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Study Thin-
sections

Seg-
mented
ob-
jects

Pore and
microfrac-
ture classes
(Train #

— Test #)

Pixel
res-
o-
lu-
tion
(mi-
crons/px)

Size
features

Shape
features

Fea-
tures

ML models
tested

Train-
ing/testing
size

Sam-
pling
method

Test-
ing
ac-
cu-
ra-
cies
(%)

Ghiasi-
Freez
et al.
(2012)

24 384 Interparti-
cle (134 —
35), intra-

particle (39
— 15),

oomoldic
(62 — 17),
biomoldic
(25 — 8),
vuggy (34

— 15)

- None Elongation
(aspect
ratio),

roundness,
eccentricity,
rectangular-
ity, solidity,
equivalent

diame-
ter/major

axis
diameter

(they refer
to as

anisotropy)

6 Linear Dis-
criminant
Analysis
(LDA),

Quadratic
Discrimi-

nant
Analysis
(QDA)

Train-
ing
=
294,
test-
ing
=
90

16
largest
pores
from
each
sam-
ple

66.6
-

100

Bo-
raz-
jani

et al.
(2016)

39 624 Interparti-
cle,

intraparti-
cle, moldic,
intercrys-

talline,
vuggy
(class

proportions
not

provided)

- Diameter
(small,
large),

perimeter,
area, ratio
of area to
porosity,

equivalent
diameter,
bounding
box area,
convex

hull area

Aspect
ratio,

roundness,
extent,
solidity

(referred to
as stability)

11 Multi-Layer
Perceptron

(MLP)

Train-
ing
=
624,
test-
ing
=
0

16
largest
pores
from
each
sam-
ple

70
-

100

Mol-
lajan
et al.
(2016)
[same
dataset
as

Ghiasi-
Freez
et al.,
2012 ]

24 384 Interparti-
cle (134 —
35), intra-

particle (39
— 15),

oomoldic
(62 — 17),
biomoldic
(25 — 8),
vuggy (34

— 15)

- Equivalent
diameter

Elongation
(aspect
ratio),

roundness,
eccentricity,
rectangular-

ity,
solidity,

6 Polynomial
Support
Vector

Machine
(SVM),

k-Nearest
Neighbors

(kNN),
Radial Basis

Function
Neural

Network
(RBF-NN),
Fusion of all

three

Train-
ing
=
294,
test-
ing
=
90

16
largest
pores
from
each
sam-
ple

96.1
-

100

Li et
al.

(2017)
[mi-

croCT]

Not
specifed

Not
spec-
i-
fied

Vugs and
macrofrac-

tures

Un-
clear

Area,
perimeter,
equivalent

circle
diameter,
effective
length,

tortuous
length,

equivalent
width

Aspect
ratio, shape

factor,
eccentricity

10 Support
Vector

Machine
(SVM)

Not
spec-
i-

fied

Not
spec-
ified

Not
spec-
i-
fied

Abe-
dini

et al.
(2018)

59 960 Intraparti-
cle (509 —
197), vuggy
(37 — 9),
moldic (20

— 12),
biomoldic

(5 — 3), in-
terparticle

(103 —
50), mi-

crofracture
(8 — 7)

- Area,
major axis
length of
ellipse,

minor axis
length of
ellipse,
mean

diameter,
mean feret
diameter,

length,
width

Extent,
aspect ratio

(ellipse),
aspect ratio
(rectangle),
radius ratio,
roundness,

13 Back-
propagation

Network
(BPN),
Stacked

Autoencoder
(SAE)

Train-
ing
=
682,
test-
ing
=
278

Not
pro-

vided

94.6
-

96.04

Singh
et al.
(2021)
[mi-

croCT]

4 12069
-

117270

Pores and
macrofrac-

tures

4.52-
11.49

Perimeter,
spatial

moments,
central

moments

Aspect ratio
(ellipse),

aspect ratio
(rectangle),

spatial
moments,

central
moments

20 Projection-
based

clustering
using

Principal
Components

Analysis
(PCA) and

k-means

Not
pro-
vided

Not
pro-

vided

89.4
-

95.5

Shar-
ifi

(2022)

160 250 Intraparti-
cle,

intracrys-
tal, vuggy,
moldic, in-
terparticle,
microporos-

ity,
intercrys-

talline,
microfrac-
ture (class
proportions

not
provided)

- Equivalent
diameter

Aspect
ratio,

roundness,
eccentricity,
rectangular-

ity,
solidity

6 Poly SVM,
kNN,

RBF-NN,
Fusion of all
three, MLP

Train-
ing
=
190,
test-
ing
=
60

Man-
ually
cu-

rated
from
ran-

domly
se-

lected
thin
sec-
tions

N/A

Wang
et al.
(2022)
[mi-

croCT]

- - Pores and
microfrac-

tures

- Maximum
Feret

diameter,
minimum

Feret
diameter,
major axis
length of

fitted
ellipse,

minor axis
length of

fitted
ellipse

Circularity,
aspect ratio

(ellipse),
solidity,

tortuosity

8 Decision
tree (DT)

- Man-
ually
cu-

rated

[?]100

This
study

18 20060Pores (280
— 120) and
microfrac-
tures (280

— 120)

6.35 None Aspect
ratio,

roundness,
compact-

ness,
circularity,

extent,
formfactor,

solidity

7 Multiple
Logistic

Regression
(MLR),

LDA, QDA,
kNN,

Näıve-Bayes
(NB),

Random
Forest (RF),

SVM (3
variants)

Train-
ing
=
560,
test-
ing
=
240

Man-
ual
for
mi-

crofrac-
tures,
pseudo-
random
sam-
pling
for

pores

89.58
-

90.83

Table 1: CodeImage Data and results
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https://github.com/issacsujay92/Microfractures-And-Pores-ML
https://doi.org/10.7910/DVN/T2LESU
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Dataset: https://doi.org/10.7910/DVN/

T2LESU
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Abstract21

Petrographic observations represent a critical aspect of carbonate pore-typing, bridging22

the gap between the geological framework of a reservoir and its petrophysical behavior.23

Despite its significance, petrographic pore typing remains a manual endeavor, with the24

results not easily fitted into quantitative subsurface characterization pipelines. Recent25

studies have used simplistic pore morphological features within supervised machine learn-26

ing and deep learning frameworks to automate the petrographic pore-typing process and27

report strikingly high accuracies in classifying several complex pore types. While super-28

vised learning models are known to be excellent classifiers, most of the literature con-29

tains conceptual and technical flaws that raise questions about their validity. Two pore30

classes that can potentially be separated purely by geometry are microfractures and pores,31

as they represent intuitive morphological endmembers of the pore system, which should,32

in theory, maximize the discriminatory utility of simplistic shape features. Also, the use33

of a binary system as a test case is preferable as supervised machine learning and deep34

learning models tend to perform strongest for binary classification problems. In the present35

study, we employed an object-based approach with explainable supervised machine learn-36

ing to differentiate between open microfractures and open pores viewed in petrographic37

thin sections. Pores and microfractures were segmented from 18 carbonate thin-sections,38

sourced from a range of subsurface and outcrop study areas within the USA, and rep-39

resented numerically by five of the most popular shape features in the geoscientific lit-40

erature: namely, compactness, aspect ratio, extent, solidity, and formfactor. We used a41

labeled ground truth dataset containing 400 microfractures and 400 pores to train and42

evaluate nine of the most widely used linear and non-linear supervised models. All the43

supervised models performed excellently, with testing accuracies ranging from 89.58 -44

90.42%. Notably, the more complex non-linear supervised models did not significantly45

outperform the simpler linear models, suggesting that the classification of microfractures46

and pores is a simple, linearly separable problem. In this regard, compactness and as-47

pect ratio were the two most informative features for separating microfractures and pores,48

with compactness consistently outranking aspect ratio in terms of contribution to the49

supervised classification. Despite the high accuracies, it was apparent that the labeled50

dataset of 800 points did not accurately reflect the overall dataset of 20,060 points. While51

there was excellent separation of the two classes in the labeled data, there was no dis-52

cernable separation in the global dataset, indicating that the labeled data approximated53

a complex problem as a simple one. We argue that the high accuracies reported in re-54

lated studies using similar approaches are more representative of curated datasets than55

the reality of carbonate pore complexity. We also argue that the simple shape features56

widely promoted within the geological community may be ineffective towards classify-57

ing microfractures and pores and, by extension, higher-order pore types due to their non-58

unique nature. It is hoped that the results of this study serve as a ‘state-of-the-union’59

for machine learning-assisted quantitative pore typing and lay a foundation for more ro-60

bust and explainable supervised modeling for pore type classification.61

Plain Language Summary62

Carbonate pore-typing is a critical task for determining rock types. Petrographic63

pore typing from thin sections is the most mature form of carbonate pore-typing and is64

vital in relating the geology of the studied formations to its petrophysical properties. To65

date, this process has remained manual, bound by human limitations, and difficult to66

link to quantitative digital reservoir models. Recent research has tried to automate pet-67

rographic pore-typing using machine learning and deep learning, claiming very high ac-68

curacies. However, there are concerns about these claims due to potential flaws in the69

methods used. There is potential in using machine learning for binary classification, es-70

pecially when distinguishing between microfractures and pores, as they are quite distinct71

in shape. In this study we used an object-based, supervised machine learning approach72

to differentiate these two classes, using data from 18 carbonate thin sections sourced from73
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the USA. The data was represented using five popular shape features: namely, compact-74

ness, aspect ratio, extent, solidity, and formfactor. We used nine popular linear and non-75

linear supervised machine learning models. The machine learning models tested had an76

accuracy of around 90 percent. Interestingly, the more complex non-linear models didn’t77

perform much better than simpler, linear models, suggesting that distinguishing between78

microfractures and pores might be a straightforward problem. Among the shape features,79

compactness and aspect ratio proved the most useful in separating the two classes. How-80

ever, we also report that the labeled dataset used for training the models did not rep-81

resent the full dataset well, thus indicating that simple shape features cannot accurately82

capture the complexity of carbonate pore types even at the base binary level. The study83

concludes that while machine learning is promising for simplistic datasets, we must con-84

sider more complex shape features and build larger datasets to develop deep learning mod-85

els. The hope is that this research will guide future efforts in machine-learning and deep-86

learning approaches to carbonate pore-type classification.87

1 Introduction88

Pore classification in carbonate lithologies is a fundamental requirement for sub-89

surface characterization workflows, serving application areas such as carbon capture, uti-90

lization, and storage, and hydrocarbon extraction, among others. Critically, carbonate91

pore-typing serves as the bridge between the geological framework of the subsurface and92

its petrophysical behavior and is therefore vital to assessing reservoir/aquifer quality (Lønøy,93

2006); (Skalinski & Kenter, 2015). Since carbonate pore systems encompass a wide range94

of scales (nanometric to kilometric scales), holistic pore-typing requires the integration95

of visual petrographic observations at the thin-section scale with petrophysical data from96

core plugs and/or well-logs (Skalinski & Kenter, 2015). In this study, we focus on visual97

petrographic pore-typing, which of the aforementioned data types presents the most di-98

rect link to the sedimentological and diagenetic framework of the reservoir and repre-99

sents the most established modality for pore typing studies (Skalinski & Kenter, 2015;100

McCreesh et al., 1991).101

Visual pore-typing involves user classification of observed pores into types accord-102

ing to popular schema, such as those proposed by Choquette and Pray (1970), Lucia (1983),103

Lucia (1995), and Lønøy (2006). Presently, visual pore-typing is conducted in a qual-104

itative to semi-quantitative fashion (i.e., via point-counting), a practice that has evolved105

little since its inception. Barring the inefficiency, subjectivity, and lack of scalability of106

manual approaches, integrating qualitative / semi-quantitative descriptions into reser-107

voir characterization schemes remains challenging, primarily due to the quantitative na-108

ture of the other input data modalities (e.g., well-logs, seismic lines, core plug petrophys-109

ical measurements, etc.) (Rabbani et al., 2021).110

Recent studies have attempted to automate the process of visual pore-typing, fu-111

eled by recent advances in artificial intelligence (AI), and computer vision (CV). These112

studies attempt to emulate the heuristics employed by geologists when classifying pores113

by hypothesizing that all pores can be differentiated into their genetic classes purely based114

on shape. The de facto approach these studies employ is to use supervised machine learn-115

ing models within an object-based framework, where the segmented pores are represented116

as objects with size and shape metadata attached (Abedini et al., 2018; Borazjani et al.,117

2016; Ghiasi-Freez et al., 2012; Mollajan et al., 2016; Z. Wang et al., 2022), as summa-118

rized in Table S1 (in supplementary information). Object-based methods are arguably119

more intuitive for quantitative pore-typing from petrographic images when compared to120

texture-based methods, as it is easier to recognize geological discontinuities by their size121

and shape than by their pixel features. Object-based approaches have also become the122

gold standard in remote sensing studies, collectively referred to as Geographic Object-123

based Image Analysis (GEOBIA) (Blaschke, 2010).124
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Figure 1. (a) Quadrant of shape features. Modified from (Neal & Russ, 2012). (b) Visual

descriptions of the simple shape features used in this study.

Another shared feature amongst most automated pore-typing studies is the use of125

simple shape features. In the context of pore typing, shape is defined as the geometric126

features of an object after its location, orientation, and size are removed (Neal & Russ,127

2012). Shape features sensitive to location, orientation, and size should be treated with128

caution (Loncaric, 1998; Neal & Russ, 2012). A useful framework for shape features is129

the quadrant shown in Fig. 1a. Simple shape features consist of combining size features130

(such as area, perimeter, maximum axial length of best fit ellipse, etc.) such that the out-131

put is a dimensionless ratio (e.g., the ratio of the longest axis to the shortest axis: as-132

pect ratio), in order to remove the influence of scale. While having the benefit of being133

intuitive and easy to implement, simple shape features also carry the drawback of be-134

ing non-unique, as several different shapes may have similar feature values (Loncaric, 1998;135

Neal & Russ, 2012). Conversely, complex shape features, such as Fourier descriptors (har-136

monic analysis) and moments analyses, while difficult to explain and implement, can re-137

construct the original shape of an object and are therefore considered unique to each ob-138

ject (Neal & Russ, 2012). Another critical requirement for shape features is independence139

(Loncaric, 1998). Each feature must measure unique aspects of the object shape to be140

informative. If multiple features measure the same property, redundancies occur. Sta-141

tistical analyses, particularly AI-based methods, can be severely hindered by such redun-142

dancies (James et al., 2021; Kuhn et al., 2013).143

Relevant literature in the field of quantitative pore typing favor simple shape fea-144

tures to feed ML classifiers (Table S1), reporting testing accuracies well in excess of 90%.145

These results are remarkable given the complex pore types, such as interparticle, intra-146

particle, and microfractures (based on the Choquette and Pray (1970) scheme), classi-147

fied in these studies. Despite these promising results, none of the proposed solutions have148

widely proliferated within the wider petrographic community attached (Abedini et al.,149

2018; Borazjani et al., 2016; Ghiasi-Freez et al., 2012; Mollajan et al., 2016; Sharifi, 2022;150

Z. Wang et al., 2022), with most studies relying upon conventional manual interpreta-151

tion. This lack of uptake may, in part, be related to a general mistrust in the ostensi-152

bly optimistic results published, especially when considering that pore morphology is not153

the only determining factor when assigning pore types via conventional (i.e., qualitative)154

means.155

Notably, there are deficiencies in four key areas within the literature: (1) the use156

of natively binary classifiers for multi-class problems, (2) the imbalanced and/or diminu-157
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tive nature of the input datasets, (3) the lack of robust benchmarking, and (4) the mis-158

appropriation of deep learning. Classifiers that are natively binary (esp., Support Vec-159

tor Machines: SVM) have been employed to classify several different pore types (Mollajan160

et al., 2016; Sharifi, 2022). For context, binary classifiers can be extended to multi-class161

problems by condensing them into a series of binary classification problems, typically us-162

ing a one-versus-all (OVA) or one- versus -the-rest approach (Bishop, 2006; Galar et al.,163

2011; Mollajan et al., 2016). These approaches are conceptually problematic as the de-164

cision boundaries from several binary classifiers are known to create ambiguous regions165

within the feature space, which can result in the same object being classified as differ-166

ent classes in different iterations (Bishop, 2006). Another inherent flaw is that models167

are trained on imbalanced data, as the class in focus will typically be diminutive com-168

pared to the other classes combined. Notably, such class imbalances are well-known to169

decrease model performance (Bishop, 2006; Galar et al., 2011; Chawla et al., 2004; He170

& Garcia, 2009; Sun et al., 2009). Furthermore, as the ‘other’ classes are typically merged171

for each classifier, any relationships or dependencies between classes may be ignored. In172

addition, since the number of binary classifiers will increase linearly with the number of173

output classes, computational cost, and scalability can rapidly become limiting factors174

(Bishop, 2006; Galar et al., 2011)175

Supervised ML models are particularly sensitive to the nature of the labeled data.176

Most related studies are opaque on their sampling protocols, which raises questions as177

to whether the data was properly curated (Table S1) (e.g., Abedini et al., 2018; Boraz-178

jani et al., 2016; Ghiasi-Freez et al., 2012; Mollajan et al., 2016; Sharifi, 2022; Z. Wang179

et al., 2022). There are several indicators within the literature that point towards im-180

proper dataset curation; firstly, the aforementioned studies contain severe class imbal-181

ances in their training and testing data, which tends to give rise to model instabilities182

and poor performance (Bishop, 2006; Galar et al., 2011; Chawla et al., 2004; He & Gar-183

cia, 2009; Sun et al., 2009) / (Table S1). Secondly, their sample sizes are limited, even184

going as low as five objects per class within some studies (Table S1) (Abedini et al., 2018;185

Ghiasi-Freez et al., 2012; Mollajan et al., 2016). The sample sizes are far too insufficient186

for the complexity pursued to produce robust models (Sun et al., 2009). Finally, several187

pore types classified are not perceived by shape alone but by the spatial context of skele-188

tal, depositional, and diagenetic components. For example, pore types such as vugs, molds,189

intraparticle, interparticle, and intercrystalline pores cannot be differentiated by shape190

but by examining their local neighborhoods. This raises questions about the subjectiv-191

ity of the labelling process and, therefore, the validity of the training and testing dataset.192

There is also a noticeable lack of model benchmarking within the related literature,193

with supervised machine learning models being arbitrarily chosen to perform a given clas-194

sification task (Table S1). In addition, several studies embrace deep learning (DL) mod-195

els, despite the ‘excellent’ performance of ML models (Abedini et al., 2018; Borazjani196

et al., 2016; Mollajan et al., 2016; Sharifi, 2022; Ansari, Abdalla, et al., 2022). The as-197

sociated datasets do not meet the typical class balance and quantity requirements to en-198

sure DL model generalizability. Also, these studies do not provide metrics such as validation-199

loss curves to provide assurances on the model’s accuracy and stability.200

A more equitable approach would be to condense pore-typing into a binary clas-201

sification problem, such as distinguishing between microfractures and pores, as they rep-202

resent visually distinct endmembers in morphology and are distinct in the mode of gen-203

esis. This framing plays to the strength of most supervised ML classifiers as some were204

designed to be binary classifiers (Multiple Logistic Regression and SVM, among others),205

and single decision boundaries between two classes are far simpler to construct for any206

model (Bishop, 2006; Galar et al., 2011; James et al., 2021; Kuhn et al., 2013; Kuhn &207

Silge, 2022; Ansari, Yang, et al., 2022). In addition, binary classifications also enable ad-208

ditional model performance metrics such as the Receiver Operating Characteristic (ROC)209

curves (James et al., 2021; Kuhn et al., 2013; Kuhn & Silge, 2022). It is important to210
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note that while performance metrics such as ROC curves can be extended for multi-class211

problems, it is far more challenging to implement and interpret. Once the end members212

have been satisfactorily classified and decision boundaries established, it should be pos-213

sible to analyze intra-class datasets to make finer distinctions between pore and microfrac-214

ture types. Additionally, due to the ease of recognizing microfractures from pores, the215

quality of the labeling data would be significantly higher than dividing the pores into216

genetic types.217

Only two studies have employed the binary approach within macrofractures in micro-218

CT models (Li et al., 2017; Singh et al., 2021), and one in the case of microfractures (Z. Wang219

et al., 2022). Li et al. (2017) utilized an SVM to separate macrofractures from vugs us-220

ing simple shape features, reporting an accuracy of 100%. However, the authors did not221

offer sufficient details on the modeling procedure, and from the images provided, the macrofrac-222

tures appeared simplistic (short and straight). Singh et al. (2021) demonstrated excel-223

lent segmentation of macrofractures and pores (with classification accuracies above 96%)224

using a projection-based clustering approach comprised of Principal Components Anal-225

ysis (PCA) and k-means clustering. However, the proposed method cannot be scaled down226

to microfractures, given that size itself served as a major discriminator between the macrofrac-227

tures and pores. Z. Wang et al. (2022) reported near-perfect accuracies, nullifying the228

challenge of classifying microfractures and pores. However, their classification method-229

ology was not described in detail, and the objects sampled for classification were heav-230

ily curated and too few to be considered representative.231

We propose that employing simple shape features for object classification within232

a supervised machine-learning framework can accurately determine microfractures from233

pores. In this work, we pose two questions: firstly, how accurately can supervised mod-234

els classify microfractures and pores using only simple shape features? We posit that the235

combination of simple shape features within a supervised ML framework should accu-236

rately capture the shapes of microfracture and pores, given that these shapes represent237

morphological endmembers. We eschewed unsupervised models for this study as super-238

vised models are known to be substantially stronger. However, we did include two clus-239

tering algorithms (K-means and DBSCAN) on the global dataset as a reference against240

the supervised models results (Fig. S4). Secondly, provided a sufficiently high accuracy241

from the supervised classifiers, we pose the question: what are the most informative sim-242

ple shape features for differentiating microfractures and pores? We hypothesize that as-243

pect ratio is the most important shape feature as elongation is the primary and most in-244

tuitive discriminator between the two classes.245

The hypotheses in this study were tested on 18 petrographic plane-polarized light246

scans of complete thin sections. The provenance of the microfractures is not considered247

in this study as it is irrelevant to the tested hypotheses. We notify the reader, given the248

small size of the dataset, that the results of this study are meant to be explanatory and249

should not be considered as the most accurate models available. It is intended that the250

results of this study will serve as a substrate for the development of highly accurate clas-251

sifiers in future work. More importantly, the study was designed to address the method-252

ological deficiencies of the related literature in terms of data handling and supervised253

ML modeling as per the guidelines provided by Artrith et al. (2021) and Greener et al.254

(2022).255

Finally, we chose not to pursue DL in this study for the following reasons: firstly,256

we have not fully realized the potential of ML within geo-images, and secondly, the black257

box nature of DL means that we replace human subjectivity with machine subjectivity,258

limiting the ability to draw translatable insights from any resulting classification. Finally,259

in similitude to many geoscientific applications, difficulties in procuring sufficient train-260

ing and test data make DL impracticable for the present study. To our knowledge, this261

study represents the only openly available dataset solely dedicated to microfractures and262

pores of carbonate thin sections within the geosciences.263
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2 Methods264

2.1 Dataset265

We selected eighteen images for this study, sourced from a repository of plane-polarized266

light scans of carbonate thin sections at Texas A&M University, College Station. The267

thin sections were scanned whole using the Nikon CoolScan 8000 film scanner at a res-268

olution of 6.35 microns/pixel. The thin sections were sourced from a wide variety of out-269

crops and subsurface cores. A key criterion for selection was the presence of sufficient270

open-mode microfractures and pores. Healed microfractures (microveins) were ignored271

as they require a different form of segmentation and are not within the scope of this study.272

Eleven of the thin sections were half-stained with Alizarin red and seven thin sections273

were unstained. The staining, however, did not affect the pore segmentation as all the274

thin sections were impregnated with blue epoxy. The list of thin sections used and as-275

sociated metadata is provided in the dataset in the GitHub repository of the study.276

2.2 Image processing and segmentation277

2.2.1 Pre-processing278

A schematic diagram for the entire image processing and machine learning pipeline279

is provided in Fig. 2. For brevity, only the pertinent information is provided in the text,280

with the finer details of each stage provided in the Supplementary Information. The edges281

of all images were cropped prior to pre-processing to remove the blank slide edges. The282

images were of sufficient quality that pre-processing only required minimal denoising and283

sharpening. For denoising, the non-local means filter was applied using the ‘Non-local284

means denoising’ plugin from the Biomedgroup library in Fiji (Darbon et al., 2008). The285

non-local means filter was chosen for its excellent edge-preserving capabilities (Buades286

et al., 2011). An unsharp mask filter was used to restore the sharpness after denoising,287

using the in-built tool within Fiji, tuned according to each image. The images post-denoising288

and post-sharpening are included as part of the dataset attached in the supplementary289

information.290

2.2.2 Segmentation291

The segmentation of the blue-epoxy-filled pores from thin sections only required292

thresholding in the HSB (Hue-Saturation-Brightness) color space. However, the low res-293

olution of the available thin-section scans presented complications for the segmentation294

of microfractures. Microfractures that appeared visually continuous tended to be frag-295

mented into several smaller segments after thresholding in the HSB space despite exten-296

sive tuning of the thresholding parameters (Fig. S1). To increase the microfracture con-297

nectivity, an independent segmentation was performed in the CIELAB color space, which298

is a device-independent 3D color space that accurately maps all perceivable colors, thus299

enabling comparison. The CIELAB segmented image was combined with the original HSB300

segmented image after post-processing both images. While there was a notable increase301

in the connectivity of several microfractures (examples shown in Fig. S2), several mi-302

crofractures were still heavily fragmented. Moreover, microporous matrix zones and mi-303

croporous grains were segmented as macropores as a byproduct of the aggressive seg-304

mentation strategy. The sheer number of microporous zones rendered masking imprac-305

ticable. For this study, they were approximated as pores, which is reasonable given the306

similarities in terms of shape for both pore types. Finally, any compromised image re-307

gions (e.g., scratch marks or air bubbles) were masked manually.308
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Figure 2. Flowchart of the digital image analysis and supervised modelling workflow.

2.2.3 Post-processing309

The post-processing pipeline was conducted on both the HSB and LAB binary masks310

in parallel (Fig. 2). Binary masks from both color spaces had smaller pores that were311

poorly resolved, whereby the perimeter of these objects becomes pixelated and/or suf-312

fers from partial area effects. As a consequence, the true shape of the pore is lost, and313

any downstream analysis will be flawed. A workaround is to visually estimate the small-314

est pore size that is adequately resolved and cull all objects below this threshold. Some315

studies, particularly in the SEM and Liquid Metal Injection (LMI) domain, refer to the316

smallest pore that is adequately resolved as the practical pore resolution (PPR) (Hemes317

et al., 2015) . In this study, we visually estimated that the smallest pore size that was318

adequately resolved was 30 pixels in area (equivalent to pores of 190.5 microns). A mor-319

phological closing operation using a 4-connect was applied using the Gray Scale Attribute320

Filter tool in the MorphoLibJ plugin in Fiji (Legland et al., 2016), with the conserva-321

tive 4-connectivity protocol used to prevent microfractures from being removed. It must322

be noted that, given the relatively poor pixel resolution, the smallest pore size chosen323

is atypically aggressive, as even at this size, discretization effects are visible in several324

pores. This aggressive choice was warranted to preserve the microfractures since they325

were limited in quantity throughout the dataset. Additionally, several of the larger pores326

had floating objects within them (particles/air bubbles). These were removed from the327

objects via a morphological opening of 1000 pixels using the Gray Scale Attribute Fil-328

ter tool in the MorphoLibJ plugin in Fiji.329

2.3 Labelling, Feature Extraction and Feature Engineering330

The binary masks were imported into Python for labeling and feature extraction.331

The ‘Connected components’ function with 8-connect from the OpenCV library was used332

to label the microfractures and pores. The ‘regionprops’ module from the Sci-kit image333

library was used to extract the size and shape features of each object (Table 1). Shape334
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features unavailable in the regionprop module but deemed necessary based on the lit-335

erature were calculated from the measured size metrics. We note here that eccentricity336

was discarded, despite its popularity as an elongation metric in the literature, as its dis-337

tribution was extremely right skewed even after Box-Cox transformations. Representa-338

tions of the selected shape features are shown in Fig. 1b.339

Table 1: Feature Table

Feature Equation Definition
Shape
aspect
measured

Selected

Area NA
The number
of pixels of the
object

None No

Filled
area

NA
Number of pixels
in the object with
holes filled

None No

Convex
area

NA
Number of pixels
in the convex hull
of object

None No

Perimeter NA
The number of
contour pixels

None No

Crofton
perimeter

NA

Perimeter of
object approxi-
mated by Crofton
formula in 4
directions

None No

Major
axis
length

Normalized second
central moments

The major axis
of the best fitting
ellipse

None No

Minor
axis
length

Normalized second
central moments

The minor axis
of the best fitting
ellipse

None No

Equiv-
alent
diameter

NA
Diameter of the
circle with equal
area

None No

Max feret
diameter

NA
Maximum caliper
length of object

None No

Solidity area
area of convex hull

Area of the object
relative to its
convex hull

Convexity Yes

Extent area
area of bounding box

Area of the object
relative to its
rigid bounding
box

Complexity Yes

Aspect
Ratio

major axis length
minor axis length

Ratio of the ma-
jor axis to minor
axis

Elongation Yes

Compact-
ness

√
4×area/π

feret diameter max

The ratio of the
object area to its
maximum Feret
diameter

Elonga-
tion/circularity

Yes

Formfac-
tor

4×π×area
(perimeter crofton)2

Area- and
contour-based
circularity of the
object

Circularity Yes

Continued on next page
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Table 1 – continued from previous page

Feature Equation Definition
Shape
aspect
measured

Selected

Eccentric-
ity

Distance from Focus
Distance from Directrix

Measure of the
ellipticity of an
object

Elonga-
tion/circularity

No

Circular-
ity

equivalent diameter
perimeter crofton

Outline-based
circularity of the
object

Circularity No

Round-
ness

4×area
π×(feret diameter max)2

Area-based cir-
cularity of the
object

Circularity No

2.4 Statistical Analysis of the Extracted Features340

2.4.1 Outlier Detection341

Identifying outliers is a pre-requisite for building machine learning models, as they342

can hinder model performance and result in convergence to local minima. We omitted343

automated outlier detection methods (e.g., Tukey’s boxplot) due to the aggressive se-344

lection criteria such approaches employ. Aggressively removing a large chunk of true ob-345

jects may improve model accuracy at the cost of generalizability, as the model will over-346

fit to a heavily sanitized training dataset. Consequently, we employed a manual approach,347

whereby data points that were ten standard deviations from the mean of both size and348

shape features were visually corroborated with their corresponding thin-section image349

before being classified as outliers. This manual approach ensured that only the most promi-350

nent outliers per image were removed (2-5 per image), thus preserving the potential gen-351

eralizability of the models. The total number of data points used for modeling was 20,060352

after discarding outliers.353

2.4.2 Sampling, Primary Labeling and Secondary Labeling354

We applied different strategies to sample pores and microfractures, dictated by the355

limited number of microfractures in the images. Sampling for the pores was performed356

randomly, while microfractures were sampled manually. 400 microfractures and 400 pores357

were selected as the labeled dataset. The design of the sampling protocol was intended358

to maximize the quality of the ground truth. For 100 pores, sampling was performed with359

pore area greater than 100 pixels to ensure the larger pores were represented in the train-360

ing and testing sets, given the strong skew towards smaller pores. Open gashes associ-361

ated with microstylolites were avoided altogether, as these are discontinuities principally362

formed by pressure solution rather than brittle deformation. Moreover, open gashes were363

rarely observed in the dataset, and their omission is not expected to impact the results364

significantly.365

To supplement the primary labels of ‘pore’ and ‘microfracture’, secondary labels366

were added to each sampled object pertaining to the type of pore or microfracture. Four367

types of microfracture were delineated by morphology based on the samples in this study:368

namely, straight, curvilinear, curved, and branching. These sub-categories were based369

on visual appearance and not on any established scheme. While labeling microfractures370

as straight and branching was relatively intuitive, the difference between curvilinear and371

curved was more subtle. Microfractures that were dominantly linear with negligible de-372

viations were judged as curvilinear, whereas if there were major deviations in their trace373

morphology, they were classified as curved. Examples of these four types are shown in374

Fig. 3a. It should be noted that branching microfractures can be further subdivided into375

further shape-based categories (T-type / X-type, e.g., (Seers & Hodgetts, 2016)), though376
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for parsimony, we avoided such higher-order classes in the present study. Conversely, pore377

types were defined by origin rather than morphology, namely vug, intercrystalline, in-378

traparticle, and channel, as per the Choquette and Pray (1970). Vug was used as a catchall379

term applied to group relatively equant pores with evidence of genesis through dissolu-380

tion and those with ambiguous origin. Intercrystalline pores were those housed within381

incompletely cemented spaces. Channels posed an interesting conundrum as they orig-382

inated from microfractures but evolved into pores. However, apart from one sample, chan-383

nels were rarely observed in the dataset and, therefore, poorly represented. We also point384

out that interparticle pores were rare in the dataset and, hence, were not represented dur-385

ing the random sampling. The inclusion of sufficient channels and interparticle pores in386

the training data should be a target for future work.387

2.5 Supervised Machine Learning Pipeline388

2.5.1 Training-Testing Split389

The labeled dataset was split into 70% training and 30% testing subsets in a ran-390

domly stratified manner, keeping the proportions of pores and microfractures equal within391

both sets. This split resulted in 280 microfractures and pores in the training set and 120392

microfractures and pores in the testing set. The training-testing split was performed prior393

to the subsequent data processing to prevent data leakage.394

2.5.2 Feature Transformation395

All the shape features within the training data exhibited varying degrees of non-396

normality, with compactness and extent containing visible bimodality, and roundness,397

aspect ratio, and formfactor showing a degree of right skew. These right-skewed feature398

sets were log-transformed to balance their data range, mitigating data paucity and po-399

tentially increasing model accuracies. We emphasize that the transformation approach400

was not designed to satisfy the assumption of multivariate normality by parametric mod-401

els, such as multiple logistic regression (MLR), linear discriminant analysis (LDA), and402

quadratic discriminant analysis (QDA). The fact that several of the features, post-transformation,403

were significantly bimodal precludes the possibility of forcibly converting them into nor-404

mal distributions. Moreover, Graf et al. (2022) showed that LDA is ostensibly robust against405

lognormal skewed and bimodal distributions, thus indicating that the assumption of nor-406

mality is not critical. Post-transformation, the features in the training and testing data407

were centered and scaled to ensure comparability between the features. We note that408

all features in the testing data were centered and scaled using the mean and standard409

deviation derived from the training data.410

2.5.3 Feature Selection411

Feature selection was entirely supervised based on a priori knowledge of the fea-412

tures and their correlations. As discussed above, feeding redundant features into ML mod-413

els can undermine each feature’s true impact and cause model instabilities: a problem414

known as multicollinearity (James et al., 2021; Kuhn et al., 2013). Furthermore, reduc-415

ing the number of features decreases the possibility of sparse distributions in feature space,416

often referred to as the ‘curse of dimensionality’ (Kuhn & Johnson, 2019). We expected417

high correlations between the features as each was derived from the same pool of size418

features. Features with Pearson’s correlation coefficient r2 values exceeding 0.95 were419

candidates for elimination, a clause satisfied by roundness and circularity (Fig. 4). Round-420

ness was strongly correlated with compactness (r2 = 0.97), which was expected as both421

features are essentially a ratio of the object area to its maximum Feret diameter. Due422

to their equivalence, compactness was preserved. Similarly, circularity and formfactor423

showed a similarly high correlation (r2 = 0.96) as both features are a ratio of the ob-424

ject’s area to its perimeter, meaning either could be chosen (for this study, we chose form-425
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Figure 3. (a) Examples of pore and microfracture types from the dataset. (b)Proportion of

pore and microfracture type in training data.
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Figure 4. Correlation matrix of all input features. The yellow boxes mark the highest correla-

tions among the features.

factor). Aspect ratio was the only exceptional feature, as it was negatively correlated with426

every other feature, and in particular, compactness. The final features selected were form-427

factor, compactness, extent, solidity, and aspect ratio. The selected features are concep-428

tually independent of one another, with the exception of extent and solidity, which are429

both area-ratio variants, thus by-in-large, satisfying the independence requirement put430

forward by (Loncaric, 1998; Neal & Russ, 2012). A caveat to the feature selection pro-431

cess is that correlation analysis assumes univariate normality, an assumption that was432

violated by most of the features. However, since the correlation was only used to detect433

redundant features and was not involved in the modeling process, the impact of violat-434

ing the assumptions is not an issue.435

2.5.4 High Dimensional Visualization: Principal Components Analy-436

sis (PCA)437

Principal Components Analysis (PCA) was used to visualize the relationships in438

five-dimensional space. PCA is a wholly unsupervised technique that reduces the dimen-439

sionality of data to those that explain the maximal variance (Jolliffe & Cadima, 2016;440

Vogelstein et al., 2021). PCA is arguably the most popular dimensionality-reduction tech-441

nique (Vogelstein et al., 2021). Details on the conceptual and mathematical underpin-442

nings of PCA can be reviewed in Jolliffe and Cadima (2016). The covariance matrix of443

the dataset was constructed and factorized using eigen decomposition to find its prin-444
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cipal components. We performed PCA on the whole dataset and the labeled subset, with445

the same processing steps used for the training and testing data applied to both datasets.446

2.5.5 Model Selection447

Several supervised ML models were tested as we had no prior knowledge as to which448

was best suited to our problem. This practice is colloquially known as the ‘No free lunch449

theorem’ (Kuhn & Silge, 2022). The ‘best’ model does not necessarily mean the most450

accurate, but rather the model that balances accuracy with generalizability and efficiency.451

We tested nine models in this study: multiple logistic regression (MLR), linear discrim-452

inant analysis (LDA), quadratic discriminant analysis (QDA), K-nearest neighbors (kNN),453

Naive-Bayes (NB), Random forest (RF), and three variants of Support Vector Machines454

(SVM); linear, radial, and polynomial. Further details on each model can be found in455

James et al. (2021) and Kuhn et al. (2013). These models can be broadly classified into456

two categories: linear and non-linear. Linear models generate linear decision boundaries457

in high-dimensional feature space, whereas non-linear models create non-linear decision458

boundaries in feature space such as polynomial, radial, or more complex non-parametric459

curves. All models were run using the ’caret’ package in R (Kuhn, 2022).460

2.5.6 Hyperparameter Optimization461

Most of the tested models possessed hyperparameters that require user definition.462

Optimal parametrization is critical to maximize the performance of supervised models.463

For models without tunable hyperparameters, such as MLR, LDA, and QDA, the mod-464

els were trained using 10-fold cross-validation repeated ten times with accuracy as the465

chosen metric. For models that contained tunable hyperparameters, a grid search tech-466

nique was employed for each hyperparameter, with 10-fold cross-validation repeated ten467

times applied to each set of hyperparameters. The hyperparameter combination with the468

highest average accuracy was selected to train the final model. The list of the hyperpa-469

rameters for each model (if present) and the chosen values are provided in Table S2. The470

hyperparameter optimization curves for each of the models are provided in the supple-471

mentary information (Fig. S6) (hyperparameter optimization was implemented using the472

‘trainControl’ function in the ‘caret’ library in R).473

2.5.7 Learning Curves474

Learning curves were generated for the models to assess their stability and to de-475

tect any overfitting (Fig. S6). Learning curves graphically represent how well the ML476

model learns the classification task on incrementally larger portions of a training dataset477

(Kuhn et al., 2013). The typical trend is a sharp increase in training accuracy at the start478

as the model learns new data, eventually leading to a plateau as the model masters the479

task. For this study, the training and resampling increments were set at 10% of the train-480

ing dataset. This meant 56 data points were used to train the model for the first run,481

with another 56 data points added for the second run. This incremental training was ex-482

ecuted for ten runs till the entire training dataset was used to train the model. To check483

for overfitting, at each of the ten learning stages, a randomly resampled subset of the484

training dataset was used to test the accuracy of the model. The difference between the485

training and resampling curves is called the generalization gap. Typically, the lesser the486

gap, the more generalizable the model is considered to be (Kuhn et al., 2013).487

2.5.8 Model Accuracies488

As this is a binary classification study, the training and testing accuracy was mea-489

sured using a confusion matrix. A confusion matrix is composed of four options: true490

positive (TP), false positive (FP), true negative (TN), and false negative (FN), as de-491
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Table 2. Confusion Matrix

True positive
Positive class predicted correctly as

positive

False positive
Positive class predicted incorrectly as

negative

False negative
Positive class predicted incorrectly as

negative

True negative
Negative class predicted correctly as

negative

fined in Table 2. Either of the classes can be designated as the positive class, with mi-492

crofractures denoted as positive. Correctly predicted microfractures were classed as TP,493

and correctly predicted pores were classed as TN, whereas incorrect predictions for each494

pore type fell under FP or FN. The training and testing accuracy was calculated using495

(1). Whilst accuracy gives an overall picture of how accurate the model is, it does not496

provide information about how well the model predicted each class separately. Sensitiv-497

ity, a measure of how accurately the model predicted the positive class (microfractures)498

(2), and specificity, a measure of how accurately the model predicted the negative class499

(pores), were calculated to address this deficiency (3).500

Accuracy =
TP + TN

TP+ TN+ FP + FN
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN+ FP
(3)

2.5.9 Feature Importance501

We used Shap values to evaluate the explanatory power of shape features. Initially502

intended to provide a means for the equitable distribution of winnings (Shapley, 1953;503

Lundberg & Lee, 2017), Shapley values have been appropriated from cooperative game504

theory into AI as a way to impute the importance of features in black-box models: a field505

now known as ‘Explainable AI’ (note that authors have coined the term ‘Shap values’506

to differentiate from the usage of Shapley values in Game Theory: (Lundberg & Lee, 2017)).507

Shap values are model-agnostic and post-hoc in that they are not part of the model-building508

process but instead offer an external check used to explain the feature contributions to509

predictions. It is important to note that Shap values calculate the local importance of510

features, which is the importance of a particular feature to specific data points. An ag-511

gregation is performed to provide the global importance of each feature with regard to512

the entire dataset. For this study, both the local and global importance were measured513

for each model. It is also essential to acknowledge that some of the models, as an inher-514

ent aspect of their mechanics, can list the features in order of importance, namely MLR,515

LDA, QDA, and RF. However, we computed Shap values for all models to ensure com-516

parison between the models.517
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Figure 5. Differences in selected shape feature values between microfractures and pore, with

the d-statistic reported for each feature. Each d-statistic was statistically significant to p¡0.001.

3 Results518

3.1 Statistical Analysis of the Extracted Features519

3.1.1 Univariate Distributions520

The shape features for the entire dataset displayed no bimodality (Fig. S3), thus521

precluding any trivial assignment of decision boundaries between microfractures and pores.522

The lack of clear bimodality suggests the need for a high-dimensional combinatorial ap-523

proach to separate the classes. However, in the labeled dataset, most of the shape fea-524

tures (aspect ratio, compactness, formfactor, and extent: Fig. S3) exhibited varying de-525

grees of bimodality related to the disparate signatures of microfractures and pores (Fig.526

5). However, the presence of intermediate values between the observed modes precludes527

the placement of straightforward decision boundaries. Visual inspection of the class pop-528

ulations of each shape feature suggests that compactness and aspect ratio exhibit the529

greatest separation between microfractures and pores, with solidity and formfactor show-530

ing the least difference, as quantified by the d-statistic from the Kolmogorov-Smirnov531

(K-S) test (Fig. 5).532

3.1.2 PCA533

The PCA biplot in the PC1-PC2 domain for the whole dataset (Fig. 6a) shows no534

discernable grouping but rather resembles a dense, compact cloud. The lack of separa-535

tion is noteworthy, provided that PC1 and PC2 account for 93.76% of the variation in536

the data. The PCA visualizations containing the labeled data (Fig. 6b-c) show that the537

pores cluster in the direction of compactness, formfactor, and the area ratios (solidity538
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Figure 6. (a) Unlabelled PCA biplot with no separation between the datapoints. (b) PCA

Biplot of the overall dataset with the labelled data overlaid. (c) PCA biplot of the labelled data.

(d) Biplot of the labelled data with the secondary labels indicated.

and extent). Conversely, the more elongated microfractures cluster slightly away from539

the pores in the opposing direction of the aforementioned features, but in the direction540

of aspect ratio. It is also apparent that labeled microfractures offer a more tightly con-541

centrated cluster, whereas the pores are more widely dispersed, with some pores over-542

lapping within the microfractures cluster. There is also a noticeable separation between543

the loadings of the selected shape features, which supports the notion of independence544

previously alluded to. The separation of extent and solidity suggests that both features545

are potentially informative despite being similar area ratios.546

The clustering of the labeled microfractures and pores becomes more evident when547

PCA is performed on the labeled dataset (Fig. 6c). PC1 and PC2 now explain a marginally548

higher proportion of the variance in the data (95.82%). Based upon the directions of the549

feature loadings, compactness and aspect ratio separate the two classes into two clus-550

ters. Furthermore, solidity and formfactor appear to extend both classes, but not suf-551

ficiently to form new clusters. This intra-class extension is further highlighted in Fig. 6d,552

where the datapoints are denoted by their secondary labels. In terms of pores, the two553

dominant pore types, intercrystalline, and vugs, show considerable overlap with no vis-554

ible trend. Conversely, microfractures show a slightly discernible trend where the straight555

sub-class is concentrated at the base of the microfracture cluster (in the direction of in-556

creasing solidity and formfactor), and the branching and curved sub-classes concentrated557

near the top (in the direction of decreasing solidity and formfactor), with the curvilin-558

ear occupying the central portion of the variable space.559
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3.2 Supervised Machine Learning560

Based on the learning curves (Fig. S6), all models show a narrow generalization561

gap, which indicates a lack of overfitting, except random forest, which showed overfit-562

ting to the training data (as the training accuracy was a constant 100%). In addition,563

most models appear to stabilize at roughly 300 data points, which points to the suffi-564

ciency of the training data for the models to learn the classification task. Another sig-565

nificant finding is that the linear models displayed stability and generalizability despite566

the lack of multi-variate normality within the training data.567

Table 3. Training and testing accuracies for the supervised models

Model Train Train Test Test 95% Lower 95% Upper Sens. Spec.
Acc. Kappa Acc. Kappa CI* CI*

MLR 94.48 88.96 90.00 80.00 85.49 93.49 96.67 83.33
LDA 94.00 88.00 89.58 79.17 85.01 93.14 97.50 81.67
QDA 94.29 88.57 90.83 81.67 86.45 94.17 97.50 84.17
kNN 94.70 89.39 90.00 80.00 85.49 93.49 94.17 85.83
NB 93.64 87.29 89.58 79.17 85.01 93.14 95.83 83.33

*CI: Confidence Interval, Sens.: Sensitivity, Spec.: Specificity

3.2.1 Training Accuracy568

All supervised models performed highly accurately, with a strikingly narrow en-569

velope of 93.64% to 94.63% (Table 3). To facilitate comparison between the models, the570

upper and lower performance bounds were measured by resampling the same training571

data for each model. All models perform identically, with no apparent differences between572

the linear and non-linear supervised models.573

3.2.2 Testing Accuracy574

The excellent performances of the models on the training data were also reflected575

in the testing data. Testing accuracies were only slightly lower than those of the train-576

ing set and had a similarly narrow performance envelope of 89.58% to 90.83%. All mod-577

els appeared to detect microfractures with greater accuracy than pores, with testing sen-578

sitivities exceeding 95%, while specificities were capped at 86%. Furthermore, the ROC579

curves of all the models in Fig. 7a show Area Under Curve (AUC) values > 0.95 with580

no observable differences between them. Despite the conceptual differences between the581

models, similarities in performance strongly suggest that each model’s decision bound-582

aries are similar and linear.583

Despite the overall excellent performance of the models, there were systematic mis-584

classifications. To better understand the misclassifications per model, the predicted mi-585

crofracture probability of all the test data objects was derived for the sub-classes of mi-586

crofractures and pores, as shown by the Polynomial SVM example in Fig. 8 (the plots587

for the other models are shown in Fig. S8). Most microfracture types are well above the588

50% threshold across all models and, therefore, not likely to be predicted as pores. How-589

ever, the branching sub-class shows the widest range of probabilities, dropping below 50%590

into pore prediction space in some cases. Amongst the pore types, vugs are the only class591

that spans nearly the entire probability range and are, therefore, responsible for the sig-592

nificantly lower specificities of the models. Upon closer examination, the vugs that cross593

the 50% threshold are dominantly bivalve molds (Fig. 8), which strongly resemble curvi-594

linear microfractures.595
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Figure 7. (a) ROC curves for all the tested models. All models show exceptionally high sensi-

tivities and specificities across all probability thresholds. (b) Calibration curves for all the tested

models. Same color scheme as (a). (c) Boxplot of training accuracies with confidence intervals

derived from identical resampling.
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Figure 8. Microfracture prediction probability for each pore and microfracture type for Poly-

nomial SVM model. Example masks of pore types are provided to illustrate the variation per

class. The green ellipse represents the best-fitting ellipse with the red lines are the major and

minor axes of the ellipse. The pink line represents the maximum Feret diameter. The blue box

represents the bounding box.
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Figure 9. Shap values per feature for the Polynomial SVM model. The points represent lo-

cal importance, and the bars represent global importance. The features are ordered by global

importance.

3.2.3 Feature Importance596

Shap plots ranking feature importance for all models are shown in Fig. S9 with only597

Polynomial SVM presented in Fig. 9 as a representative case. Feature rankings per model598

are listed in Table 4. Compactness was consistently the most important feature across599

models, while aspect ratio was the second-most important feature in most models tested600

(i.e., seven out of the nine), with MLR and LDA serving as the exceptions. Solidity was601

the third most important feature for most models, except for MLR and LDA (2), QDA602

(4), and Naive-Bayes (5). Solidity and formfactor appear to interchange positions in QDA603

and Naive-Bayes, which could be explained by their close correlation seen in the PCA604

biplot in Fig. 8b. The shape feature with the least contribution to most models is ex-605

tent. It is also apparent that the models fall into three broad groups in terms of the fea-606

ture importance profiles. The first group includes MLR and LDA, the second group in-607

cludes the majority of the models, such as RF, KNN, linear SVM, radial SVM, and poly-608

nomial SVM, and the third group consists of QDA and Naive-Bayes.609

Table 4. Rankings of the shape feature importance per model

MLR LDA QDA NB kNN RF LSVM RSVM PSVM

Compactness 1 2 1 1 2 1 1 1 1
Aspect ratio 2 1 4 2 1 2 2 2 2
Solidity 5 3 2 5 3 3 3 3 3
Formfactor 3 4 3 4 4 4 4 4 4
Extent 4 5 5 3 5 5 5 5 5
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4 Discussion610

4.1 Performance of the Supervised ML models611

The excellent performance of all the tested supervised ML models shows their ef-612

ficacy in the presented classification task, in similitude to the high accuracies of super-613

vised pore-type classification reported in the related literature (Table S1). However, a614

straight comparison with the related literature is impossible due to the difference in the615

predicted classes. The equivalent performance of both linear and non-linear ML mod-616

els indicates ample separation between the microfractures and pores in the feature space,617

and the decision boundary was likely linear, thus posing a relatively simple classifica-618

tion task. Notably, this separation is discernable in the PCA biplot for the labeled data619

(Fig. 6c). Furthermore, all models contained errors related to the misclassification of bi-620

valves as microfractures, indicating that the models did not fit complex, non-linear de-621

cision boundaries through the microfractures cluster.622

4.2 The importance of compactness and aspect ratio in the labelled dataset623

The importance of compactness and aspect ratio in creating discernable separa-624

tion is evident from the PC1-PC2 visualization of the labeled data (Fig. 6c). Both fea-625

tures also ranked the highest amongst the shape features across most of the ML mod-626

els based on Shap values (Fig. 9 and Fig. S9). However, compactness consistently out-627

ranked aspect ratio across most models, which is perhaps counter-intuitive given the pop-628

ularity of aspect ratio as a unique identifier for microfractures in the geological commu-629

nity (Table S1). To better understand the ranking, the aspect ratio of an object, using630

the best-fitting ellipse, essentially strips the object of its natural shape by assuming that631

two orthogonal axes can adequately represent it. We observe in Fig. 8 that best-fitting632

ellipses are reasonably faithful to the geometries of the more linear microfracture types633

(straight and curvilinear). In contrast, more curved or branched microfractures diverge634

from the low aspect ratio character and start to approach more pore-like values. Fig. 6d635

displays this to some extent, as the curving and branching microfractures are slightly636

closer to the pores than the straight variety. Conversely, compactness uses the original637

area of the object and only approximates its maximum length (the Feret diameter), which638

is a reasonably robust measure of object length and approximately equivalent to the ma-639

jor axis of the best-fitting ellipse. In addition, compactness places less weight on the area640

of the object and more emphasis on its maximum length: a construct that works well641

in the context of microfractures as they have significantly smaller areas than most sim-642

ilarly sized pores and always contain an outsized axis, except for a subset of branching643

microfractures. We note that any feature that adequately captures the salient charac-644

teristics of microfractures, namely the elongation and relatively narrow aperture, can con-645

tribute significantly to model performance. We also note that extent proved to be the646

least informative across all models. The lack of information can be attributed to its sen-647

sitivity to rotation, as illustrated in Fig. 8, where the same object can have different bound-648

ing boxes based on its orientation. Therefore, extent violates the rotation-invariance re-649

quirement of shape features (Loncaric, 1998). While extent contains information on the650

complexity of the pore (as more complex pores only take up a smaller portion of the bound-651

ing box), the rotation sensitivity means that solidity is a better replacement information-652

wise.653

4.3 The weaknesses of the approach when extended to the global dataset654

The results of the study indicate that the classification of microfractures and pores655

is a simple problem, which conforms to the visual perception that these pore types are656

separable by simple geometric features alone (Z. Wang et al., 2022). However, whether657

the labeled dataset of 800 points used in this study adequately represents the global dataset658

of 20,060 pores is questionable. Fig. 6a-6c highlights the major differences between both659
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sets of data, with the unlabelled data showing none of the separation seen in the labeled660

data, thus strongly indicating that the classification is not straightforward. The differ-661

ence between the global and labeled datasets can be attributed to two main factors: ge-662

ological complexity and technical considerations.663

The complexity of carbonate pore types is well-known (Ehrenberg, 2022). Disso-664

lution and cementation are spatio-temporally variable processes controlled by a myriad665

of depositional and diagenetic agents, which typically result in complex pore morpholo-666

gies that often do not fit conveniently into classification schemes. The most popular of667

the pore-typing schemes, Choquette and Pray (1970), and Lucia (1983, 1995), do not con-668

tain morphology as a diagnostic attribute for this reason. To further highlight pore com-669

plexity, intercrystalline pores, and vugs overlap significantly in the PC1-PC2 space (Fig.670

6d) despite their contrasting origins attributable to cementation and dissolution, respec-671

tively. In addition, microfractures can develop complex morphologies (Fig. 8) based on672

the heterogeneity of the rock and the stress regimes acting therein.673

Further to this, the non-unique nature of simple shape features used in this study674

and the related literature (Abedini et al., 2018; Borazjani et al., 2016; Ghiasi-Freez et675

al., 2012; Mollajan et al., 2016; Z. Wang et al., 2022) could not adequately separate the676

pore types in hyperspace, as illustrated in Fig. 6a-d. These features can be informative677

for idealized objects where microfractures are mostly linear to curvilinear and pores are678

mostly equant. However, such scenarios are rare in the carbonate realm, and the con-679

tinued reliance upon simple feature sets will likely produce dense point clouds for which680

classification is problematic.681

4.4 The weaknesses of the approach when extended to the global dataset682

4.4.1 Biased Sampling683

Selection bias during the sampling phase is a likely cause for the excellent separa-684

tion in the labeled data. Operator discretion was required during the random sampling685

procedure to filter out noise, such as microporous patches or pores below the feature res-686

olution. While this mitigated the noise fed into the models, it also meant that the most687

characteristic pores would be selected, thereby compromising the objectivity of the sam-688

pling procedure. Data curation is a typical stage for pore typing studies, often result-689

ing in overly optimistic results in supervised ML (Table S1). Comparatively, most other690

related studies use at most 250 data points for labeling, while we used 800.691

It is evident that studies claiming excellent performance of supervised ML for pore692

typing have not fully considered the true complexity of the task and instead report the693

results of highly curated datasets (Abedini et al., 2018; Borazjani et al., 2016; Ghiasi-694

Freez et al., 2012; Mollajan et al., 2016; Z. Wang et al., 2022). We expect that this re-695

search avenue will continue to grow exponentially given the importance of automated696

pore-typing for a multitude of value-generating processes, mainly as we are well into the697

era of big data. Besides data curation, most related studies have only used a fraction of698

our ground truth size to build their models, which cannot be considered representative699

and will only exacerbate model accuracies (Abedini et al., 2018; Borazjani et al., 2016;700

Ghiasi-Freez et al., 2012; Mollajan et al., 2016; Z. Wang et al., 2022).701

4.4.2 Possible weaknesses within the projection method702

Another potential explanation for the lack of separation within the unlabelled data703

is the problematic nature of PCA with respect to the visualization of the feature space.704

While PCA is the most popular dimensionality-reduction approach within the scientific705

literature, it is also the weakest in projecting the true distances between points in 2D706

(Van Der Maaten et al., 2009; Thrun, 2018). In essence, large distances between points707

in feature space may appear close in the 2D-projected PCA space as PCA only rotates708
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the data points to the axis containing the greatest variance. Unlike non-linear projec-709

tion methods, such as Connected Components Analysis (CCA), t-distributed Stochas-710

tic Neighbor Embedding (t-SNE), and Multi-dimensional Scaling (MDS), PCA does not711

disaggregate the data into clusters (Van Der Maaten et al., 2009; Thrun, 2018; Thrun712

& Ultsch, 2021). Therefore, PCA would unlikely display clusters unless the feature space713

already contains appreciable clustering within the higher dimensions. Hence, it can be714

argued that the unlabelled feature space may contain clusters by pore type that are col-715

lapsed into one another within the PCA space. It should be noted, however, that the density-716

based DBSCAN method only showed one cluster for the unlabelled data (Fig. S4b), and717

k-means only managed to bisect the cloud through its centroid (Fig. S4a). Both results718

are independent of the projection and suggest that there is no discernible separation be-719

tween the classes in the global feature space, which makes the use of any projection method720

moot for this case.721

4.4.3 Dataset Size722

Another factor that may have contributed to disparities in separability between the723

labeled and unlabeled data is the limited size of the dataset (18 images / 20060 objects),724

which cannot be considered representative of carbonates. Several pore types commonly725

observed in carbonate studies, such as interparticle pores, intraparticle molds, and chan-726

nels, were limited in quantity, meaning that random sampling emphasized the more dom-727

inant intercrystalline pores and vugs. Including the former pores would potentially have728

resulted in a more complex feature space in the labeled dataset and be more represen-729

tative of the range of pore types observed within carbonate rocks. Indeed, even the ob-730

served spectrum of pore types within the 18 thin sections studied herein was not fully731

representative, as only 2% of the available pores were selected as ground truth compared732

to approximately 90% in the case of microfractures, thereby making this study more rep-733

resentative of the latter. Barring a community-wide effort, scant ground truth datasets734

for pore typing will likely continue to be a significant bottleneck for quantitative pore735

typing studies in carbonate lithologies.736

4.4.4 Fragmentation of microfractures737

Another likely cause for the separation in the labeled data was the microfractures’738

fragmentation due to the scans’ poor resolution. Several curved and branching microfrac-739

tures were fragmented into smaller, more linear segments, resulting in a disproportion-740

ate number of linear and curvilinear microfractures (Fig. S1). This over-simplification741

of complex microfracture networks masked the true complexity of the feature space. The742

geometric complexity of microfractures would be honored more accurately with higher-743

resolution scans, allowing the power of supervised ML models to be benchmarked more744

effectively. Spatial aliasing of fractures from image datasets is a ubiquitous issue related745

to their characterization (Seers & Hodgetts, 2014; Biber et al., 2018). We expect that746

the related literature also faced similar challenges related to resolution-dependent cen-747

soring of fracture networks reported herein, though it did not address it explicitly.748

4.5 Study Design Issues in Related Studies749

However, the larger problem with the related studies is that they bypass the sep-750

aration of microfractures and pores and directly classify pores into their sub-classes (Ta-751

ble S1). We show that there is heavy overlap between the pore types within the simple752

shape feature space, thus raising questions on the predictive accuracies of the proposed753

models in the literature. Again, the current dataset does not contain several pore types754

that share morphological similarities with microfractures, such as interparticle pores and755

channels, which would further convolute the feature space utilized for pore classification756

herein.757
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A related problem with most studies is that they do not explain the importance758

of the simple shape features in the ML models. The fact that all related studies re-use759

the same features without any explanation of their importance to the models only prop-760

agates poor practices in the field. For example, extent is commonly utilized within au-761

tomated pore typing studies (Table S1). However, we report that extent was the least762

informative feature across all models (i.e., based on the Shap values: Fig 9 and S9), due763

to its sensitivity to rotation violating the rotation-invariance requirement of shape fea-764

tures (Loncaric, 1998). While extent contains information on the complexity of the pore,765

as more complex pores take up a smaller portion of the bounding box, the rotation sen-766

sitivity means that solidity offers a more attractive alternative.767

Finally, most related studies lack robust supervised ML methodologies (Abedini768

et al., 2018; Borazjani et al., 2016; Ghiasi-Freez et al., 2012; Mollajan et al., 2016; Shar-769

ifi, 2022; Z. Wang et al., 2022). Feature selection appears to be related more to the ease770

of acquisition rather than any proven utility. Most studies do not undertake visualiza-771

tion of the data in hyperspace using PCA (Abedini et al., 2018; Borazjani et al., 2016;772

Ghiasi-Freez et al., 2012; Mollajan et al., 2016; Z. Wang et al., 2022), thereby obfuscat-773

ing the underpinning drivers of their reported excellent model accuracies. Almost all re-774

lated studies do not furnish details on hyperparameter tuning, perhaps as the default775

parameters produce excellent results (Abedini et al., 2018; Borazjani et al., 2016; Ghiasi-776

Freez et al., 2012; Mollajan et al., 2016; Z. Wang et al., 2022). Also, there needs to be777

more comparison across several different models, particularly with simpler classifier paradigms,778

to provide a baseline performance (Table S1).779

4.6 Moving Forward780

The classification of microfractures and pores is still a complex problem that re-781

quires attention. Given that these features are ostensibly geometric end members, it is782

more prudent to approach this problem prior to drawing finer distinctions in pore types783

using multiclass ML frameworks. Macrofracture segmentation studies follow this tem-784

plate with emphasis on extracting the macrofractures in microCT models by all possi-785

ble means, with the other class inherently being pores (Lee et al., 2021). Ideally, enhanc-786

ing the separation of microfractures and pores into natural clusters in the feature space787

should be prioritized. The presence of natural clusters would enable the use of unsuper-788

vised clustering models directly on the dataset or even on the dimensionally reduced pro-789

jection (referred to as projection-based clustering) (Van Der Maaten et al., 2009; Thrun,790

2018; Thrun & Ultsch, 2021). An unsupervised approach is scalable and has the added791

benefit of not requiring labeled data. However, natural clustering in the feature space792

is not likely using simple shape features. We hypothesize that more complex shape fea-793

tures such as the contour-based Fourier descriptors and region-based invariant moments794

(invariant Hu moments and Zernike moments) might create better separations in hyper-795

space, albeit with an attendant decrease in explainability of the features (Neal & Russ,796

2012; Singh et al., 2021). It is also possible that in concert with more complex features,797

more powerful methods of dimensionality-reduction, such as CCA, MDS, and t-SNE, may798

enhance the presence of natural clusters for projection-based clustering (Thrun, 2018;799

Thrun & Ultsch, 2021). We note that a DL approach would likely offer the best results;800

however, to be feasible, it would require data sharing and ground truth labeling on a hith-801

erto unprecedented scale within the geoscience community. It is pertinent to not only802

have a global representation of pore and microfracture types but also of a range of in-803

struments with different acquisition parameters to ensure the generalizability of the clas-804

sifiers. It would also require a community effort to find the best shape features and AI805

models, potentially borrowing from equivalent studies within the fields of computer vi-806

sion and bioinformatics, for example, where similar applications of supervised and un-807

supervised machine learning towards object clustering and classification from image data808

is already mature (Butler et al., 2018; Chen et al., 2019; Doerr & Florence, 2020; Stafford809

et al., 2020; Urbanowicz et al., 2020; A. Y.-T. Wang et al., 2020). Studies utilizing lim-810
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ited data, such as the present study, are likely to succumb to the problems of lack of rep-811

resentation, selection bias, and technical issues related to the imaging process, which can812

be conveniently masked by overly optimistic results that cannot be translated to other813

datasets (Sun et al., 2009).814

The findings of this study serve as a benchmark for ideal datasets with limited scope815

of pore types. Even simple linear models such as MLR and LDA can perform excellently816

within such scenarios. However, we argue that the overly optimistic results from related817

supervised ML studies using only simple shape features are more reflective of the sam-818

pling process than the underlying geometric complexity of the pore system. We also em-819

phasize the methodological requirement of measuring the feature importance based on820

the PCA loadings and their Shap values per model. This essential exploratory data anal-821

ysis step will ensure that only the most important features will be carried forward into822

future studies rather than needlessly recycled.823

5 Conclusions824

All the tested supervised models performed excellently in discriminating between825

microfractures and pores, with testing accuracies approaching 90% for all models. No-826

tably, all tested supervised models exhibited near identical performance, indicating a sig-827

nificant separation between the two classes in hyperspace such that a linear boundary828

was adequate. The presence of a linear decision boundary was further supported by PCA829

visualization of the hyperspace and the systematic misclassification of bivalve molds as830

microfractures. However, upon comparing the feature spaces of the labeled data and the831

overall dataset, it is apparent that the labeled feature space presented a highly sanitized832

version of the larger dataset despite efforts toward the development of an objective sam-833

pling scheme. The sanitized dataset converted a complex problem requiring complex non-834

linear decision boundaries to a simple, linearly separable problem. While our study can835

provide a useful benchmark for those that contain more idealized datasets with limited836

microfracture and pore types, we demonstrate that the pore-typing problem is more com-837

plex than postulated by the related literature. Finally, we report that, contrary to ex-838

pectations, compactness contributed more towards the ML classification of microfrac-839

tures from pores than aspect ratio, as compactness only approximates one measure of840

the object compared to the two metrics approximated by aspect ratio. These results serve841

as a useful template for future studies on this first-order challenge of separating microfrac-842

tures and pores and on higher-order challenges involving more complex multiclass pore843

typing.844

6 Open Research845

The image data used for the classification in the study and the R code developed846

are published at the GitHub repository for this study via https://github.com/issacsujay92/Microfractures-847

And-Pores-ML with no restriction on usage. The entire code was developed in R (ver-848

sion 4.2.1) (R Core Team, 2022) using the RStudio IDE. Figures were made using gg-849

plot2 package (Wickham, 2016). The ML models were run using ’caret’ version 6.0.93850

(Kuhn, 2022). Data analytics and visualizations were implemented using the following851

packages: ’tidyverse’ (Wickham et al., 2019), ’MASS’ (Venables & Ripley, 2002), ’fac-852

toextra’ (Kassambara & Mundt, 2020), ’FactoMineR’ (Lê et al., 2008), ’ggfortify’ (Tang853

et al., 2016), ’GGally’ (Schloerke et al., 2021), ’klaR’ (Weihs et al., 2005), and ’reshape2’854

(Wickham, 2007). Model performance evaluation was implemented using the ’MLeval’855

package (John, 2020). fastshap (Greenwell, 2021), and shapviz (Mayer, 2023) were es-856

sential to implementing and visualizing the Shap values for the ML models.857
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Introduction  

We expand on the methodological decisions made for our study. We also provide brief 

descriptions on the conceptual underpinnings of the supervised models used for our 

study. In addition, we include the results of the unsupervised clustering algorithms we 

tested (K-means and DBSCAN) as our study was limited to supervised models in scope. 

Univariate analytics on the simple shape features per secondary pore types is provided 

as well. 
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Text S1. 

Pre-processing of the Images 

Denoising 

The kernel size of the non-local means filter was automatically estimated using the 

approach of Immerkaer (1996), with the smoothness factor maintained at a value of one 

for all images to limit over-smoothing of edges. 

 

Sharpening 

A standard unsharp mask radius of 1 with a mask value of 0.7 was applied for all 

images, using the built-in unsharp mask filter within Fiji. The pre-processed images after 

both denoising and sharpening are included in the dataset attached to this study. 

 

Segmentation 

To increase the connectivity of the microfractures, a more aggressive form of 

segmentation was pursued. The segmentation protocol implemented was performed in 

two phases. The first phase was manual thresholding of the blue epoxy impregnated 

pixels in the HSB (Hue, Saturation, Brightness) color space. The blue hue corresponding 

to the epoxy was delineated within 120 to 180, with the saturation unaltered. The lower 

threshold for brightness was decreased to accommodate all the blue epoxy, with values 

ranging from 30 to 255. The quality of the segmentation was evaluated visually in real 

time and parameters tuned accordingly. The second phase involved thresholding in the 

CIELAB color space. CIELAB color space is a device-independent method to objectively 

classify colors, where L stands for lightness, A for the continuum from red to green, and 

B for the continuum from blue to yellow (Mlynarczuk et al., 2013). Since the 

microfractures were filled with blue epoxy, the B channel was especially sensitive. The 

image was first converted from RGB to LAB color space using a Fiji built-in tool. The B 

channel was extracted and a simple contrast enhancement was needed to binarize the 

image. Both segmentation steps were performed independently. The post-processing 

pipeline was conducted on both the HSB and LAB binary masks in parallel, as shown in 

Fig. 2a. 

 

Combining the Processed HSB and CIELAB Binary Masks 

The post-processed binary masks from both color spaces were then added together 

using the Image Calculator tool in Fiji. The combination of both segmentations did not 

offer a significant boost in terms of pore connectivity as in both cases the segmentation 

results were similar, with the HSB binary mask offering visibly better results. Instead, the 

greatest effect was observed in microfractures as several individual microfractures which 

were disjointed from HSB thresholding displayed improved continuity in the composite 

image (Fig. S2). The microporous matrix zones and microporous grains were segmented 

as macropores as a byproduct of the aggressive segmentation. Additionally, the large 

quantities of these zones rendered manual masking impracticable. For this study, they 
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were approximated as pores, which is not entirely unreasonable for grain molds and 

small patches of blue haze in terms of shape. However, larger microporous patches are 

among the major artifacts present in the data. Moreover, the thin sections used herein 

were not purposed for digital image analysis and as such contain damage of different 

forms such as pen markings and microsampling scratches amongst others. However, due 

to their limited quantities these scene artifacts were removed using manual masking.  

 

Feature Extraction 

Labelling of the binary masks was performed in Python using the ‘Connected 

components’ function with 8-connect from the OpenCV library. The ‘regionprops’ 

function from the sci-kit image library was used to extract size and shape features of 

each object (Table 1). Two associated features metrics that require special mention are 

the major and minor axes of the best-fitting ellipse. These axes were fit using the 

normalized second central moments of the object, which is a region-based approach. 

Region-based approaches are generally more robust than contour-based approaches as 

the area of the object is less sensitive to noise (Mulchrone and Choudhury, 2004; Neal 

and Russ, 2012). The ‘regionprops’ features are mostly related to object size. This 

required supplementing with shape features engineered from these size metrics. Feature 

engineering was performed in the R programming language based on derivations laid 

out in Neal and Russ (2012) and Weger (2006). Engineered features were selected based 

on their popularity in the geological community (Anselmetti et al., 1998; Weger, 2006; 

Weger et al., 2009; Norbisrath et al., 2015; Abedini et al., 2018; Borazjani et al., 2016; 

Ghiasi-Freez et al., 2012; Mollajan et al., 2016; Sharifi et al., 2022; Wang et al., 2022). 

 

Clustering Algorithms 

The objective of clustering algorithms is to group similar datapoints into discrete 

clusters. Two independent clustering algorithms: k-means and DBSCAN, were utilized to 

check for the presence of natural clusters in the feature space, ideally corresponding to 

microfractures and pores. The clustering algorithms were applied directly on the data. 

Hierarchical clustering was ignored for this study on conceptual and practical grounds. 

Conceptually, the objects do not necessarily follow a hierarchy, so this form of clustering 

is not appropriate. From a practical perspective, hierarchical clustering is also 

computationally expensive for large datasets such as the one in this study. 

 

K-means Clustering 

K-means was chosen as it is one of the most widely used clustering algorithms 

(James et al., 2021). As K-means is distance-based, it uses distance mapping to measure 

the distances between each of the ‘n’ datapoints to each other within the feature space. 

It then attempts to minimize the total inter-cluster distance of all clusters (James et al., 

2021). The number of clusters K = 2 was selected since this study is a binary classification 

problem. K-Means clustering was implemented using the ‘kmeans’ function from the 

‘stats’ library with euclidean distance mapping. The resultant clustering was visualized via 

PCA, as the feature space exceeded three dimensions, with the boundary of the clusters 

defined via their convex hull (Fig. S4a). It can be observed in Fig. S4a that the k-means 
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algorithm essentially bisected the point cloud, which typically indicates a lack of natural 

clusters (Thrun, 2018; Thrun, 2021). 

 

DBSCAN Clustering 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) was first 

proposed by Ester et al. (1996). The most significant advantages of this method 

compared to K-means are that it is not necessary to predefine the number of clusters 

and is significantly more robust to the presence of outliers (Schubert et al., 2017). 

DBSCAN attempts to classify the densest clusters with lower density collections of points 

potentially classed as outliers. This method contains two definable parameters: the 

cluster radius (epsilon), and the minimum number of points each cluster should contain 

to be considered a viable group (cluster density). Any point with the number of 

neighbors greater than the minimum points is considered a core point. Any point that 

does not have the threshold minimum points but is part of another core point 

neighborhood is designated a border point. If a point is neither core nor border, it is 

considered an outlier. For this study, the epsilon value (ε = 0.4) was determined by 

identifying the elbow of a 5-NN plot. The DBSCAN results in Fig. S4b show a single 

dense cluster with a few outliers, which supports the lack of natural clusters within the 

feature space. 

 

Supervised ML 

This section furnishes details on the conceptual underpinnings of each of the 

supervised ML models used in this study. Further details on each model can be found in 

Kuhn (2013) and James et al. (2021). The tested models can be broadly classified into two 

categories: linear and non-linear. Linear models generate linear decision boundaries in 

high-dimensional feature space, whereas non-linear models create non-linear decision 

boundaries, such as polynomial, radial, and more complex non-parametric curves. 

 

Linear Models 

Multiple Logistic regression (MLR) is designed for binary classification problems 

(Kuhn, 2013; James et al., 2021), where ‘multiple’ refers to the features used to train the 

model. Is based upon the concept of the logistic function, where the probability of 

classifying datapoints into the two classes resembles an S-shaped curve from 0 to 1. The 

logistic function is fit using maximum likelihood estimation. A major benefit of MLR is 

that it does not contain any tuning parameters, as the maximum likelihood estimate of 

the logistic function will provide the best possible model. 

Linear Discriminant Analysis (LDA) and MLR only differ in their fitting procedure: 

whilst MLR uses maximum likelihood estimation for finding the best fitting model, LDA 

utilizes the Bayes’ theorem. LDA assumes that the datapoints of each class belong to a 

Gaussian distribution, with all classes sharing a common covariance matrix. It is 

important to note that MLR does not require that the datapoints be drawn from 

multivariate Gaussian distributions and can potentially outperform LDA if the 

assumptions are unmet (James et al., 2021). 
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Non-Linear Models 

Quadratic Discriminant Analysis (QDA) is similar to LDA in that it assumes the 

datapoints have been drawn from multivariate Gaussian distributions with the exception 

that each of the classes is considered to have its own covariance matrix. This difference 

results in a quadratic decision boundary. The greater flexibility in shape means that QDA 

has lower bias compared to LDA, although this typically comes at a cost of higher 

variance (James et al., 2021). Like MLR and LDA, QDA does not possess any tuning 

parameters. 

 

Naive-Bayes, just like LDA, and QDA, is part of a family of models based on the 

Bayes’ theorem. The ‘Naive’ refers to the classifier’s assumption that each of the input 

features are uncorrelated to each other, which in this study and most other cases, is a 

flawed assumption. The Naive-Bayes implementation used in this study has three tunable 

parameters: namely the Laplace correction, distribution type, and the bandwidth 

adjustment. 

 

K-nearest neighbors (KNN) is one of the simplest models commonly deployed for 

classification (Murphy, 2022). KNN classifies a datapoint as belonging to a certain class 

based on the classes of the datapoints closest to it. Thus, it does not depend on the 

underlying distributions of the classes, and is therefore non-parametric (James et al., 

2021). The only tuning parameter for KNN is the number of neighbours (K) to each 

datapoint. The number of neighbors has to be odd to ensure a tiebreaker in the case of 

binary classification. Choosing the optimum K is non-trivial. If the number of neighbors 

chosen is too low, then there is a greater chance of. Conversely, if the number of 

neighbors is too high then decision boundaries are too general, potentially leading to 

underfitting. 

 

Random Forest (RF) is an ensemble method that is based on aggregating the votes 

of several decision trees (Breiman, 2001; Kuhn, 2013). For each split of a decision tree, RF 

only allows a subset of the features to be selected. This restriction ensures that features 

that strongly influence the datapoints will not be preferred as several trees will not have 

the option to select it. Essentially, RF decorrelates the trees and therefore makes the 

results more reliable (Kuhn, 2013). The implementation of RF chosen only had one 

tunable parameter: the number of randomly selected predictors available for each tree 

split. 

 

Support Vector Machines (SVM) were first proposed by (Cortes and Vapnik, 1995). 

This family of classifiers are the most complex models tested in this study. SVMs have 

two notable features: firstly, they are inherently binary classifiers, and secondly, they 

create linear hyperplanes (Murphy, 2022; Kuhn, 2013). SVM initiates by identifying 

datapoints of opposing classes proximal to one another. It then attempts to find the 

hyperplane that is equidistant from both sets of points, known as the maximum margin 

hyperplane. The opposing datapoints used to create this hyperplane are referred to as 

the support vectors. By this definition, SVMs are linear classifiers, but have been adapted 
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to create non-linear decision boundaries. Three SVM models are used in this study; linear 

SVM, SVM with radial basis function, and SVM with polynomial kernel. The linear SVM 

only has one tunable parameter: the cost. The radial SVM has two parameters: sigma and 

cost. The polynomial SVM has three parameters: the degree, scale, and cost. 

 

Hyperparameter Optimization 

For models which did not have any tunable hyperparameters, such as MLR, LDA, 

and QDA, the training was conducted using 10-fold cross-validation repeated 10 times 

with accuracy used as the metric. For models which contained tunable hyperparameters, 

a grid search technique was employed for each of the hyperparameters, with 10-fold 

cross-validation repeated 10 times applied to each set of hyperparameters. 

Hyperparameters for each model (if present), and the selected values are presented in 

Table S2. The hyperparameter optimization curves for each of the models are shown in 

Fig. S5. 

 

Feature Importance using Shap Values 

Shapley values were used to test the hypothesis regarding the importance of aspect 

ratio with respect to the other shape features in supervised ML models. Shapley values 

were first introduced by Lloyd Shapley in 1953 (Shapley, 1953) to fairly distribute 

winnings between players based on their contribution to the game. The two pillars of 

Shapley values are additivity, where the sum of the winnings of each player must equal 

the total winnings, and fairness, where the highest performers cannot receive a lower 

share than the lowest performers. A concise explanation of the mechanism is as follows; 

in a scenario containing 4 players, in order to identify the importance of Player 1, all 

possible subsets of the players are made with and without Player 1. In the subset 

containing Player 1, the amount Player 1 receives is calculated, and in the subset without 

Player 1, the other players share Player 1’s winnings. The difference between the 

amounts of both subsets gives the marginal contribution of Player 1, and therefore the 

overall importance of Player 1. Shapley values were theoretically proven as the fairest 

possible manner to distribute winnings. Lundberg et al. (2017) appropriated this concept 

from cooperative game theory into artificial intelligence (AI) to impute the importance of 

input features within black-box models (a field now known as ‘Explainable AI’). To 

differentiate from its usage in game theory, the authors coined the term Shap values. 

Some models such as MLR and Random Forest have built-in variable importance 

measures. For MLR it is the magnitude of the coefficient, whereas Random Forest 

computes variable importance from the mean decrease in Gini impurity at each split of 

the decision trees, as well as the mean decrease in overall out-of-bag accuracy. However, 

most models do not provide this information and are effectively black boxes. Shap values 

are advantageous in that they are model-agnostic and retroactive with respect to the 

model building process, offering an external check used to explain the feature 

contributions to the predictions. It is important to note that Shap values calculate the 

local importance of features, which is the importance of a particular feature to a specific 

subset of datapoints. An aggregation is performed to provide the global importance of 

each feature with regards to the entire dataset. 
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Figure S1. Fragmentation of microfractures from the thin section images. The red 

outlines indicate the segmented portions of the microfracture. 
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Figure S2. Composites of the HSB and LAB binary masks. Red signifies the HSB binary 

mask, green is the LAB binary mask, and yellow is the union of both masks. The HSB 

mask displays a stronger segmentation overall, but the LAB mask provides a notable 

boost in connectivity. 
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Figure S3. Univariate distributions of the shape features for the raw global dataset, the 

raw labelled dataset, and the transformed labelled dataset. 
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Figure S4. (a) Result of k-means on the global dataset. (b) Result of DBSCAN on the 

global dataset. 
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Figure S5. Hyperparameter optimization visualizations for the supervised ML models. 

MLR, LDA, and QDA did not contain any tunable hyperparameters and hence not 

included. 
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Figure S6. Learning curves for all the supervised models. Random forest was the only 

model which showed overfitting as the training accuracy was constantly 100% with the 

resampling accuracy significantly lower. 
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Figure S7a. Boxplot of aspect ratio ranges for the secondary labels of pore and 

microfracture types. 

 

 

Figure S7b. Boxplot of extent ranges for the secondary labels of pore and microfracture 

types. 
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Figure S7c. Boxplot of formfactor ranges for the secondary labels of pore and 

microfracture types. 

 

 

Figure S7d. Boxplot of compactness ranges for the secondary labels of pore and 

microfracture types. 
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Figure S7e. Boxplot of solidity ranges for the secondary labels of pore and microfracture 

types. 
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Figure S8. Probability of microfracture prediction per secondary label for each 

supervised model. The dashed line represents the 50% decision threshold, any objects 

above 50% are classified as microfractures and any object below the threshold are 

classified as pores. 
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Figure S9. Probability of microfracture prediction per secondary label for each 

supervised model. The dashed line represents the 50% decision threshold, any objects 

above 50% are classified as microfractures and any object below the threshold are 

classified as pores. 
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Table S1. Studies on automated pore typing using AI. 

Table S2. List of hyperparameters for each supervised ML model and the final values 

chosen. 

Model 

Number of 

hyperparameters Hyperparameters Final values 

MLR 0 - - 

LDA 0 - - 

QDA 0 - - 

kNN 1 Number of neighbours (k) k = 3 

Naive-

Bayes 

3 Laplace (fL), Kernel, 

bandwidth adjust (BA) 

fL = 2, 

Kernel = 

True, BA = 2 

Random 

Forest 

1 Number of randomly 

selected variables at each 

split (mtry) 

mtry = 2 

Linear SVM 1 Cost (C) C = 0.3 

Radial SVM 2 Cost (C) and Sigma C = 22.63, 

Sigma = 

0.04 

Polynomial 

SVM 

3 Cost (C), degree of 

polynomial, and scale 

C = 0.974 , 

degree = 4, 

scale = 0.1 

 

 

Data Set S1. Image data for the study. 




