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Abstract: In the biopharmaceutical industry, Raman spectroscopy is now a proven PAT tool that enables in-line 

simultaneous monitoring of several CPPs and CQAs in real-time. However, as Raman monitoring requires 

multivariate modeling, variabilities unknown by models can impact the monitoring prediction accuracy. With the 

widespread use of Raman PAT tools, it is necessary to fix instrumental variability impacts, encountered for instance 

during a device replacement. In this work, we investigated the impact of instrumental variability between probes 

inside a multi-channel analyzer and between two analyzers, and explored solutions to correct them on model 

prediction errors in cell cultures. We found that the Kennard Stone Piecewise Direct Standardization (KS PDS) 

method enables to lower model prediction errors and that only one batch with the unknown device in the 

calibration dataset was sufficient to correct the prediction gap induced by instrumental variability. As a matter of 

fact, during device replacement a first cell culture monitoring can be performed with the KS PDS method. Then, the 

new data obtained can be inserted in the calibration dataset to integrate instrumental variability in the chemometric 

model. This methodology provides good multivariate calibration model prediction errors throughout the 

instrumental changes. 

 

Keywords: Raman Spectroscopy, Cell Culture Monitoring, Model Transferability, Multivariate Model Maintenance, 
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3 
 
 

Main text: 

1 INTRODUCTION 

The monitoring of mammalian cell cultures with Raman spectroscopy and chemometric tools has been well 

demonstrated and documented (Abu-Absi et al., 2011; Berry et al., 2016). The main metabolites and nutrients of a 

cell culture can be predicted by Partial Least Square (PLS) models with Root Mean Square Error of Prediction 

(RMSEP) quite close to off-line reference measurement accuracy (Mehdizadeh et al., 2015). This real-time 

monitoring of Critical Process Parameters (CPPs) has been used to implement a glucose feeding control loop, leading 

to improved productivity (Craven, Whelan, & Glennon, 2014). Several Critical Quality Attributes (CQAs) of a cell 

culture have also been successfully predicted with Raman spectroscopy: protein titer (André et al., 2015), 

glycosylation (Li et al., 2018) and aggregation (Ettah & Ashton, 2018). These results demonstrate that Raman 

spectroscopy can be efficiently used to monitor cell cultures in real-time and in situ, automate processes and even 

open the door to the use of Raman spectroscopy for Real-Time Release (RTR) of batches (Swann, Brophy, Strachan, 

Lilly, & Jeffers, 2017). Another approach in the field of Raman monitoring of bioprocesses has consisted in the 

attempt of developing generic models (Webster, Hadley, Hilliard, Jaques, & Mason, 2018). This experiment shows 

that models based on wide process variability provide poor accuracy with regards to models build with and for a 

limited design space, as defined by the Quality-by-Design (QbD) rules. An interesting way to proceed may be to find 

a methodology to select a dataset consistent with a given process inside a large dataset, as presented by Rowland-

Jones et al. (2017). Recently, Tulsyan et al. (2019) have proposed a novel machine‐learning procedure based on Just‐

In‐Time Learning (JITL) to calibrate Raman models. However, being able to use an existing multivariate model on 

different hardware configurations is probably a first priority, because generic models and generic datasets may have 

no use if they cannot be exploited on a variety of hardware units with at least the same design. 

Most of these mentioned works are based on model building and prediction based on the same Raman 

analyzer hardware. Then, they leave aside a key issue when using Raman spectroscopy in biopharmaceutical 

environments: instrumental variability, including replacements or changes of hardware. Instrumental variability over 

time on the same Raman analyzer is one issue which can be overcome through regular instrumental re-calibration or 

multivariate model updates. But the case of instrumental changes needs further attention, since this is related to 

more radical variabilities, with sometimes operational unforeseen constraints, and given that it has not been much 
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documented in the engineering literature on Raman monitoring. The same question applies to other transfers: the 

transfer of models from one device to another and the transfer of model from one hardware configuration to 

another. This question is crucial since generating a dataset suitable to multivariate models represents a significant 

effort corresponding to typically three to more than ten cell culture runs. For example, the calibration dataset may 

be generated on several channels in parallel and the models built to be used on each of the channels, or models may 

be built on an R&D analyzer and then transferred to a pilot plant analyzer, or the tube of a Raman probe may be 

changed because its lifetime has expired, the same for the excitation laser, etc. 

This topic is actually fully part of the multivariate model maintenance issue. From a chemometric 

perspective, this question is equivalent to taking into account the principal components related to instrumental 

variability in the way of managing the model space, which can be enlarged or translated for this purpose. Wise and 

Roginsky (2015) have proposed a quite comprehensive roadmap to maintain multivariate models. In this paper, we 

propose similar tools in the perspective of instrumental variability which are not only unexpected problems but 

anticipated steps in the use of Raman monitoring in a biopharmaceutical environment. The ambition of the present 

study is limited to calibration transfers between different hardware units with the same design.  

It is worth noticing that we have made the choice to limit the exploration to PLS models, as a basic 

multivariate tool. Indeed, PLS is the most common one and it generally provides very good results in most of the 

bioprocessing applications (Buckley & Ryder, 2017). On top of that, well documented mathematical tools, such as 

Piecewise Direct Standardization (PDS) (Bouveresse & Massart, 1996), have been used to perform calibration 

transfers. The comparison has been made with another conventional chemometric method consisting in the 

enrichment of the calibration dataset with data from the new Raman system configuration performed on the same 

process. 

This work is specific to the monitoring of cell cultures. Indeed, the goal of this study is to assess a 

methodology to lower the impact of instrumental variability on monitoring accuracy and robustness, so that it is 

negligible with regards to process variability itself. In the case of cell cultures, the biological and setup variability is 

for example much more significant than in a pure chemical process.  

Finally, this paper explores two cases which have been considered crucial: the first one is related to the use 

of a four-channel Raman system to efficiently establish first multivariate models to be used with these same 
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channels (inter-probe transferability study). The studied methodology aims to accelerate the implementation of 

Raman monitoring in a process development context, or the transfer of a process in new bioreactors. The second 

case deals with multivariate calibration transfer from one analyzer, where models show acceptable performances, 

to a second analyzer (inter-analyzer transferability study). This is typically the case when a process is transferred 

from process development to pilot plant to production or when an analyzer needs to be replaced for maintenance. 

2 MATERIALS AND METHODS  

2.1. Cell culture methods, sample collection and offline analysis 

For the inter-probe transferability study: the CHO-K1 cells expressing monoclonal antibody IgG1 (ECACC 

85051005) were inoculated in four DASGIP® parallel bioreactor systems (Eppendorf) in 1 L glass vessels at 0.5 x 106 

cells/mL in ActiCHO™ P medium (GE Healthcare) supplemented with 8 mM of glutamine, 1.8 g/L NaHCO3 and 

approximatively 30 mM of NaOH.  The cultivation conditions were set at 37 °C, pH 7.0 and pO2 30% regulated by 

sparging CO2 for pH and a mix of air, O2, CO2 and N2 for pO2. The foam level was regulated by 0.3% of Dow Corning® 

Antifoam C (DuPont™) based on visual inspection. The cells were agitated with a pitched blade impeller at 90 rpm. 

The aeration of the culture was performed with a sparger with a flow rate up to 0.4 vvm. Starting on day 3 or 4, 

cultures were fed daily with ActiCHO Feed A and Feed B medium (GE Healthcare). Feeds were added to a calculated 

glucose concentration of 4.5 to 10 g/L for Feed A and 0.28% v/v for Feed B. Alternatively spikes of glucose, 

glutamine and glutamic acid were performed on one batch. In addition, for some batches, temperature shifts down 

to 33 °C were performed. Samples were collected once a day when no feed was performed. For each feed, a sample 

was taken before and after the feed instead of the daily samples. Samples were analyzed with High-Performance 

Liquid Chromatography (HPLC, Agilent 1200 Series) for quantitation of glucose and lactate, with the BioProfile® 100 

Plus (Nova Biomedical) for quantitation of ammonium, with the BioProfile® CDV (Nova Biomedical) for Viable Cell 

Density (VCD) and with the Multisizer™ 4 Coulter Counter® (Beckman Coulter) for quantitation of Total Cell Density 

(TCD).  

For the inter-analyzer transferability study: the FreeStyle™ CHO-S (Gibco™) cells  were inoculated in a 3 L 

glass vessel with the BioFLO®320 (Eppendorf) at 0.4 x 106 cells/mL in CD-CHO medium (Gibco™) supplemented with 

8 mM of glutamine, 1‰ of Anti-Clumping Agent (Gibco™) and 0.5% of Penicillin/Streptomycin. The cultivation 

conditions were set at 37 °C, pH 7.0 and pO2 40% regulated by sparging CO2 and 0.5N NaOH for pH and a mix of air 
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and O2 for pO2. The cells were agitated with a pitched blade impeller at 80 rpm. The aeration of the culture was 

performed with a ring sparger with a flow rate up to 0.1 vvm. The culture was fed with 15% v/v on day 0 and 10% 

v/v every three days with EfficientFeed™ B (Gibco™). Glutamine was added when under 4 mM and in addition, a 

constant glutamine feed starts on day three. In addition to the EfficientFeed™ B, glucose was added when under 4 

g/L. Samples were collected twice a day when no feed was performed. For each feed, a sample was taken before 

and after the feed in addition to the daily sample. All samples were taken in triplicate and each triplicate was 

analyzed with FLEX2 (Nova Biomedical) for quantitation of: VCD, TCD, glucose, glutamic acid, ammonium and 

lactate.  

2.2. Raman spectral data collection  

To perform these experiments, all spectra acquired in cell cultures have been performed in situ by 

ProCellics™ in-line analyzer. This solution is a Raman analyzer, compliant with Good Manufacturing Practices (GMP), 

using a 785 nm excitation laser source with an approximate power of 350 mW at the probe tip; it is associated with 

a high-sensitivity spectrometer with about 14 cm-1 average spectral resolution and 3 cm-1 sampling step in the +150 

– +4,000 cm-1 Raman shifts bandwidth (Stokes signal), using a back-thinned charge coupled device (CCD) detector 

operating at -10 °C. This large spectral bandwidth up to 4,000 cm-1 Raman shifts gives a strategic full access to major 

O-H contributions from the aqueous media. The Raman spectra were acquired in-situ using 316 L stainless-steel 

optical ProCellics™ probes with sapphire windows. The probes were directly immersed into the bioreactors using 

PG13.5 cable glands adaptors before autoclave sterilization. To avoid disturbing the optical measurement, an 

appropriate solution has been found in order to isolate the medium from external straylight (daylight and artificial 

light), using either an opaque double-layer of thick aluminum foil around the vessel or a light proof fabric (Thorlabs). 

ProCellics™ analyzer can also be coupled with a Multi-Channel Unit (MCU) which is an add-on with the same 

compacity as the ProCellics™ main base unit that allows monitoring up to four probes with the same ProCellics™ 

analyzer. ProCellics™ analyzer and the spectral data collection were controlled by ProCellics™ Software using an 

Ethernet connection between the instrument and the computer that allows remote and network control. For the 

study of the inter-probe transferability using ProCellics™ Multi-Channel Unit, an exposure time of 47 seconds and 

averaging of 25 spectra were used for each 20-minute acquisition. For the study of the inter-analyzer transferability 

based on single-channel configuration, an exposure time of 45 seconds and averaging of 20 spectra were used for 



7 
 
 

each 15-minute acquisition. The sampling interval for the Raman spectra was set every 30 minutes in a single-

channel configuration and continuously for the 4-probe Multi-Channel Unit sequential acquisitions. All the data and 

metadata (user actions, timestamps, instrument information, etc.) were recorded by ProCellics™ Software in a 

secure SQL-database on the computer. Cosmic ray removal and automatic dark subtraction were directly operated 

in ProCellics™ Software during the acquisition. Deviant measurements were automatically sorted before the spectra 

coaddition using a 3-sigma rejection algorithm. Furthermore, ProCellics™ Software integrates configurable 

preprocessing (normalization, Savitzky-Golay filter, spectral selection) and chemometric pre-analysis (based on 

Principal Components Analysis (PCA)) solution tools in a model building module, and is running SIMCA-Q engine 

(Sartorius Stedim Biotech) for real-time quantitation in a monitoring module.  

Instrumental variability may come from different hardware elements of the analyzers, from their lasers 

through their probes to their spectrometers, typically in function of each laser power, each probe spectral 

transmission (with filters, collimating optics, and tube lengths) or each spectrometer sensitivity and resolution. Most 

of these variabilities must be taken into account by factory calibration. For each ProCellics™ analyzer, all raw data 

are thus calibrated in Raman intensities and Raman shift scales, using the same references and protocols compliant 

with ASTM standards (ASTM, 2014). This factory calibration procedure must enable the inter-comparison of Raman 

spectra acquired from several instruments, and from the same instrument associated to a Multi-Channel Unit and 

with different probes.  

2.3. Instrument standardization calibration transfer 

To enhance the calibration and inter-comparison of Raman spectra acquired from different probes or 

analyzers, the Piecewise Direct Standardization (PDS) method was used  (Bouveresse & Massart, 1996). The PDS 

method allows transferring a set of data from an instrument (called slave instrument) to another (called master 

instrument) by correcting the differences induced by the sensors. First of all, a collection of spectra from the same 

experiment with the master instrument ( 𝑇 
𝑚 ) and with the slave instrument ( 𝑇 

𝑠 ) are acquired. From these  𝑇 
𝑚  data, 

a consistent subset of spectra ( 𝑇𝑠𝑢𝑏
𝑚 ) can be selected from the data collection. The selection is performed by 

applying a Principal Component Analysis (PCA) over the data collection followed by the Kennard Stone algorithm in 

the PCA space to uniformly cover the whole dataset. The same data subset acquired with the slave instrument 

( 𝑇𝑠𝑢𝑏
𝑠 ) is then retrieved from 𝑇 

𝑠 . The next step is to apply the PDS algorithm which consists in a multivariate 
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Principal Component Regression (PCR) on the subsets 𝑇𝑠𝑢𝑏
𝑚  and 𝑇𝑠𝑢𝑏

𝑠  for a given range of wavelengths. From each 

wavelength index (𝑖 = 0, . . , 𝑛) of 𝑇𝑠𝑢𝑏
𝑚 , a corresponding window (𝑤𝑖) in 𝑇𝑠𝑢𝑏

𝑚   is used to compute the PCR,  

𝑤𝑖 = 𝑇𝑠𝑢𝑏
𝑚  [𝑖 − 𝑘; 𝑖 + 𝑘] where 𝑤𝑖 has a size of 2𝑘 + 1 wavelengths and the PCR is solved by: 𝑇𝑠𝑢𝑏

𝑚 (𝑖) = 𝑤𝑖𝑏(𝑖) +

𝑒𝑟𝑟(𝑖). The resulting regression coefficients 𝑏(𝑖) are inserted in a banded diagonal transfer matrix ( 𝑇 
𝑓 ). Finally, 𝑇 

𝑓  is 

used to transfer all the spectra from the slave instrument in the master instrument: 𝑇̂ 
𝑠 = 𝑇 

𝑠 𝑇 
𝑓 , where 𝑇̂ 

𝑠  is the 

spectra data collection of the slave instrument transferred in the master instrument. In this study, KS PDS 

standardization was applied to the 300 – 3,900 cm-1 Raman shifts range, with a window size equal to 1 (k = 0) since 

the instrumental factory calibration allowed to achieve an accuracy better than ± 2 cm-1 in Raman shifts which was 

lower than the spectral resolution sampling. 

2.4. Spectral preprocessing and multivariate modeling techniques 

Preprocessing steps were performed with ProCellics™ Software (RESOLUTION Spectra Systems). Bands 

appearing on the spectra can be easily linked to chemical structures ("fingerprints"). The spectral regions can thus 

be selected according to their interest in the creation of the model. In the present typical cell culture cases, the 

spectral regions of interest were between 350 cm−1 and 1,775 cm−1 and between 2,800 cm−1 and 3,000 cm−1. In 

addition to the selection of the spectral values, two treatments were chosen: a customized Standard Normal Variate 

(SNV) on the Region Of Interest (ROI) of water and the first derivative according to the Savitzky-Golay (SG) algorithm 

(Savitzky, A., & Golay, 1964). Performing customized SNV on water signal (between 3,100 cm−1 and 3,600 cm−1), 

which is the only invariable element between different batches and conditions, enabled to normalize all spectra 

according to an invariant element.  The goal of the derivative (derivative order 1, step 15 cm−1, polynomial order 2) 

was to numerically increase the apparent resolution of the spectra. The data processes carried out enabled a 

decrease of the fluorescence impact, and an increase of spectral differences was noticed. PCA is an unsupervised 

data transformation procedure of complex datasets (Jackson, 1991). PCA has been used as first analysis of the data 

in order to see any trends, dispersion of the data or bundles. In addition to the spectrometric calibration, a PLS 

regression was applied to monitor and control industrial processes (Wold, Sjöström, & Eriksson, 2001). Multivariate 

data analyses were performed on SIMCA 15 Users Software (Sartorius Stedim Biotech) and PLS modeling was used 

to build linear models that specify the relationship between the observed dependent variables (Y) and some 

predictable variables (X). The (X) matrix included the spectral range under study and the (Y) matrix was composed by 
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the molecule concentrations measured off-line (glucose, lactate, etc.). After developing the reduced model, the 

omitted data were used as a test set, and the differences between actual and predicted Y-values were calculated for 

these data points. A popular parameter to interpret the performances of the models is the RMSEP. It is computed as                

𝑅𝑀𝑆𝐸𝑃 =  √
∑(𝑌𝑜𝑏𝑠−𝑌𝑝𝑟𝑒𝑑)2

(𝑁)
, where Yobs-Ypred refers to the predicted residuals for the observations in the 

predictionset. RMSEP was used to measure the predictive power of the model.  

3 RESULTS AND DISCUSSION  

3.1. Inter-probe transferability inside a Raman multi-channel analyzer  

Instrumental variability between probes inside a multi-channel analyzer (ProCellics™ MCU) has been 

studied. The study consisted in comparing two calibration model strategies, given that data were collected by all 

probes: a global chemometric calibration model integrating the inter-probe variability in the model and a per 

channel chemometric calibration model. Then, model prediction errors obtained were compared to determine the 

best calibration model strategy. For global chemometric calibration models, off-line data from eight cell culture 

runs, performed during two process sessions of four batches over the four channels, were combined with their 

respective Raman spectra. These latter were used to produce calibration models for glucose, TCD, VCD, lactate and 

ammonium.  
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TABLE 1: Chemometric calibration and results for channel transfer: global models and channel models. PLS, Partial 

Least Square; Cum, cumulated; TCD, Total Cell Density; VCD, Viable Cell Density; RMSEP, Root Mean Square Error of 

Prediction; A, Latent variables; N, Number of points. 

 

As shown in Table 1, the models have high explained (R²Y > 0.90) and predicted (Q² > 0.90) performances for all 

parameters, except for ammonium, probably because the principal molecular bounds of NH4 are found in several 

elements and consequently difficult to decorrelate. Then, models were validated using new data, not included in the 
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calibration models from a third session of three batches over three channels, and performed under similar process 

conditions than the ones used for the calibration batches. For chemometric calibration models per channel, for each 

of three channels, off-line data from two cell culture runs performed during two process sessions, with one batch 

from both sessions per channel, were combined with their respective Raman spectra. These latter were used to 

produce calibration models for glucose, VCD, TCD, lactate and ammonium. As shown in Table 1, the models have 

high explained (R²Y > 0.90) and predicted (Q² > 0.80) performances for all parameters, except for ammonium, 

probably for the same reason as in global models. Then, models were validated using new data, not included in the 

calibration models, from a third session of three batches on three channels, performed under similar process 

conditions as the ones used for the calibration batches. To compare the effect of both strategies on model 

prediction errors, the maximum value percentage errors of RMSEPs were calculated. Validation results showed that 

models for glucose, TCD, VCD and lactate performed with a global dataset presented results with higher prediction 

accuracy than the results obtained with the channel datasets (Table 1). These results may be explained by the huge 

difference in the dataset size (x4 for global model datasets). In addition, global calibration models presented low 

model prediction errors, less than or equal to 10% for glucose, TCD, VCD, lactate and less than 12% for ammonium 

(Table 1). As shown in Figure 1, predicted kinetics were highly reliable for each component among the three 

batches.  
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FIGURE 1: PLS model prediction results from a calibration dataset performed with the channel 1, 2, 3, 4 samples and 

from four calibration datasets performed with each channel sample, predicting three validation batches for (A) 

glucose, (B) TCD, (C) VCD, (D) lactate and (E) ammonium. TCD, Total Cell Density; VCD, Viable Cell Density. 
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After studying instrumental variability between probes with data collected by all probes, we investigated 

instrumental transferability by predicting data collected with one probe unknown by the models. In other words, 

data used in the model building step were collected with three of the four probes and predicted data were collected 

with the fourth probe. Consequently, the instrumental variability between probes, highlighted by the PCA (Figure 

2A), could not be included in the model for the fourth probe.  

 

FIGURE 2: PCA demonstrating instrumental variability between the four channels and its decrease due to the 

Kennard-Stone PDS instrumental transfer calibration. PCA, Principal Component Analysis; KS PDS, Kennard-Stone 

Piecewise Direct Standardization. 
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To correct it and maintain the model prediction accuracy, the Kennard-Stone Piecewise Direct Standardization (KS 

PDS) method was tested. Off-line data from nine cell culture runs were combined with their respective Raman 

spectra obtained with the channels 1, 2 and 3 of the ProCellics™ MCU and used to produce global calibration models 

for glucose, TCD, VCD, lactate and ammonium (Table 2).  

 

TABLE 2: Instrumental calibration, chemometric models and results for channel transfer: master batches analyzed 

with channel 1 and slave batches analyzed with channels 2, 3, 4 without PDS or processed with a 10-point Kennard-

Stone PDS transfer matrix, predicting validation batches analyzed with channel 4. PLS, Partial Least Square; Cum, 

cumulated; PDS, Piecewise Direct Standardization; TCD, Total Cell Density; VCD, Viable Cell Density; RMSEP, Root 

Mean Square Error of Prediction; A, Latent variables; N, Number of points. 

 

Two different instrumental calibrations were applied: the classical instrumental calibration and the particular 

instrumental calibration with a 10-point KS PDS where channel 1 was considered the master and channel 2, 3 and 4 

were considered the slaves.  
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As shown on the PCA (Figure 2B), the 10-point KS PDS instrumental calibration allowed to drastically reduce the 

instrumental variability present between the different channels (Figure 2A). Then, for both instrumental 

calibrations, the models have high explained (R²Y > 0.90) and predicted (Q² > 0.90) performances for all parameters 

(except for ammonium). Models were validated using new data from three batches with Raman spectra acquired 

with the channel 4 of ProCellics™ MCU and performed under similar process conditions as the ones used for the 

calibration batches. To test the effect of the KS PDS method on model prediction errors, the maximum value 

percentage errors of RMSEPs were calculated for both calibration methods. Validation results showed that the 

model for glucose was very few impacted by instrumental variability, probably because glucose is the most defined 

and characterized compound in the medium and then, the KS PDS method did not improve the prediction accuracy. 

In both cases, with and without the KS PDS, glucose models presented less than 10% of prediction errors (Table 2 

and Figure 3A). However, we found that models for TCD, VCD, lactate and ammonium performed with the PDS 

calibrated dataset presented results with a higher prediction accuracy (around 10% of prediction errors) than the 

results obtained with the classical calibrated dataset (Table 2 and Figure 3B-E).  
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FIGURE 3: PLS model prediction results from Kennard-Stone PDS calibration datasets (without PDS or processed with 

PDS transfer matrix) predicting validation batches analyzed with channel 4 for (A) glucose, (B) TCD, (C) VCD, (D) 

lactate and (E) ammonium. TCD, Total Cell Density; VCD, Viable Cell Density; PDS, Piecewise Direct Standardization. 

 

3.2. Inter-instrument transferability between two analyzers (device to device) 

In the second part, we investigated the impact of instrumental variability between two analyzers. First, two 

CHO cell culture runs were performed with two ProCellics™ analyzers at the same time to test this variability: for 
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each cell culture, the probe from each analyzer was simultaneously placed in the same bioreactor. Due to the 

absence of biological variability and position of both probes inside the bioreactor, variability shown on the PCA 

(Figure 4) reflected the instrumental variability present between both analyzers (ProCellics™ n°1 and n°2) only.  

 

FIGURE 4: PCA demonstrating instrumental variability between ProCellics™ n°1 and ProCellics™ n°2 and its impact 

on the two CHO cell culture runs. PCA, Principal Component Analysis. 

 

Based on user cases, we tested two solutions to reduce the impact of calibration transfer on model prediction 

errors: a calibration transfer solution and a chemometric solution. 

The calibration transfer solution was tested in order to meet the need of a direct monitoring with a new 

analyzer unknown by the models. It aims to respond to a classical situation of a direct instrument substitution 

without the possibility to perform a new calibration batch. As we decided to consider the new analyzer (ProCellics 

n°2) as the reference, the strategy was to calibrate data obtained with the old analyzer in order to do as if they were 

performed with the new one. Resulting data were used to produce calibration models as if they were obtained with 

the new analyzer. The calibration transfer solution was based on the KS PDS method where the new analyzer was 

considered as the master and the old one as the slave. Calibration data from two batches were used to produce 

eight datasets to build calibration models for glucose, TCD, VCD, glutamic acid, lactate and ammonium (Table 3).  
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TABLE 3: Instrumental calibration, chemometric models and results for instrumental transfer: master batches and 

slave batches without PDS or processed with PDS transfer matrices of 5 points (6%), 10 points (12%), 20 points 

(25%), 30 points (38%), 40 points (50%), 60 points (75%), 80 points (100%) over 80 references, predicting a 

validation batch analyzed with the master analyzer. PLS, Partial Least Square; Cum, cumulated; PDS, Piecewise 

Direct Standardization; TCD, Total Cell Density; VCD, Viable Cell Density; RMSEP, Root Mean Square Error of 

Prediction; A, Latent variables; N, Number of points. 
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Thus, off-line data from two cell culture runs were combined with their respective Raman spectra obtained with 

ProCellics™ n°1 that we considered as the old one and consequently as the slave. To do as if these data were 

obtained with a new analyzer (named ProCellics™ n°2), seven different instrumental calibrations were set up for 

ProCellics™ n°1 with PDS transfer matrices of 5 points (6%), 10 points (12%), 20 points (25%), 30 points (38%), 40 

points (50%), 60 points (75%), 80 points (100%) over 80 references. At this stage of the study, the KS PDS matrices 

were built from three culture runs analyzed with both analyzers simultaneously. Models were performed for each 

seven created datasets as well as for the original dataset. As shown in Table 3, the models have high explained (R²Y 

> 0.90) and predicted (Q² > 0.80) performances for all parameters. To test the effect of the KS PDS method on model 

prediction errors, a third batch analyzed by ProCellics™ n°2 (the new one) was considered as a validation batch and 

performed under similar process conditions as calibration batches (analyzed by ProCellics™ n°1). The maximum 

value percentage errors of RMSEPs were calculated for each calibration method. Validation results showed that the 

models for glucose, TCD, VCD, ammonium and lactate performed with the KS PDS calibrated datasets presented 

results with a higher prediction accuracy than the results obtained with the classical calibrated dataset without PDS 

(Table 3 and Figure 5).  
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FIGURE 5: PLS model prediction results from Kennard-Stone PDS calibration datasets (without PDS or processed with 

PDS transfer matrices of 5 points (6%), 10 points (12%), 20 points (25%), 30 points (38%), 40 points (50%), 60 points 

(75%), 80 points (100%) over 80 references predicting a validation batch analyzed with the master analyzer for (A) 

glucose, (B) TCD, (C) VCD, (D) ammonium, (E) glutamic acid and (F) lactate. TCD, Total Cell Density; VCD, Viable Cell 

Density; PDS, Piecewise Direct Standardization. 

 

For instance, the KS PDS calibration allows dividing the model prediction errors by four for glucose and by two for 

TCD. As shown in Figure 5, predicted kinetics were highly reliable for each component. Moreover, the comparison 



22 
 
 

between the results of the different KS PDS transfer matrix sizes showed higher prediction accuracy for 10 points 

(Table 3 and Figure 5). Consequently, we can assume that the selection of only 5 to 10 points (determined with 

optimization by the KS algorithm) to build the PDS matrix is sufficient and that this kind of transfer method could be 

used in a regular instrument calibration process for a new analyzer with reference samples measured before the 

first use of the analyzer. Using such instrument calibration method, the old analyzer could then be considered as the 

master, and the new analyzer as the slave depending on the model maintenance strategy. 

The second solution tested to reduce the impact of instrumental variability between two analyzers on model 

prediction errors was a chemometric solution, based on the integration of new calibration data collected with the 

unknown analyzer. This solution responds to a situation in which the analyzer substitution could be anticipated and 

with the possibility to perform new calibration batches. To correct the instrumental variability and maintain the 

model prediction accuracy, a comparison study between models that integrate, or not, new calibration batches (one 

or two) was performed. Calibration data from three batches and two analyzers were used to produce three different 

datasets to build calibration models for glucose, TCD, VCD, ammonium, glutamic acid and lactate. Off-line data from 

the three cell culture runs were combined with their respective Raman spectra obtained by two different analyzers 

to build the three datasets: either with the previous analyzer (ProCellics™ n°1) only, or with two batches from the 

previous analyzer (ProCellics™ n°1) and the third batch with the new one (ProCellics™ n°2), or with one batch from 

the previous analyzer (ProCellics™ n°1) and with two batches from the new one (ProCellics™ n°2).  
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TABLE 4: Chemometric calibration and results for instrumental transfer: 0/3, 1/3 or 2/3 batches analyzed with 

ProCellics™ n°2 predicting a validation batch analyzed with ProCellics™ n°2. PLS, Partial Least Square; Cum, 

cumulated; PC2, ProCellics™ n°2; TCD, Total Cell Density; VCD, Viable Cell Density; RMSEP, Root Mean Square Error 

of Prediction; A, Latent variables; N, Number of points. 

 

As shown in Table 4, all models have high explained (R²Y > 0.90) and predicted (Q² > 0.90) performances for all 

parameters. Then, models were validated using one batch measured by the new analyzer (ProCellics™ n°2). This 

fourth validation batch was not included in the calibration models and was performed under similar process 
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conditions as those used for the calibration batches. To evaluate the chemometric capability to integrate instrument 

variability, the maximum value percentage errors of RMSEPs were calculated. As soon as the new instrument 

variability was integrated in the models, validation results showed much lower model prediction errors, less than 

10% for glucose, VCD, TCD, glutamic acid and lactate and less than 20% for ammonium (Table 4).  

 

FIGURE 6: PLS model prediction results from calibration datasets containing 0 batch/3, 1 batch/3 or 2 batches/3 

analyzed with ProCellics™ n°2 predicting a validation batch analyzed with ProCellics™ n°2 for (A) glucose, (B) TCD, (C) 

VCD, (D) ammonium, (E) glutamic acid and (F) lactate. TCD, Total Cell Density; VCD, Viable Cell Density. 
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As shown in Figure 6, predicted kinetics were highly reliable for each component. These results demonstrated that 

inserting only one batch analyzed with the unknown analyzer in the calibration dataset to predict a batch analyzed 

with this same analyzer was sufficient to get rid of the prediction gap induced by instrumental variability.  

3.3. Discussion 

These transferability studies validate some methods to manage the calibration transfer between different 

devices and different hardware configurations in the context of an extended use of Raman monitoring inside 

bioprocessing sites. It is worth noticing that the presented study is based on real Raman and off-line data as well as 

on predictions performed with multivariate models. This posteriori prediction was necessary in order to compare 

different methods on the same datasets. However, the objective was to develop solutions which can be integrated 

in a real-time monitoring data processing. The good results presented in these studies are nonetheless drawn from a 

limited number of hardware devices (four probes for the inter-probe transferability study and two analyzers for the 

transferability between instruments study). The extrapolation of the performances of these methods may be 

studied on a larger scale with a greater number of instruments and multiplexed probes, typically corresponding to 

production lines in the biopharmaceutical industry.  

Mathematical instrumental standardization methods such as the PDS can be added to the classical 

calibration step of a single instrument, in order to facilitate the transfer of PAT models between devices before 

or/and in addition to the chemometric transfer. Strategies for creating and optimizing the parameters of these 

methods must be carefully considered. The PDS method works well when the transferred associated instruments 

are similar, sharing the same wavelength range and sampling frequency. However, PDS cannot be used directly to 

transfer spectra of different wavelengths or recorded by instruments with different spectrometer configurations in 

resolution and sampling. The combined use of other calibration transfer algorithms based on dataset matrix 

orthogonalization - such as Dynamic Orthogonal Projection (Zeaiter, Roger, & Bellon-Maurel, 2006), External 

Parameter Orthogonalization (Roger, Chauchard, & Bellon-Maurel, 2003), and Orthogonal Signal Correction 

(Sjöblom, Svensson, Josefson, Kullberg, & Wold, 1998; Wold, Antti, Lindgren, & Öhman, 1998) - or directly on Raman 

spectra processing - such as Shenk‐Westerhaus algorithm (Bouveresse, Massart, & Dardenne, 1994; Shenk, 

Westerhaus, & Templeton, 1985) or Spectral Space Transformation (Du et al., 2011) - are attractive openings to 

further maintaining the predictive abilities of multivariate calibration models with large scale instrument 
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installations. A challenging extension of this work could be to develop a similar methodology for calibration transfer 

between different Raman analyzers from different suppliers. The construction of chemometric models on a large 

number of instruments will require the optimized selection of reference samples for different processes, potentially 

via the building of local models based on Locally Weighted Partial Least Square (LW-PLS) used as a Just-In-Time (JIT) 

learning method (Hazama & Kano, 2015). Finally, the long-term maintenance of models is a major question to be 

taken into account from the beginning of the instrumentation implementation to ensure the continuity of 

measurements without increasing the chemometric prediction errors, and even improve models over time and 

changing instruments with the least amount of time and cost (Wise & Roginski, 2015). The support of real-time 

machine learning methods is thus interesting in this perspective, even if the authorization of automatic updating 

methods within a regulated environment seems still complex. 

4. CONCLUSION  

In this paper, based on cell culture user cases, we studied two types of Raman instrumental variability and 

their impacts on PLS model prediction errors. Firstly, we explored instrumental variability between probes inside a 

Raman multi-channel analyzer. It is worth noticing that in our study calibration data were collected with one probe 

unknown by the model. Our results showed that the KS PDS calibration method used allowed to correct the 

instrumental variability and to obtain good model prediction accuracy. Secondly, we investigated instrumental 

variability between two analyzers, in the case of an analyzer replacement. To perform monitoring directly with the 

new analyzer, we found that the KS PDS method enabled to lower the impact on model prediction errors.  However, 

if it was possible to perform new calibration batches, we demonstrated that only one batch with the unknown 

analyzer in the calibration dataset was sufficient to get rid of the prediction gap induced by instrumental variability. 

Consequently, to meet the need of an analyzer substitution, a first monitoring can be directly performed with the KS 

PDS strategy. Then, data obtained should be inserted in the calibration dataset to integrate the instrumental 

variability in the model and thereby to correct it. Another possibility is to anticipate this transfer with a regular 

instrumentation calibration process including always the same reference samples. To conclude, we demonstrated 

that impacts of Raman instrumental variability over probes and analyzers on multivariate calibration model 

prediction errors can be corrected to maintain an accurate cell culture monitoring.  
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