Proteomics , 6 (16), 4586-4598.
Khadhraoui, B., Ummat, V., Tiwari, B. K., Fabiano-Tixier, A. S., & Chemat, F. (2021). Review of ultrasound combinations with hybrid and innovative techniques for extraction and processing of food and natural products. Ultrasonics Sonochemistry , 76 , 105625.
Kirimlidou, M., Matsakidou, A., Scholten, E., Nikiforidis, C. V., & Kiosseoglou, V. (2017). Composite gels structured by a gelatin protein matrix filled with oil bodies. Food Structure , 14 , 46-51.
Koubaa, M., Mhemdi, H., Barba, F. J., Roohinejad, S., Greiner, R., & Vorobiev, E. (2016). Oilseed treatment by ultrasounds and microwaves to improve oil yield and quality: An overview. Food Research International , 85 , 59-66.
Lacey, D. J., Wellner, N., Beaudoin, F., Napier, J. A., & Shewry, P. R. (1998). Secondary structure of oleosins in oil bodies isolated from seeds of safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.). Biochemical Journal , 334 , 469-477.
Lan, X., Qiang, W., Yang, Y., Gao, T., Guo, J., Du, L., et al. (2020). Physicochemical stability of safflower oil body emulsions during food processing. LWT-Food Science and Technology , 132 , 109838.
Li, A., Gong, T., Hou, Y., Yang, X., & Guo, Y. (2020). Alginate-stabilized thixotropic emulsion gels and their applications in fabrication of low-fat mayonnaise alternatives. International Journal of Biological Macromolecules , 146 , 821-831.
Li, Q., Zhou, Z., Zhang, D., Wang, Z., & Cong, W. (2020). Lipid extraction from Nannochloropsis oceanica biomass after extrusion pretreatment with twin-screw extruder: Optimization of processing parameters and comparison of lipid quality. Bioprocess and Biosystems Engineering , 43 (4), 655-662.
Lin, D., Kelly, A. L., & Miao, S. (2020). Preparation, structure-property relationships and applications of different emulsion gels: Bulk emulsion gels, emulsion gel particles, and fluid emulsion gels. Trends in Food Science & Technology , 102 , 123-137.
Lin, L. J., Tai, S. S., Peng, C. C., & Tzen, J. T. (2002). Steroleosin, a sterol-binding dehydrogenase in seed oil bodies. Plant Physiology , 128 (4), 1200-1211.
Liu, C., Wang, R., He, S., Cheng, C., & Ma, Y. (2020). The stability and gastro-intestinal digestion of curcumin emulsion stabilized with soybean oil bodies. LWT-Food Science and Technology , 131 , 109663.
Liu, J., Jin, S., Song, H., Huang, K., Li, S., Guan, X., et al. (2020). Effect of extrusion pretreatment on extraction, quality and antioxidant capacity of oat (Avena Sativa L.) bran oil.Journal of Cereal Science ,95 , 102972.
Loman, A. A., Callow, N. V., Islam, S. M. M., & Ju, L. (2018). Single-step enzyme processing of soybeans into intact oil bodies, protein bodies and hydrolyzed carbohydrates. Process Biochemistry , 68 , 153-164.
Mantzouridou, F. T., Naziri, E., Kyriakidou, A., Paraskevopoulou, A., Tsimidou, M. Z., & Kiosseoglou, V. (2019). Oil bodies from dry maize germ as an effective replacer of cow milk fat globules in yogurt-like product formulation. LWT-Food Science and Technology , 105 , 48-56.
Mat Yusoff, M., Gordon, M. H., & Niranjan, K. (2015). Aqueous enzyme assisted oil extraction from oilseeds and emulsion de-emulsifying methods: A review. Trends in Food Science & Technology , 41 (1), 60-82.
Matsakidou, A., Biliaderis, C. G., & Kiosseoglou, V. (2013). Preparation and characterization of composite sodium caseinate edible films incorporating naturally emulsified oil bodies.Food Hydrocolloids ,30 (1), 232-240.
Matsakidou, A., Tsimidou, M. Z., & Kiosseoglou, V. (2018). Storage behavior of caseinate-based films incorporating maize germ oil bodies.Food Research International , 116 .
McClements, D. J. (2015). Nanoscale nutrient delivery systems for food applications: Improving bioactive dispersibility, stability, and bioavailability. Journal of Food Science , 80 (7), N1602-N1611.
Mert, B., & Vilgis, T. A. (2021). Hydrocolloid coated oleosomes for development of oleogels.Food Hydrocolloids ,119 , 106832.
Millichip, M., Tatham, A. S., Jackson, F., Griffiths, G., Shewry, P. R., & Stobart, A. K. (1996). Purification and characterization of oil-bodies (oleosomes) and oil-body boundary proteins (oleosins) from the developing cotyledons of sunflower (Helianthus annuus L.). Biochemical Journal , 314 , 333-337.
Murphy, D. J., & Cummins, I. (1989). Seed oil-bodies: Isolation, composition and role of oil-body apolipoproteins. Phytochemistry ,28 (8), 2063-2069.
Næsted, H., Frandsen, G. I., Jauh, G. Y., Hernandez-Pinzon, I., & Mundy, J. (2000). Caleosins: Ca2+-binding proteins associated with lipid bodies.Plant Molecular Biology ,44 (4), 463-476.
Nantiyakul, N., Furse, S., Fisk, I. D., Tucker, G., & Gray, D. A. (2013). Isolation and characterization of oil bodies from Oryza sativa bran and studies of their physical properties. Journal of Cereal Science , 57 (1), 141-145.
Nantiyakul, N., Furse, S., Fisk, I., Foster, T. J., Tucker, G., & Gray, D. A. (2012). Phytochemical composition of Oryza sativa (rice) bran oil bodies in crude and purified isolates. Journal of the American Oil Chemists’ Society , 89 (10), 1867-1872.
Napier, J. A. B. U., Stobart, A. K., & Shewry, P. R. (1996). The structure and biogenesis of plant oil bodies: the role of the ER membrane and the oleosin class of proteins. Plant Molecular Biology , 31 (5), 945-956.
Naziri, E., Koupantsis, T., Mantzouridou, F. T., Paraskevopoulou, A., Tsimidou, M. Z., & Kiosseoglou, V. (2017). Influence of thermal treatment on the stability of vegetable ”milk” obtained by ultrafiltration of aqueous oil body extracts from various sources.European Journal lipid Science and Technology , 119 (7).
Nikiforidis, C. V. (2019). Structure and functions of oleosomes (oil bodies). Advances in Colloid and Interface Science , 274 , 102039.
Nikiforidis, C. V., Biliaderis, C. G., & Kiosseoglou, V. (2012). Rheological characteristics and physicochemical stability of dressing-type emulsions made of oil bodies-egg yolk blends. Food Chemistry , 134 (1), 64-73.
Nikiforidis, C. V., Matsakidou, A., & Kiosseoglou, V. (2014). Composition, properties and potential food applications of natural emulsions and cream materials based on oil bodies. RSC Advances ,4 (48), 25067-25078.
Nikiforidis, C. V., & Kiosseoglou, V. (2009). Aqueous extraction of oil bodies from maize germ (Zea mays ) and characterization of the resulting natural oil-in-water emulsion. Journal of Agricultural and Food Chemistry , 57 (12), 5591-5596.
Nikiforidis, C. V., & Scholten, E. (2015). High internal phase emulsion gels (HIPE-gels) created through assembly of natural oil bodies.Food Hydrocolloids , 43 , 283-289.
Ninčević Grassino, A., Ostojić, J., Miletić, V., Djaković, S., Bosiljkov, T., Zorić, Z., et al. (2020). Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. Innovative Food Science & Emerging Technologies , 64 , 102424.
Niu, R., Chen, F., Liu, C., & Duan, X. (2021). Composition and rheological properties of peanut oil bodies from aqueous enzymatic extraction. Journal of Oleo Science , 70 (3), 375-383.
Öztürk, H. 0., Aydın, S., Sözeri, D., Demirci, T., Sert, D., & Akın, N. (2018). Fortification of set-type yoghurts with Elaeagnus angustifolia L. flours: Effects on physicochemical, textural, and microstructural characteristics.LWT-Food Science and Technology , 90 , 620-626.
Payne, G., Lad, M., Foster, T., Khosla, A., & Gray, D. (2014). Composition and properties of the surface of oil bodies recovered fromEchium plantagineum . Colloids and Surfaces B: Biointerfaces , 116 , 88-92.
Peng, X., Feng, C., Wang, X., Gu, H., Li, J., Zhang, X., et al. (2021). Chemical composition and antioxidant activity of essential oils from barks of Pinus pumila using microwave-assisted hydrodistillation after screw extrusion treatment. Industrial Crops and Products ,166 , 113489.
Peng, C. C., Lin, I. P., Lin, C. K., & Tzen, J. T. C. (2003). Size and stability of reconstituted sesame oil bodies. Biotechnology Progress , 19(5), 1623-1626.
Purkrtova, Z., Jolivet, P., Miquel, M., & Chardot, T. (2008). Structure and function of seed lipid body-associated proteins. Comptes Rendus Biologies , 331 (10), 746-754.
Romero-Guzmán, M. J., Jung, L., Kyriakopoulou, K., Boom, R. M., & Nikiforidis, C. V. (2020). Efficient single-step rapeseed oleosome extraction using twin-screw press. Journal of Food Engineering ,276 , 109890.
Romero-Guzmán, M. J., Köllmann, N., Zhang, L., Boom, R. M., & Nikiforidis, C. V. (2020). Controlled oleosome extraction to produce a plant-based mayonnaise-like emulsion using solely rapeseed seeds. LWT-Food Science and Technology , 123 , 109120.
Saavedra Isusi, G. I., Madlindl, L. B., Karbstein, H. P., & van der Schaaf, U. S. (2020). Microstructures and conformational arrangement in emulsions caused by concentration ratios of pectin-based microgels and oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 602 , 125166.
Santiago, M. R., & Devanadera, M. K. P. (2016). Microencapsulation ofPediococcus spp. with coconut oil bodies and oleosin for improved viability and enhanced targeted delivery in the gastrointestinal tract.Philippine Agricultural Scientist , 99 (3), 288-295.
Shakerardekani, A., Karim, R., & Vaseli, A. N. (2013). The effect of processing variables on the quality and acceptability of pistachio milk.Journal of Food Processing & Preservation , 37 (5), 541-545.
Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: A review. Trends in Food Science & Technology , 21 (7), 323-331.
Sukhotu, R., Guo, S., Xing, J., Hu, Q., Wang, R., Shi, X., et al. (2016). Changes in physiochemical properties and stability of peanut oil body emulsions by applying gum arabic. LWT-Food Science and Technology , 68 , 432-438.
Tnani, H., López, I., Jouenne, T., & Vicient, C. M. (2011). Protein composition analysis of oil bodies from maize embryos during germination. Journal of Plant Physiology , 168 (5), 510-513.
Toma, M., Vinatoru, M., Paniwnyk, L., & Mason, T. J. (2001). Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrasonics Sonochemistry , 8 (2), 137-142.
Towa, L. T., Kapchie, V. N., Hauck, C., Wang, H., & Murphy, P. A. (2011). Pilot plant recovery of soybean oleosome fractions by an enzyme-assisted aqueous process. Journal of the American Oil Chemists’ Society , 88 (5), 733-741.
Trombetta, D., Smeriglio, A., Denaro, M., Zagami, R., Tomassetti, M., Pilolli, R., et al. (2020). Understanding the fate of almond (Prunus dulcis (Mill.) D.A. Webb) oleosomes during simulated digestion. Nutrients , 12 (11), 3397.
Tseng, J., Huang, J., Huang, H., Tzen, J. T. C., Chou, W., & Peng, C. (2011). Facilitative production of an antimicrobial peptide royalisin and its antibody via an artificial oil-body system. Biotechnology Progress , 27 (1), 153-161.
Tzen, & J., T., & Huang, A. H. C. (1992). Surface structure and properties of plant seed oil bodies. Journal of Cell Biology ,117 (2), 327-335.
Tzen, J. T. C., Cao, Y., Laurent, P., Ratnayake, C., & Huang, A. H. C. (1993). Lipids, proteins, and structure of seed oil bodies from diverse species.Plant physiology (Bethesda) , 101 (1), 267-276.
Tzen, J. T. C., Lie, G. C., & Huang, A. H. C. (1992). Characterization of the charged components and their topology on the surface of plant seed oil bodies. The Journal of biological chemistry ,267 (22), 15626-15634.
Tzen, J. T., Peng, C. C., Cheng, D. J., Chen, E. C., & Chiu, J. M. (1997). A new method for seed oil body purification and examination of oil body integrity following germination. Journal of Biochemistry , 121 (4), 762-768.
Vargas, M., Perdones, Á., Chiralt, A., Cháfer, M., & González-Martínez, C. (2011). Effect of homogenization conditions on physicochemical properties of chitosan-based film-forming dispersions and films.Food Hydrocolloids , 25 (5), 1158-1164.
Wang, L. (2004). Properties of soybean oil bodies and oleosin proteins as edible films and coatings. Dissertation Abstracts International .
Wang, W., Cui, C., Wang, Q., Sun, C., Jiang, L., & Hou, J. (2019). Effect of pH on physicochemical properties of oil bodies from different oil crops. Journal of Food Science and Technology , 56 (1), 49-58.
Wang, X., Ye, A., & Singh, H. (2020). Structural and physicochemical changes in almond milk during in vitro gastric digestion: Impact on the delivery of protein and lipid. Food & Function ,11 (5).
White, D. A., Fisk, I. D., Makkhun, S., & Gray, D. A. (2009). In vitro assessment of the bioaccessibility of tocopherol and fatty acids from sunflower seed oil bodies.Journal of Agricultural and Food Chemistry , 57 (13), 5720-5726.
White, D. A., Fisk, I. D., Mitchell, J. R., Wolf, B., Hill, S. E., & Gray, D. A. (2008). Sunflower-seed oil body emulsions: Rheology and stability assessment of a natural emulsion.Food Hydrocolloids ,22 (7), 1224-1232.
White, D. A., Fisk, I. D., & Gray, D. A. (2006). Characterisation of oat (Avena sativa L.) oil bodies and intrinsically associated E-vitamers. Journal of Cereal Science , 43 (2), 244-249.
Wu, N., Huang, X., Yang, X., Guo, J., Yin, S., He, X., et al. (2012).In vitro assessment of the bioaccessibility of fatty acids and tocopherol from soybean oil body emulsions stabilized with ι-carrageenan. Journal of Agricultural and Food Chemistry ,60 (6), 1567-1575.
Wu, N., Huang, X., Yang, X., Guo, J., Zheng, E., Yin, S., et al. (2012). Stabilization of soybean oil body emulsions using ι-carrageenan: Effects of salt, thermal treatment and freeze-thaw cycling.Food Hydrocolloids ,28 (1), 110-120.
Wu, N., Yang, X., Teng, Z., Yin, S., Zhu, J., & Qi, J. (2011). Stabilization of soybean oil body emulsions using κ, ι, λ-carrageenan at different pH values. Food Research International , 44 (4), 1059-1068.
Xu, D., Gao, Q., Ma, N., Hao, J., Yuan, Y., Zhang, M., et al. (2021). Structures and physicochemical characterization of enzyme extracted oil bodies from rice bran.LWT-Food Science and Technology , 135 , 109982.
Yang, N., Feng, Y., Su, C., Wang, Q., Zhang, Y., Wei, Y., et al. (2020). Structure and tribology of κ-carrageenan gels filled with natural oil bodies. Food Hydrocolloids ,107 , 105945.
Yang, N., Su, C., Zhang, Y., Jia, J., & Phillips, G. O. (2020). In situ nanomechanical properties of natural oil bodies studied using atomic force microscopy. Journal of Colloid and Interface Science ,570 .
Yang, Y., & Benning, C. (2017). Functions of triacylglycerols during plant development and stress. Current Opinion in Biotechnology ,49 , 191.
Zaaboul, F., Raza, H., Cao, C., & Yuanfa, L. (2019). The impact of roasting, high pressure homogenization and sterilization on peanut milk and its oil bodies. Food Chemistry , 280 , 270-277.
Zaaboul, F., Raza, H., Chen, C., & Liu, Y. (2018). Characterization of peanut oil bodies integral proteins, lipids, and their associated phytochemicals. Journal of Food Science , 83 (1), 93-100.
Zhang, P., Bari, V. D., Briars, R., Taher, Z. M., Yuan, J., Liu, G., et al. (2017). Influence of pecan nut pretreatment on the physical quality of oil bodies. Journal of Food Quality , 2017 , 1-9.
Zhao, L., Chen, Y., Chen, Y., Kong, X., & Hua, Y. (2016). Effects of pH on protein components of extracted oil bodies from diverse plant seeds and endogenous protease-induced oleosin hydrolysis. Food Chemistry , 200 , 125-133.
Zhao, L., Chen, Y., Yan, Z., Kong, X., & Hua, Y. (2016). Physicochemical and rheological properties and oxidative stability of oil bodies recovered from soybean aqueous extract at different pHs.Food Hydrocolloids , 61 , 685-694.
Zheng, B., Zhang, X., Peng, S., & Julian McClements, D. (2019). Impact of curcumin delivery system format on bioaccessibility: nanocrystals, nanoemulsion droplets, and natural oil bodies. Food & Function ,10 (7), 4339-4349.