References
1. Liu BQ, Wang MM, Liu JL,
Qian LY, Jinn ZJ. Experimental study on micromixing characteristics of
novel large-double-blade impeller. Chem Eng Sci.2015;123:641-647.
2. Takahashi T, Tagawa A,
Atsumi N, Dohi N, Kawase Y. Liquid-phase mixing time in boiling stirred
tank reactors with large cross-section impellers. Chem Eng
Process. 2006;45:303-311.
3. Luo PC, Pan X, Kong XD, Wu
H, Inventors. Southeast University, assignee. A multi-blade composite
agitator. CN106693745B. 2019.
4. Jaworski Z, Nienow AW,
Koutsakos E, Dyster K, Bujalski W. An LDA study of turbulent-flow in a
baffled vessel agitated by a pitched blade turbine. Chem Eng Res
Des. 1991;69:313-320.
5. Vlcek P, Kysela B, Jirout
T, Fort I. Large eddy simulation of a pitched blade impeller mixed
vessel - Comparison with LDA measurements. Chem Eng Res Des.2016;108:42-48.
6. Bakker A, Myers KJ, Ward
RW, Lee CK. The laminar and turbulent flow pattern of a pitched blade
turbine. Chem Eng Res Des. 1996;74:485-491.
7. Myers KJ, Ward RW, Bakker
A. A digital particle image velocimetry investigation of flow field
instabilities of axial-flow impellers. J Fluid Eng-T Asme.1997;119:623-632.
8. Jasikova D, Kotek M,
Kopecky V. Time resolved PIV measurement of fluid dynamics in agitated
vessels. In: Optics and Measurement Conference 2014 . 2015.
9. Story A, Jaworski Z,
Simmons MJ, Nowak E. Comparative PIV and LDA studies of Newtonian and
non-Newtonian flows in an agitated tank. Chem Pap.2018;72:593-602.
10. Mostek M, Kukukova A,
Jahoda M, V M. Comparison of different techniques for modelling of flow
field and homogenization in stirred vessels. Chem Pap.2005;59:380-385.
11. Murthy BN, Joshi JB.
Assessment of standard k-epsilon, RSM and LES turbulence models in a
baffled stirred vessel agitated by various impeller designs. Chem
Eng Sci. 2008;63:5468-5495.
12. Gabelle JC, Morchain J,
Anne-Archard D, Augier F, Line A. Experimental determination of the
shear rate in a stirred tank with a non-Newtonian fluid: Carbopol.AICHE J. 2013;59:2251-2266.
13. Li Z, Bao Y, Gao Z. PIV
experiments and large eddy simulations of single-loop flow fields in
rushton turbine stirred tanks. Chem Eng Sci. 2011;66:1219-1231.
14. Li GH, Gao ZM, Li ZP,
Wang JW, Derksen JJ. Particle-resolved PIV experiments of solid-liquid
mixing in a turbulent stirred tank. AICHE J. 2018;64:389-402.
15. Smagorinsky J. Some
aspects of the general circulation. Q J Roy Meteor Soc.1964;90:1-14.
16. Alcamo R, Micale G,
Grisafi F, Brucato A, Ciofalo M. Large-eddy simulation of turbulent flow
in an unbaffled stirred tank driven by a rushton turbine. Chem Eng
Sci. 2005;60:2303-2316.
17. Derksen JJ, Kontomaris
K, Mclaughlin JB, Van den Akker HEA. Large-eddy simulation of
single-phase flow dynamics and mixing in an industrial crystallizer.Chem Eng Res Des. 2007;85:169-179.
18. Kim WW, Menon S.
Application of the localized dynamic subgrid-scale model to turbulent
wall-bounded flows. In: 35th Aerospace Sciences Meeting and
Exhibit . 1997.
19. Pan X, Ding L, Luo PC,
Wu H, Zhou Z, Zhang ZB. LES and PIV investigation of turbulent
characteristics in a vessel stirred by a novel long-short blades
agitator. Chem Eng Sci. 2018;176:343-355.
20. Di Mare L, Jones WP. LES
of turbulent flow past a swept fence. Int J Heat Fluid Flow.2003;24:606-615.
21. Tamura T, Ono Y. LES
analysis on aeroelastic instability of prisms in turbulent flow. J
Wind Eng Ind Aerod. 2003;91:1827-1846.
22. Doris L, Tenaud C, Phuoc
LT. LES of spatially developing 3D compressible mixing layer. Cr
Acad Sci Ii B-Mec. 2000;328:567-573.
23. Jaworski Z, Dudczak J.
CFD modelling of turbulent macromixing in stirred tanks. Effect of the
probe size and number on mixing indices. Comput Chem Eng.1998;22:293-298.
24. Su TL, Yang FL, Li MT,
Wu KH. Characterization on the hydrodynamics of a covering-plate rushton
impeller. Chin J Chem Eng. 2018;26:1392-1400.
25. Ghasempour F, Andersson
R, Andersson B. Multidimensional turbulence spectra - Statistical
analysis of turbulent vortices. Appl Math Model.2014;38:4226-4237.
26. Jeong J, Hussain F. On
the identification of a vortex. J Fluid Mech. 1995;285:69-94.
27. Zhang YQ, Pan X, Wang
YH, Luo PC, Wu H. Numerical and experimental investigation on surface
air entrainment mechanisms of a novel long-short blades agitator.AICHE J. 2018;64:316-325.
28. Ghasempour F, Andersson
R, Andersson B. Identification and characterization of three-dimensional
turbulent flow structures. AICHE J. 2016;62:1265-1277.
29. Clark JA. Vortex
structures in turbulent boundary layers. Aeronaut J. 1970;74.
30. Luo PC, Wu J, Pan X,
Zhang YQ, Wu H. Gas-liquid mass transfer behavior in a surface-aerated
vessel stirred by a novel long-short blades agitator. AICHE J.2016;62:1322-1330.
31. Guntzburger Y, Fontaine
A, Fradette L, Bertrand F. An experimental method to evaluate global
pumping in a mixing system: application to the maxblend (TM) for
Newtonian and non-Newtonian fluids. Chem Eng J. 2013;214:394-406.