References
(1) Sparreboom, W.; Van Den Berg, A.; Eijkel, J. C. T. Principles and
Applications of Nanofluidic Transport. Nat. Nanotechnol.2009 , 4 (11), 713–720.
https://doi.org/10.1038/nnano.2009.332.
(2) Ball, P. Water as an Active Constituent in Cell Biology. Chem.
Rev. 2008 , 108 (1), 74–108.
https://doi.org/10.1021/cr068037a.
(3) Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.;
Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Precise and
Ultrafast Molecular Sieving through Graphene Oxide Membranes.Science (80-. ). 2014 , 343 (6172), 752–754.
https://doi.org/10.1126/science.1245711.
(4) Heuberger, M.; Zäch, M.; Spencer, N. D. Density Fluctuations under
Confinement: When Is a Fluid Not a Fluid? Science (80-. ).2001 , 292 (5518), 905–908.
https://doi.org/10.1126/science.1058573.
(5) Scatena, L. F.; Brown, M. G.; Richmond, G. L. Water at Hydrophobic
Surfaces: Weak Hydrogen Bonding and Strong Orientation Effects.Science (80-. ). 2001 , 292 (5518), 908–912.
https://doi.org/10.1126/science.1059514.
(6) Werder, T.; Walther, J. H.; Jaffe, R. L.; Halicioglu, T.; Noca, F.;
Koumoutsakos, P. Molecular Dynamics Simulation of Contact Angles of
Water Droplets in Carbon Nanotubes. Nano Lett. 2001 ,1 (12), 697–702. https://doi.org/10.1021/nl015640u.
(7) Levinger, N. E. Chemistry: Water in Confinement. Science (80-.
). 2002 , 298 (5599), 1722–1723.
https://doi.org/10.1126/science.1079322.
(8) Rivera, J. L.; McCabe, C.; Cummings, P. T. Layering Behavior and
Axial Phase Equilibria of Pure Water and Water + Carbon Dioxide Inside
Single Wall Carbon Nanotubes. Nano Lett. 2002 , 2(12), 1427–1431. https://doi.org/10.1021/nl0257566.
(9) Kofinger, J.; Hummer, G.; Dellago, C. Macroscopically Ordered Water
in Nanopores. Proc. Natl. Acad. Sci. 2008 , 105(36), 13218–13222. https://doi.org/10.1073/pnas.0801448105.
(10) Ma, M.; Grey, F.; Shen, L.; Urbakh, M.; Wu, S.; Liu, J. Z.; Liu,
Y.; Zheng, Q. Water Transport inside Carbon Nanotubes Mediated by
Phonon-Induced Oscillating Friction. Nat. Nanotechnol.2015 , 10 (8), 692–695.
https://doi.org/10.1038/nnano.2015.134.
(11) Wu, K.; Dong, X.; Li, X.; Li, J.; Xu, J.; Chen, Z. Wettability
Effect on Nanoconfined Water Flow. Proc. Natl. Acad. Sci.2017 , 114 (13), 3358–3363.
https://doi.org/10.1073/pnas.1612608114.
(12) Wu, K.; Chen, Z.; Li, J.; Lei, Z.; Xu, J.; Wang, K.; Li, R.; Dong,
X.; Peng, Y.; Yang, S.; et al. Nanoconfinement Effect on N-Alkane Flow.J. Phys. Chem. C 2019 .
https://doi.org/10.1021/acs.jpcc.9b03903.
(13) Brown, M. A.; Abbas, Z.; Kleibert, A.; Green, R. G.; Goel, A.; May,
S.; Squires, T. M. Determination of Surface Potential and Electrical
Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle
Interface. Phys. Rev. X 2016 , 6 (1), 1–12.
https://doi.org/10.1103/PhysRevX.6.011007.
(14) Brown, M. A.; Goel, A.; Abbas, Z. Effect of Electrolyte
Concentration on the Stern Layer Thickness at a Charged Interface.Angew. Chemie - Int. Ed. 2016 , 55 (11),
3790–3794. https://doi.org/10.1002/anie.201512025.
(15) Azam, M. S.; Weeraman, C. N.; Gibbs-Davis, J. M. Specific Cation
Effects on the Bimodal Acid-Base Behavior of the Silica/Water Interface.J. Phys. Chem. Lett. 2012 , 3 (10), 1269–1274.
https://doi.org/10.1021/jz300255x.
(16) Jena, K. C.; Covert, P. A.; Hore, D. K. The Effect of Salt on the
Water Structure at a Charged Solid Surface: Differentiating Second- and
Third-Order Nonlinear Contributions. J. Phys. Chem. Lett.2011 , 2 (9), 1056–1061.
https://doi.org/10.1021/jz200251h.
(17) Urashima, S. H.; Myalitsin, A.; Nihonyanagi, S.; Tahara, T. The
Topmost Water Structure at a Charged Silica/Aqueous Interface Revealed
by Heterodyne-Detected Vibrational Sum Frequency Generation
Spectroscopy. J. Phys. Chem. Lett. 2018 , 9 (14),
4109–4114. https://doi.org/10.1021/acs.jpclett.8b01650.
(18) Dobrynin, A. V.; Rubinstein, M.; Joanny, J. F. Adsorption of a
Polyampholyte Chain on a Charged Surface. Macromolecules1997 , 30 (15), 4332–4341.
https://doi.org/10.1021/ma9703057.
(19) Zhang, L.; Sun, Y. Charged Surface Regulates the Molecular
Interactions of Electrostatically Repulsive Peptides by Inducing
Oriented Alignment. Langmuir 2018 , 34 (14),
4390–4397. https://doi.org/10.1021/acs.langmuir.7b04308.
(20) Tasca, F.; Harreither, W.; Ludwig, R.; Gooding, J. J.; Gorton, L.
Cellobiose Dehydrogenase Aryl Diazonium Modified Single Walled Carbon
Nanotubes: Enhanced Direct Electron Transfer through a Positively
Charged Surface. Anal. Chem. 2011 , 83 (8),
3042–3049. https://doi.org/10.1021/ac103250b.
(21) Dreier, L. B.; Nagata, Y.; Lutz, H.; Gonella, G.; Hunger, J.;
Backus, E. H. G.; Bonn, M. Saturation of Charge-Induced Water Alignment
at Model Membrane Surfaces. Sci. Adv. 2018 , 4(3), 1–9. https://doi.org/10.1126/sciadv.aap7415.
(22) David Ehre, Etay Lavert, Meir Lahav, I. L. Water Freezes
Differently on Positively and Negatively Charged Surfaces of
Pyroelectric Materials. Science (80-. ). 2010 , No.
February, 672–675.
(23) Lahann, J.; Mitragotri, S.; Tran, T. N.; Kaido, H.; Sundaram, J.;
Choi, I. S.; Hoffer, S.; Somorjai, G. A.; Langer, R. A Reversibly
Switching Surface. Science (80-. ). 2003 , 299(5605), 371–374. https://doi.org/10.1126/science.1078933.
(24) Lis, D.; Backus, E. H. G.; Hunger, J.; Parekh, S. H.; Bonn, M.
Liquid Flow along a Solid Surface Reversibly Alters Interfacial
Chemistry. Science (80-. ). 2014 , 344 (6188),
1138–1142. https://doi.org/10.1126/science.1253793.
(25) Jiménez-González, I.; Rodríguez-Navarro, C.; Scherer, G. W. Role of
Clay Minerals in the Physicomechanical Deterioration of Sandstone.J. Geophys. Res. Earth Surf. 2008 , 113 (2),
1–17. https://doi.org/10.1029/2007JF000845.
(26) Uddin, M. K. A Review on the Adsorption of Heavy Metals by Clay
Minerals, with Special Focus on the Past Decade. Chem. Eng. J.2017 , 308 (October), 438–462.
https://doi.org/10.1016/j.cej.2016.09.029.
(27) Jeon, P. R.; Choi, J.; Yun, T. S.; Lee, C.-H. Sorption Equilibrium
and Kinetics of CO2 on Clay Minerals from Subcritical to Supercritical
Conditions: CO2 Sequestration at Nanoscale Interfaces. Chem. Eng.
J. 2014 , 255 , 705–715.
https://doi.org/10.1016/J.CEJ.2014.06.090.
(28) Cygan, R. T.; Romanov, V. N.; Myshakin, E. M. Molecular Simulation
of Carbon Dioxide Capture by Montmorillonite Using an Accurate and
Flexible Force Field. J. Phys. Chem. C 2012 , 116(24), 13079–13091. https://doi.org/10.1021/jp3007574.
(29) Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.;
Marin, B. J.; Mayes, A. M.
Shannon-M.A._Science-and-Technology-for-Water-Purification-in-the-Coming-Decades_2008.Pdf.2008 , 452 (March), 301–310.
https://doi.org/10.1038/nature06599.
(30) Hensen, E. J. M.; Smit, B. Why Clays Swell. J. Phys. Chem. B2002 , 106 (49), 12664–12667.
https://doi.org/10.1021/jp0264883.
(31) Kuila, U.; Prasad, M. Specific Surface Area and Pore-Size
Distribution in Clays and Shales. Geophys. Prospect.2013 , 61 (2), 341–362.
https://doi.org/10.1111/1365-2478.12028.
(32) Hao, Y.; Jia, X.; Lu, Z.; Lu, D.; Li, P. Water Film or Water
Bridge ? In Fl Uence of Self-Generated Electric Field on Coexisting
Patterns of Water and Methane in Clay Nanopores. J. Phys. Chem. C2019 . https://doi.org/10.1021/acs.jpcc.9b06519.
(33) Chai, L.; Klein, J. Role of Ion Ligands in the Attachment of
Poly(Ethylene Oxide) to a Charged Surface. J. Am. Chem. Soc.2005 , 127 (4), 1104–1105.
https://doi.org/10.1021/ja043963x.
(34) Rigo, E.; Dong, Z.; Park, J. H.; Kennedy, E.; Hokmabadi, M.;
Almonte-Garcia, L.; Ding, L.; Aluru, N.; Timp, G. Measurements of the
Size and Correlations between Ions Using an Electrolytic Point Contact.Nat. Commun. 2019 , 10 (1), 2382.
https://doi.org/10.1038/s41467-019-10265-2.
(35) Loganathan, N.; Kalinichev, A. G. Quantifying the Mechanisms of
Site-Specific Ion Exchange at an Inhomogeneously Charged Surface: Case
of Cs+/K+ on Hydrated Muscovite Mica. J. Phys. Chem. C2017 , 121 (14), 7829–7836.
https://doi.org/10.1021/acs.jpcc.6b13108.
(36) Jungwirth, P.; Laage, D. Ion-Induced Long-Range Orientational
Correlations in Water: Strong or Weak, Physiologically Relevant or
Unimportant, and Unique to Water or Not? J. Phys. Chem. Lett.2018 , 9 (8), 2056–2057.
https://doi.org/10.1021/acs.jpclett.8b01027.
(37) Dewhirst, M. W.; Secomb, T. W. Transport of Drugs from Blood
Vessels to Tumour Tissue. Nat. Rev. Cancer 2017 ,17 (12), 738–750. https://doi.org/10.1038/nrc.2017.93.
(38) Rao, S.; Chen, R.; LaRocca, A. A.; Christiansen, M. G.; Senko, A.
W.; Shi, C. H.; Chiang, P.-H.; Varnavides, G.; Xue, J.; Zhou, Y.; et al.
Remotely Controlled Chemomagnetic Modulation of Targeted Neural
Circuits. Nat. Nanotechnol. 2019 , 14 (10),
967–973. https://doi.org/10.1038/s41565-019-0521-z.
(39) Warner, N. R.; Jackson, R. B.; Darrah, T. H.; Osborn, S. G.; Down,
A.; Zhao, K.; White, A.; Vengosh, A. Geochemical Evidence for Possible
Natural Migration of Marcellus Formation Brine to Shallow Aquifers in
Pennsylvania. Proc. Natl. Acad. Sci. U. S. A. 2012 ,109 (30), 11961–11966. https://doi.org/10.1073/pnas.1121181109.
(40) Cui, S. T.; McCabe, C.; Cummings, P. T.; Cochran, H. D. Molecular
Dynamics Study of the Nano-Rheology of n-Dodecane Confined between
Planar Surfaces. J. Chem. Phys. 2003 , 118 (19),
8941–8944. https://doi.org/10.1063/1.1568084.
(41) Liu, B.; Wang, C.; Zhang, J.; Xiao, S.; Zhang, Z.; Shen, Y.; Sun,
B.; He, J. Displacement Mechanism of Oil in Shale Inorganic Nanopores by
Supercritical Carbon Dioxide from Molecular Dynamics Simulations.Energy and Fuels 2017 , 31 (1), 738–746.
https://doi.org/10.1021/acs.energyfuels.6b02377.
(42) Xiong, H.; Devegowda, D.; Huang, L. EOR Solvent-Oil Interaction in
Clay-Hosted Pores: Insights from Molecular Dynamics Simulations.Fuel 2019 , 249 , 233–251.
https://doi.org/10.1016/j.fuel.2019.03.104.
(43) Gualtieri, A. F.; Ferrari, S.; Leoni, M.; Grathoff, G.; Hugo, R.;
Shatnawi, M.; Paglia, G.; Billinge, S. Structural Characterization of
the Clay Mineral Illite-1M. J. Appl. Crystallogr. 2008 ,41 (2), 402–415. https://doi.org/10.1107/S0021889808004202.
(44) Galán, E.; Ferrell, R. E. Genesis of Clay Minerals. Dev. Clay
Sci. 2013 , 5 , 83–126.
https://doi.org/10.1016/B978-0-08-098258-8.00003-1.
(45) Liu, J.; Li, P.; Sun, Z.; Lu, Z.; Du, Z.; Liang, H.; Lu, D. A New
Method for Analysis of Dual Pore Size Distributions in Shale Using
Nitrogen Adsorption Measurements. Fuel 2017 , 210(August), 446–454. https://doi.org/10.1016/j.fuel.2017.08.067.
(46) Wang, Y.; Zhu, Y.; Chen, S.; Li, W. Characteristics of the
Nanoscale Pore Structure in Northwestern Hunan Shale Gas Reservoirs
Using Field Emission Scanning Electron Microscopy, High-Pressure Mercury
Intrusion, and Gas Adsorption. Energy and Fuels 2014 ,28 (2), 945–955. https://doi.org/10.1021/ef402159e.
(47) Li, J.; Li, X.; Wang, X.; Li, Y.; Wu, K.; Shi, J.; Yang, L.; Feng,
D.; Zhang, T.; Yu, P. Water Distribution Characteristic and Effect on
Methane Adsorption Capacity in Shale Clay. Int. J. Coal Geol.2016 , 159 , 135–154.
https://doi.org/10.1016/j.coal.2016.03.012.
(48) Xiong, H.; Devegowda, D.; Huang, L. Water Bridges in Clay
Nanopores: Mechanisms of Formation and Impact on Hydrocarbon Transport.Langmuir 2020 .
https://doi.org/10.1021/acs.langmuir.9b03244.
(49) Hao, Y.; Yuan, L.; Li, P.; Zhao, W.; Li, D.; Lu, D. Molecular
Simulations of Methane Adsorption Behavior in Illite Nanopores
Considering Basal and Edge Surfaces. Energy and Fuels2018 , 32 (4), 4783–4796.
https://doi.org/10.1021/acs.energyfuels.8b00070.
(50) Jin, Z.; Firoozabadi, A. Methane and Carbon Dioxide Adsorption in
Clay-like Slit Pores by Monte Carlo Simulations. Fluid Phase
Equilib. 2013 , 360 , 456–465.
https://doi.org/10.1016/j.fluid.2013.09.047.
(51) Zhang, J.; Clennell, M. B.; Liu, K.; Pervukhina, M.; Chen, G.;
Dewhurst, D. N. Methane and Carbon Dioxide Adsorption on Illite.Energy and Fuels 2016 , 30 (12), 10643–10652.
https://doi.org/10.1021/acs.energyfuels.6b01776.
(52) Jin, Z.; Firoozabadi, A. Effect of Water on Methane and Carbon
Dioxide Sorption in Clay Minerals by Monte Carlo Simulations.Fluid Phase Equilib. 2014 , 382 , 10–20.
https://doi.org/10.1016/j.fluid.2014.07.035.
(53) Underwood, T.; Erastova, V.; Greenwell, H. C. Wetting Effects and
Molecular Adsorption at Hydrated Kaolinite Clay Mineral Surfaces.J. Phys. Chem. C 2016 , 120 (21), 11433–11449.
https://doi.org/10.1021/acs.jpcc.6b00187.
(54) Zen, A.; Roch, L. M.; Cox, S. J.; Hu, X. L.; Sorella, S.; Alfè, D.;
Michaelides, A. Toward Accurate Adsorption Energetics on Clay Surfaces.J. Phys. Chem. C 2016 , 120 (46), 26402–26413.
https://doi.org/10.1021/acs.jpcc.6b09559.
(55) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and
Testing of the OPLS All-Atom Force Field on Conformational Energetics
and Properties of Organic Liquids. J. Am. Chem. Soc.1996 , 118 (45), 11225–11236.
https://doi.org/10.1021/ja9621760.
(56) Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular
Dynamics. J. Comput. Phys. 1995 , 117 (1), 1–19.
https://doi.org/https://doi.org/10.1006/jcph.1995.1039.
(57) Martínez, J. M.; Martínez, L. Packing Optimization for Automated
Generation of Complex System’s Initial Configurations for Molecular
Dynamics and Docking. J. Comput. Chem. 2003 , 24(7), 819–825. https://doi.org/10.1002/jcc.10216.
(58) Parrinello, M.; Rahman, A. Polymorphic Transitions in Single
Crystals: A New Molecular Dynamics Method. J. Appl. Phys.1981 , 52 (12), 7182–7190.
https://doi.org/10.1063/1.328693.
(59) Nosé, S. A Unified Formulation of the Constant Temperature
Molecular Dynamics Methods. J. Chem. Phys. 1984 ,81 (1), 511–519. https://doi.org/10.1063/1.447334.
(60) Malevanets, A.; Kapral, R. Solute Molecular Dynamics in a Mesoscale
Solvent. J. Chem. Phys. 2000 , 112 (16),
7260–7269. https://doi.org/10.1063/1.481289.
(61) Malevanets, A. Mesoscopic Model for Solvent Dynamics. J.
Chem. Phys. 1999 , 110 (17), 8605–8613.
https://doi.org/10.1063/1.478857.
(62) Lamura, A.; Gompper, G.; Ihle, T.; Kroll, D. M. Multi-Particle
Collision Dynamics : Flow around a Circular. Europhys. Lett.2001 , 56 (3), 319–325.
(63) Thomas, J. A.; McGaughey, A. J. H. Water Flow in Carbon Nanotubes:
Transition to Subcontinuum Transport. Phys. Rev. Lett.2009 , 102 (18), 1–4.
https://doi.org/10.1103/PhysRevLett.102.184502.
(64) Kalra, A.; Garde, S.; Hummer, G. Osmotic Water Transport through
Carbon Nanotube Membranes. Proc. Natl. Acad. Sci. U. S. A.2003 , 100 (18), 10175–10180.
https://doi.org/10.1073/pnas.1633354100.
(65) Nikoubashman, A.; Likos, C. N. Flow-Induced Polymer Translocation
through Narrow and Patterned Channels. J. Chem. Phys.2010 , 133 (7). https://doi.org/10.1063/1.3466918.
(66) Nikoubashman, A.; Likos, C. N.; Kahl, G. Computer Simulations of
Colloidal Particles under Flow in Microfluidic Channels. Soft
Matter 2013 , 9 (9), 2603–2613.
https://doi.org/10.1039/c2sm26727f.
(67) Allahyarov, E.; Gompper, G. Mesoscopic Solvent Simulations:
Multiparticle-Collision Dynamics of Three-Dimensional Flows. Phys.
Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top.2002 , 66 (3), 1–9.
https://doi.org/10.1103/PhysRevE.66.036702.
(68) Liu, B.; Wu, R.; Baimova, J. A.; Wu, H.; Law, A. W. K.; Dmitriev,
S. V.; Zhou, K. Molecular Dynamics Study of Pressure-Driven Water
Transport through Graphene Bilayers. Phys. Chem. Chem. Phys.2016 , 18 (3), 1886–1896.
https://doi.org/10.1039/c5cp04976h.
(69) Liu, B.; Qi, C.; Zhao, X.; Teng, G.; Zhao, L.; Zheng, H.; Zhan, K.;
Shi, J. Nanoscale Two-Phase Flow of Methane and Water in Shale Inorganic
Matrix. J. Phys. Chem. C 2018 , 122 , 26671–26679.
https://doi.org/10.1021/acs.jpcc.8b06780.
(70) Falk, K.; Sedlmeier, F.; Joly, L.; Netz, R. R.; Bocquet, L.
Ultralow Liquid/Solid Friction in Carbon Nanotubes: Comprehensive Theory
for Alcohols, Alkanes, OMCTS, and Water. Langmuir 2012 ,28 (40), 14261–14272. https://doi.org/10.1021/la3029403.
(71) Wang, S.; Feng, Q.; Javadpour, F.; Yang, Y. B. Breakdown of Fast
Mass Transport of Methane through Calcite Nanopores. J. Phys.
Chem. C 2016 , 120 (26), 14260–14269.
https://doi.org/10.1021/acs.jpcc.6b05511.
(72) Zhao, P.; Ma, H.; Rasouli, V.; Liu, W.; Cai, J.; Huang, Z. An
Improved Model for Estimating the TOC in Shale Formations. Mar.
Pet. Geol. 2017 , 83 , 174–183.
https://doi.org/10.1016/J.MARPETGEO.2017.03.018.
(73) Wang, S.; Javadpour, F.; Feng, Q. Molecular Dynamics Simulations of
Oil Transport through Inorganic Nanopores in Shale. Fuel2016 , 171 , 74–86.
https://doi.org/10.1016/j.fuel.2015.12.071.
(74) Wang, S.; Javadpour, F.; Feng, Q. Fast Mass Transport of Oil and
Supercritical Carbon Dioxide through Organic Nanopores in Shale.Fuel 2016 , 181 , 741–758.
https://doi.org/10.1016/j.fuel.2016.05.057.
(75) Phan, A.; Ho, T. A.; Cole, D. R.; Striolo, A. Molecular Structure
and Dynamics in Thin Water Films at Metal Oxide Surfaces: Magnesium,
Aluminum, and Silicon Oxide Surfaces. J. Phys. Chem. C2012 , 116 (30), 15962–15973.
https://doi.org/10.1021/jp300679v.
(76) Yamashita, K.; Daiguji, H. Molecular Simulations of Water Adsorbed
on Mesoporous Silica Thin Films. J. Phys. Chem. C 2013 ,117 (5), 2084–2095. https://doi.org/10.1021/jp312804c.
(77) Tan, S. P.; Piri, M. Equation-of-State Modeling of
Associating-Fluids Phase Equilibria in Nanopores. Fluid Phase
Equilib. 2015 , 405 , 157–166.
https://doi.org/10.1016/j.fluid.2015.07.044.
(78) Danov, K. D.; Georgiev, M. T.; Kralchevsky, P. A.; Radulova, G. M.;
Gurkov, T. D.; Stoyanov, S. D.; Pelan, E. G. Hardening of
Particle/Oil/Water Suspensions Due to Capillary Bridges: Experimental
Yield Stress and Theoretical Interpretation. Adv. Colloid
Interface Sci. 2018 , 251 (December), 80–96.
https://doi.org/10.1016/j.cis.2017.11.004.
(79) Zhang, C.; Hutter, J.; Sprik, M. Coupling of Surface Chemistry and
Electric Double Layer at TiO 2 Electrochemical Interfaces . J.
Phys. Chem. Lett. 2019 , 10 (14), 3871–3876.
https://doi.org/10.1021/acs.jpclett.9b01355.
(80) Montazeri Namin, R.; Azizpour Lindi, S.; Amjadi, A.; Jafari, N.;
Irajizad, P. Experimental Investigation of the Stability of the Floating
Water Bridge. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys.2013 , 88 (3), 1–6.
https://doi.org/10.1103/PhysRevE.88.033019.
(81) Fuchs, E. C.; Gatterer, K.; Holler, G.; Woisetschläger, J. Dynamics
of the Floating Water Bridge. J. Phys. D. Appl. Phys.2008 , 41 (18), 2–7.
https://doi.org/10.1088/0022-3727/41/18/185502.
(82) Fuchs, E. C.; Woisetschläger, J.; Gatterer, K.; Maier, E.; Pecnik,
R.; Holler, G.; Eisenkölbl, H. The Floating Water Bridge. J. Phys.
D. Appl. Phys. 2007 , 40 (19), 6112–6114.
https://doi.org/10.1088/0022-3727/40/19/052.
(83) Ponterio, R. C.; Pochylski, M.; Aliotta, F.; Vasi, C.; Fontanella,
M. E.; Saija, F. Raman Scattering Measurements on a Floating Water
Bridge. J. Phys. D. Appl. Phys. 2010 , 43 (17).
https://doi.org/10.1088/0022-3727/43/17/175405.
(84) Chen, J.; Wang, C.; Wei, N.; Wan, R.; Gao, Y. 3D Flexible Water
Channel: Stretchability of Nanoscale Water Bridge. Nanoscale2016 , 8 (10), 5676–5681.
https://doi.org/10.1039/c5nr08072j.
(85) Bueno-Barrachina, J. M.; Cañas-Peñuelas, C. S.; Catalan-Izquierdo,
S. Capacitance Evaluation on Non-Parallel Thick-Plate Capacitors by
Means of Finite Element Analysis. J. Energy Power Eng.2011 , 5 , 373–378.
(86) Liu, N.; Zhang, R.; Li, Y.; Chen, B. Local Electric Field Effect of
TMI (Fe, Co, Cu)-BEA on N2O Direct Dissociation. J. Phys. Chem. C2014 , 118 (20), 10944–10956.
https://doi.org/10.1021/jp5023949.
(87) Chen, D.; Savidge, T. Comment on “Extreme Electric Fields Power
Catalysis in the Active Site of Ketosteroid Isomerase.” Science
(80-. ). 2015 , 349 (6251), 936b.
https://doi.org/10.1126/science.aab0095.
(88) Barrachin, B.; Cohen de Lara, E. Determination of the Electric
Field in Zeolites NaA, NaCaA and Ca6A. J. Chem. Soc., Faraday
Trans. 2 1986 , 82 , 1953–1966.
(89) Skinner, L. B.; Benmore, C. J.; Shyam, B.; Weber, J. K. R.; Parise,
J. B. Structure of the Floating Water Bridge and Water in an Electric
Field. Proc. Natl. Acad. Sci. U. S. A. 2012 , 109(41), 16463–16468. https://doi.org/10.1073/pnas.1210732109.
(90) Cramer, T.; Zerbetto, F.; García, R. Molecular Mechanism of Water
Bridge Buildup: Field-Induced Formation of Nanoscale Menisci.Langmuir 2008 , 24 (12), 6116–6120.
https://doi.org/10.1021/la800220r.
(91) Hansen, J. S.; Todd, B. D.; Daivis, P. J. Prediction of Fluid
Velocity Slip at Solid Surfaces. Phys. Rev. E - Stat. Nonlinear,
Soft Matter Phys. 2011 , 84 (1), 1–8.
https://doi.org/10.1103/PhysRevE.84.016313.
(92) Ferrari, L.; Kaufmann, J.; Winnefeld, F.; Plank, J. Interaction of
Cement Model Systems with Superplasticizers Investigated by Atomic Force
Microscopy, Zeta Potential, and Adsorption Measurements. J.
Colloid Interface Sci. 2010 , 347 (1), 15–24.
https://doi.org/10.1016/j.jcis.2010.03.005.
(93) Huber, F.; Berwanger, J.; Polesya, S.; Mankovsky, S.; Ebert, H.;
Giessibl, F. J. Chemical Bond Formation Showing a Transition from
Physisorption to Chemisorption. Science (80-. ). 2019 ,3444 (September), eaay3444.
https://doi.org/10.1126/science.aay3444.
(94) Autumn, K.; Sitti, M.; Liang, Y. A.; Peattie, A. M.; Hansen, W. R.;
Sponberg, S.; Kenny, T. W.; Fearing, R.; Israelachvili, J. N.; Full, R.
J. Evidence for van Der Waals Adhesion in Gecko Setae. Proc. Natl.
Acad. Sci. U. S. A. 2002 , 99 (19), 12252–12256.
https://doi.org/10.1073/pnas.192252799.