References
Brorson, K., Krejci, S., Lee, K., Hamilton, E., Stein, K., & Xu, Y. (2003). Bracketed generic inactivation of rodent retroviruses by low pH treatment for monoclonal antibodies and recombinant proteins. Biotechnology and Bioengineering, 82 (3), 321–329. doi:10.1002/bit.10574
Bychkova, V. E., Berni, R., Rossi, G. L., Kutyshenko, V. P., & Ptitsyn, O. B. (1992). Retinol-binding protein is in the molten globule state at low pH. Biochemistry, 31 (33), 7566–7571. doi:10.1021/bi00148a018
Bylund, F., Collet, E., Enfors, S. O., & Larsson, G. (1998). Substrate gradient formation in the large-scale bioreactor lowers cell yield and increases byproduct formation.Bioprocess Eng., 18 (3), 171–180. doi:10.1007/s004490050427
den Engelsman, J., Garidel, P., Smulders, R., Koll, H., Smith, B., Bassarab, S., . . . Jiskoot, W. (2011). Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharmaceutical Research, 28 (4), 920–933. doi:10.1007/s11095-010-0297-1
Fahrner, R., Knudsen, H., Basey, C., Galan, W., Feuerhelm, D., Vanderlaan, M., & Blank, G. (2001). Industrial purification of pharmaceutical antibodies: Development, operation, and validation of chromatography processes. Biotechnol. Genet. Eng. Rev., 18 (1), 301–327. doi:10.1080/02648725.2001.10648017
Filipe, V., Kükrer, B., Hawe, A., & Jiskoot, W. (2012). Transient Molten Globules and Metastable Aggregates Induced by Brief Exposure of a Monoclonal IgG to Low pH. Journal of Pharmaceutical Sciences, 101 (7), 2327–2339. doi:10.1002/JPS.23157
Francis, P., & Haynes, C. A. (2009). Scale-up of controlled-shear affinity filtration using computational fluid dynamics. Biotechnol J, 4 (5), 665–673. doi:10.1002/biot.200800331
ICH. (1998). International Conference on Harmonisation; guidance on viral safety evaluation of biotechnology products derived from cell lines of human or animal origin; availability–FDA. Notice. Federal register, 63 , 51074-51084.
Jin, W., Xing, Z., Song, Y., Huang, C., Xu, X., Ghose, S., & Li, Z. J. (2019). Protein aggregation and mitigation strategy in low pH viral inactivation for monoclonal antibody purification. MABS, 11 (8), 1479-1491. doi:10.1080/19420862.2019.1658493
Kateja, N., Kumar, D., Sethi, S., & Rathore, A. S. (2018). Non-protein A purification platform for continuous processing ofmonoclonal antibody therapeutics. Journal of Chromatography A, 1579 , 60-72. doi:10.1016/j.chroma.2018.10.031
Kelly, W. J. (2008). Using computational fluid dynamics to characterize and improve bioreactor performance. Biotechnol Appl Biochem, 49 (4), 225–238. doi:10.1042/BA20070177
Langheinrich, C., & Nienow, A. W. (1999 ). Control of pH in large-scale, fed suspension animal cell bioreactors: Alkali addition and pH excursions. Biotechnology and Bioengeering 66 (3), 171–179. doi:10.1002/(SICI)1097-0290(1999)66:3<171::AID-BIT5>3.0.CO;2-T
Lara, A. R., Galindo, E., Ramírez, O. T., & Palomares, L. A. (2006). Living with heterogeneities in bioreactors: Understanding the effects of environmental gradients on cells. Molecular Biotechnology, 34 (3), 355–381. doi:10.1385/MB:34:3:355
Lode, F. G., Rosenfeld, A., Yuan, Q. S., Root, T. W., & Lightfoot, E. N. (1998). Refining the scale-up of chromatographic separations. Journal of Chromatography A, 796 (1), 3–14. doi:10.1016/S0021-9673(97)00872-8
Manninen, M., Gorshkova, E., Immonen, K., & Ni, X.-W. (2013). Evaluation of axial dispersion and mixing performance in oscillatory baffled reactors using CFD. J Chem Technol Biotechnol, 88 (4), 553–562. doi:10.1002/jctb.3979
Mattila, J., Clark, M., Liu, S., Pieracci, J., Gervais, T., Wilson, E., . . . Simpson-Platre, C. (2016). Retrospective Evaluation of Low-pH Viral Inactivation and Viral Filtration Data from a Multiple Company Collaboration. PDA Journal of Pharmaceutical Science and Technology, 70 (3), 293–299. doi:10.5731/pdajpst.2016.006478
Muzammil, S., Kumar, Y., & Tayyab, S. (1999). Molten globule-like state of human serum albumin at low pH.European Journal of Biochemistry, 266 (1), 26–32. doi:10.1046/j.1432-1327.1999.00810.x
Parker, S. A., Amarikwa, L., Vehar, K., Orozco, R., Godfrey, S., Coffman, J., . . . Bardliving, C. L. (2018). Design of a novel continuous flow reactor for low pH viral inactivation. Biotechnology and Bioengineering, 115 (3), 606–616. doi:10.1002/bit.26497
Redfield, C., Smith, R. A., & Dobson, C. M. (1994). Structural characterization of a highly-ordered ‘molten globule’ at low pH. Nature Structural Biology, 1 (1), 23–29. doi:10.1038/nsb0194-23
Rosenberg, A. S. (2006). Effects of protein aggregates: An immunologic perspective. The AAPS Journal, 8 , E501–E507. doi:10.1208/aapsj080359
Shukla, A., Hubbard, B., Tressel, T., Guhan, S., & Low, D. (2007). Downstream processing of monoclonal antibodies – application of platform approaches. Journal of Chromatography B, 848 (1), 28–39. doi:10.1016/j.jchromb.2006.09.026
Shukla, A., Leslie, S., Wolfe, L., Mostafa, S., & Norman, C. (2017). Evolving trends in mAb production processes. Bioengineering & Translational Medicine, 2 (1), 58–69. doi:DOI 10.1002/btm2.10061
Skamris, T., Tian, X., Thorolfsson, M., Karkov, H. S., Rasmussen, H. B., Langkilde, A. E., & Vestergaard, B. (2016). Monoclonal Antibodies Follow Distinct Aggregation Pathways During Production-Relevant Acidic Incubation and Neutralization.Pharmaceutical Research, 33 (3), 716–728. doi:10.1007/s11095-015-1821-0
Spann, R., Glibstrup, J., Pellicer‐Alborch, K., Junne, S., Neubauer, P., Roca, C., . . . Krühne, U. (2019). CFD predicted pH gradients in lactic acid bacteria cultivations. Biotechnology and Bioengineering, 116 (4), 769-780. doi:10.1002/bit.26868
Xing, Z., Kenty, B. M., Li, Z. J., & Lee, S. S. (2009). Scale-up analysis for a CHO cell culture process in large-scale bioreactors. Biotechnology and Bioengineering, 103 (4), 733-746. doi:10.1002/bit.22287