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Abstract

In the past decade, two large marine heatwaves (MHWs) formed in the northeast Pacific near Ocean Station Papa (OSP),

one of the oldest oceanic time series stations. Physical, biogeochemical and biological parameters observed at OSP from 2013

to 2020 are used to assess ocean response and potential impacts on marine life from the 2019 northeast Pacific MHW. The

2019 MHW was preceded by calm and stratified surface conditions, lower dissolved inorganic carbon, and higher pH of surface

waters relative to the 2013-2020 period. A spike in the summertime chlorophyll followed by a decrease in surface macronutrients

suggests increased productivity in the well-lit stratified upper ocean during summer 2019. More blue whale calls were recorded

at OSP in 2019 compared to the prior year. Large subsurface temperature anomalies were also found, suggesting that the

earlier northeast Pacific MHW (2013-2015, previously referred to as “Blob”) as well as the long-term increase in sea surface

temperatures in the region contributed to the intensity of the 2019 MHW. This study shows how the utility of long-term,

continuous oceanographic datasets and analysis with an interdisciplinary lens is necessary to understand the potential impact

of MHWs on marine ecosystems.

Hosted file

966833_0_art_file_11117468_rw6l8c.docx available at https://authorea.com/users/633226/

articles/651717-the-2019-marine-heatwave-at-ocean-station-papa-a-multi-disciplinary-

assessment-of-ocean-conditions-and-impacts-on-marine-ecosystems

Hosted file

966833_0_supp_11117438_rwcjd4.docx available at https://authorea.com/users/633226/articles/

651717-the-2019-marine-heatwave-at-ocean-station-papa-a-multi-disciplinary-assessment-

of-ocean-conditions-and-impacts-on-marine-ecosystems

1

https://authorea.com/users/633226/articles/651717-the-2019-marine-heatwave-at-ocean-station-papa-a-multi-disciplinary-assessment-of-ocean-conditions-and-impacts-on-marine-ecosystems
https://authorea.com/users/633226/articles/651717-the-2019-marine-heatwave-at-ocean-station-papa-a-multi-disciplinary-assessment-of-ocean-conditions-and-impacts-on-marine-ecosystems
https://authorea.com/users/633226/articles/651717-the-2019-marine-heatwave-at-ocean-station-papa-a-multi-disciplinary-assessment-of-ocean-conditions-and-impacts-on-marine-ecosystems
https://authorea.com/users/633226/articles/651717-the-2019-marine-heatwave-at-ocean-station-papa-a-multi-disciplinary-assessment-of-ocean-conditions-and-impacts-on-marine-ecosystems
https://authorea.com/users/633226/articles/651717-the-2019-marine-heatwave-at-ocean-station-papa-a-multi-disciplinary-assessment-of-ocean-conditions-and-impacts-on-marine-ecosystems
https://authorea.com/users/633226/articles/651717-the-2019-marine-heatwave-at-ocean-station-papa-a-multi-disciplinary-assessment-of-ocean-conditions-and-impacts-on-marine-ecosystems


manuscript submitted to Journal of Geophysical Research: Oceans 

 

1 
The 2019 Marine Heatwave at Ocean Station Papa: A multi-disciplinary assessment 2 
of ocean conditions and impacts on marine ecosystems 3 
 4 
Catherine Kohlman1*, Meghan F. Cronin2, Robert Dziak3, David Mellinger3, Adrienne 5 
Sutton2, Moira Galbraith4, Marie Robert4, Jim Thomson5, Dongxiao Zhang2,6, and LuAnne 6 
Thompson1 7 
 8 
1University of Washington, School of Oceanography, Seattle, WA, USA 9 
2National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory, 10 
Seattle, WA, USA 11 
3National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory, 12 
Newport, OR, USA 13 
4Fisheries and Oceans Canada, Institute of Ocean Sciences, BC, Canada 14 
5University of Washington, Applied Physics Laboratory, Seattle, WA, USA 15 
6University of Washington, Cooperative Institute for Climate, Ocean, and Ecosystem Studies, 16 
Seattle, WA, USA 17 
 18 
* Correspondence: Catherine Kohlman (kohlman@uw.edu) 19 

Key Points: 20 

• The 2019 northeastern Pacific marine heatwave had various offshore physical, 21 
biogeochemical, and biological impacts.  22 

• Warm subsurface temperature anomalies suggest a connection between the 2013-2015 23 
“Blob” and the 2019 “Blob2.0” marine heatwaves. 24 

• Long-term multidisciplinary observing systems are necessary to provide a holistic view 25 
of extreme events.  26 

  27 
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Abstract 28 

In the past decade, two large marine heatwaves (MHWs) formed in the northeast Pacific near 29 
Ocean Station Papa (OSP), one of the oldest oceanic time series stations. Physical, 30 
biogeochemical and biological parameters observed at OSP from 2013 to 2020 are used to assess 31 
ocean response and potential impacts on marine life from the 2019 northeast Pacific MHW. The 32 
2019 MHW was preceded by calm and stratified surface conditions, lower dissolved inorganic 33 
carbon, and higher pH of surface waters relative to the 2013-2020 period. A spike in the 34 
summertime chlorophyll followed by a decrease in surface macronutrients suggests increased 35 
productivity in the well-lit stratified upper ocean during summer 2019. More blue whale calls 36 
were recorded at OSP in 2019 compared to the prior year. Large subsurface temperature 37 
anomalies were also found, suggesting that the earlier northeast Pacific MHW (2013-2015, 38 
previously referred to as “Blob”) as well as the long-term increase in sea surface temperatures in 39 
the region contributed to the intensity of the 2019 MHW. This study shows how the utility of 40 
long-term, continuous oceanographic datasets and analysis with an interdisciplinary lens is 41 
necessary to understand the potential impact of MHWs on marine ecosystems.  42 

Plain Language Summary 43 

Marine heatwaves (MHWs) are extremely warm temperature events in the ocean. In 2019, a 44 
MHW occurred in the northeastern Pacific, and we utilized Ocean Station Papa (OSP), a 45 
multidisciplinary observing system in the Gulf of Alaska, to present the physical, 46 
biogeochemical, and biological impacts. Prior to reaching the MHW’s peak surface 47 
temperatures, the upper ocean exhibited a calm and stratified state, which facilitated the 48 
occurrence of exceptionally high sea surface temperatures. During and after the extreme surface 49 
temperatures were observed at OSP, warm water was present well below the surface, extending 50 
throughout the water column. Prior to the MHW’s peak surface temperatures, we also observed 51 
indications of increased primary productivity through observed spikes in chlorophyll levels and 52 
reductions in nutrient concentrations. Due to data limitations, the connection between this 53 
heightened primary productivity and higher trophic levels remains unclear. Our study 54 
demonstrates the necessity of adopting holistic perspectives when seeking to understand the 55 
complexities of MHWs. 56 

1 Introduction 57 

Prolonged extreme sea surface temperature (SST) anomalies, or marine heatwaves 58 
(MHWs) (Hobday et al., 2016), are known to have a cascade of impacts on the ocean’s physics, 59 
biogeochemistry, ecosystem and marine life. MHWs are often examined using either models or 60 
satellite SST (Amaya et al., 2020; Bond et al., 2015; Capotondi et al., 2022; Holbrook et al., 61 
2019), ocean color (Hayashida et al., 2020; Noh et al., 2022), gridded subsurface data (Scannell 62 
et al., 2020) or disparate observations (Bond et al., 2015). Here, we examine the 2019 MHW in 63 
the northeast (NE) Pacific using a long-term ocean time series from the Ocean Station Papa 64 
(OSP) observing node located near the epicenter of the NE Pacific MHWs. The meteorological, 65 
physical, biogeochemical, and lower and higher trophic biological data enable us to consider the 66 
connections that can result in widespread biogeochemical and ecosystem impacts. 67 
  68 

In the recent decade, two notable MHWs (Hobday et al., 2016) have been observed in the 69 
NE Pacific surrounding OSP. In the winter of 2013/2014, a MHW named the “Blob” was 70 
observed and persisted well into 2015 (Bond et al., 2015) with subsurface temperature and 71 
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salinity anomalies lingering until 2018 (Scannell et al., 2020). The main drivers of the 2013-2015 72 
MHW were weaker surface winds that resulted in weaker than normal surface heat loss and 73 
weaker cold advection (Bond et al., 2015). Teleconnections from the Tropical Pacific likely 74 
forced these atmospheric anomalies (Bond et al., 2015; Capotondi et al., 2022; Di Lorenzo & 75 
Mantua, 2016; Hartmann, 2015; Holbrook et al., 2019; Holbrook et al., 2020). Based upon OSP 76 
biogeochemical observations from 2007 through 2018, Mogen et al. (2022) suggest that these 77 
2013-2015 MHW drivers were also responsible for an observed decrease in surface oxygen (O2) 78 
and dissolved inorganic carbon (DIC). The upper ocean changes associated with the 2013-2015 79 
MHW had pronounced coastal and offshore impacts on marine biodiversity, ecosystems, and 80 
fishery economics (Bond et al., 2015; Cheung & Frölicher, 2020; Holbrook et al., 2019; Long et 81 
al., 2021; Smale et al., 2019). 82 
  83 

In 2019, after the SST anomalies of the 2013-2015 MHW dissipated, the NE Pacific 84 
experienced another MHW, referred to as the “Blob2.0” (Amaya et al., 2020). Similar to the 85 
2013-2015 MHW, the 2019 MHW appeared to be driven in part by reduced surface-level winds 86 
resulting from large-scale atmospheric anomalies (Amaya et al., 2020). The 2019 MHW peaked 87 
in the summer and had larger SST anomalies than the 2013-2015 MHW owing to positive net 88 
surface heat fluxes and a record shallow mixed layer (Amaya et al., 2020). The entire water 89 
column was fresher and more stratified than in the 2013-2015 MHW, and the 2019 MHW was 90 
believed to be supercharged by reemerged subsurface temperature anomalies from the 2013-91 
2015 MHW (Scannell et al., 2020). 92 
  93 

Located at 50°N, 145°W, 1200 km offshore of Vancouver Island, B.C. Canada, OSP 94 
(Figure 1) is site of one of the oldest multi-disciplinary time series (Harrison, 2002; Whitney & 95 
Freeland, 1999; Whitney et al., 1998) and is just north of the centers of the two aforementioned 96 
MHWs (Figure 2ab). From 1949 through 1981 it was occupied by a weathership and since 1956, 97 
the Canadian Department of Fisheries and Oceans (DFO) Line P Program has made ship-based 98 
oceanographic observations at OSP and along a transect from the coast to OSP. At present, Line 99 
P ship-based observations are taken three times a year – typically in February, June and August 100 
(Freeland, 2007). The NOAA Pacific Marine Environmental Laboratory (PMEL) Ocean Climate 101 
Station (OCS) surface mooring time series began at OSP in June 2007. In 2010, a Waverider 102 
surface mooring was deployed at OSP by the University of Washington (UW) Applied Physics 103 
Laboratory (APL). In 2015, OSP was enhanced to become a global node of the National Science 104 
Foundation (NSF) Ocean Observatory Initiative (OOI), with the deployment of two flanking 105 
subsurface moorings and a subsurface profiling mooring. In 2015, NOAA deployed a Noise 106 
Reference Station (NRS) that records passive acoustics for monitoring whales and other marine 107 
mammals. Together, these time series allow for multi-disciplinary studies to understand the 108 
evolution and impacts surrounding extreme events, such as MHWs. 109 
 110 
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 111 
Figure 1. Illustration of the operational components of Ocean Station Papa and their respective 112 
names and locations. Credit: Sarah Battle, NOAA/PMEL graphic adapted from original by the 113 
Ocean Observatories Initiative. 114 
  115 

In this study, we use OSP as an open ocean natural laboratory to explore the ocean’s 116 
physical, chemical, and biological responses to the 2019 MHW forcing. We present a holistic 117 
study of the 2019 MHW that analyzes the surface and subsurface temperature and stratification 118 
anomalies, including the recovery from the 2013-2015 MHW. We examine the potential 119 
relationships between the increased surface temperature, increased stratification, reduced ocean 120 
acidification, increased productivity, and possible linkages to higher trophic levels at OSP in the 121 
summer of 2019. This case study provides insight into the complex interconnections and 122 
potential impacts of extreme ocean warming events. 123 

2 Materials and Methods 124 

2.1. Identifying MHW periods at OSP 125 

We identified MHWs at OSP as events where the local 31-day boxcar filtered daily SST 126 
anomalies relative to the seasonal climatology exceed the 90th percentile, similar to the MHW 127 
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definition in Hobday et al. (2016). Gaps less than 5-days were linearly interpolated prior to 128 
applying the 31-day filter. The climatology was calculated from the OSP NOAA surface 129 
mooring 31-day filtered SST time series from 2007 to 2020.  130 

The following list describes the suite of in-situ (moored and shipboard) and satellite data along 131 
with methods for quantities that we used to assess the widespread multi-disciplinary effects of 132 
the 2019 MHW. All climatologies are computed from a 31-day running average over the record 133 
length ending on Dec 31, 2020. Climatologies for subsurface salinity and temperatures were 134 
computed from nearby Argo floats profiles found within 49-51°N & 144-146°W between 1999 135 
and 2022. All other climatologies are based upon the OSP time series. Anomalies on the 31-day 136 
running average time series in moored and gridded quantities are computed relative to these 137 
climatologies after filling gaps that are 5-days or less. Links to data sets used are found in the 138 
Data Availability section. 139 

2.2 NOAA Surface Mooring 140 

2.2.1. Surface Meteorological Variables, Temperature, Salinity, and Currents Data 141 

Air-sea flux state variables (downwelling solar and longwave radiation, winds, surface currents, 142 
humidity, air and sea surface temperature, sea surface salinity, humidity, barometric pressure and 143 
rain); upper ocean temperature (at 23 depths from 1 m to 300 m), salinity (at 21 depths from 1 m 144 
to 300 m), computed potential density, and horizontal current time series at 35 m from the 145 
NOAA surface mooring at OSP are provided by the Ocean Climate Stations (OCS) Group 146 
(Cronin et al., 2015). Wind stress, evaporation, and latent and sensible heat fluxes are computed 147 
hourly using the Fairall et al. (2003) COARE 3.0b algorithm, and net surface heat flux is 148 
estimated as described in Cronin et al. (2015).   149 

2.2.2. Seawater pCO2 and Surface pH 150 
 151 
Surface water pCO2 (the partial pressure of CO2 in air in equilibrium with the seawater at sea 152 
surface temperature) and surface seawater pH time series are from the Pacific Marine 153 
Environmental Lab (PMEL) Carbon Group (Sutton et al., 2016; Sutton et al., 2014; Sutton et al., 154 
2012). Both variables were collected autonomously every 3-hours. 155 

2.2.3. Bandpassing  156 

To obtain the near-inertial currents, we used a bandpass filter on 35 m hourly currents observed 157 
at the OSP NOAA surface mooring by defining the high-pass of the triangular filter to be 7-hours 158 
(~0.5 times the inertial period), and the low-pass of the filter was 1.5 times the inertial period (23 159 
hours) at 50oN.  160 

2.2.4. Computing Dissolved Inorganic Carbon, Mixed Layer, and Saturation Equilibrium 161 
Oxygen 162 

To analyze the carbon system during the study period, the surface dissolved inorganic carbon 163 
(DIC) was computed from daily-averaged surface water pCO2, surface pH, sea surface salinity, 164 
and sea surface temperature from the NOAA surface mooring at OSP. The program used to 165 
compute the surface DIC was the MATLAB-version (v1.1) of CO2SYS (Lewis & Wallace, 166 
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1998; van Heuven et al., 2011) with the borate-to-salinity ratio of Dickson (1990), sulfate 167 
dissociation constants of Dickson (1990), and the carbonic acid dissociation constants of 168 
Dickson and Millero (1987) - refit data of Mehrbach et al. (1973). 169 

2.2.5. Computing Mixed Layer 170 

The mixed layer depths at OSP were computed using methods described in Cronin et al. (2015) 171 
using daily-averaged temperature and salinity profiles from the OSP surface mooring. Mixed 172 
layer depth is defined as the depth where density is 0.03 kg m-3 denser than that found at 10 m 173 
depth. An isothermal layer depth, defined as the depth where temperature is 0.2oC cooler than 174 
found at 10 m depth, is also computed. A barrier layer exists when the mixed layer depth is 175 
salinity stratified and shallower than the isothermal layer (Katsura et al., 2015; Lukas & 176 
Lindstrom, 1991; de Boyer Montégut, 2004).    177 

2.2.6. Computing Saturation Equilibrium Oxygen 178 

The saturation equilibrium oxygen in seawater was computed using the Gibbs SeaWater (GSW) 179 
Oceanographic MATLAB Toolbox (McDougall & Barker, 2011) with inputs of absolute salinity 180 
(computed from density and in-situ temperature) and conservative temperature (computed from 181 
absolute salinity and in-situ temperature). The GSW Toolbox uses solubility coefficients from 182 
Benson and Krause Jr (1984) as fitted by Garcia and Gordon (1992, 1993).  183 

2.3. NSF OOI Subsurface Moorings 184 

Deep (300-1500 m) subsurface temperature and salinity observations were provided by the NSF 185 
OOI Global Station Papa Array’s Flanking Moorings A and B. These two flanking moorings are 186 
located within 60 km of the NOAA surface mooring and contain CTDs collecting data every 15 187 
minutes at discrete depths from 30 m below the surface to 1500 m. Deep (300-1500 m) profiles 188 
(Figure 3a) were created by averaging the daily-averaged values between the Flanking 189 
Subsurface Moorings A and B.  190 

2.4. APL-UW Waverider Mooring 191 

Daily significant wave height time series data from the Waverider mooring at OSP were 192 
provided by the APL-UW Waverider Group. The Waverider collects pitch roll and heave 193 
displacements at 1.28 Hz at 30-minute intervals (Thomson et al., 2013). Spectral moments are 194 
computed onboard and then transmitted to the Coastal Data Information Program (CDIP) at the 195 
Scripps Institution of Oceanography. These buoy data are publicly available as CDIP Station 166 196 
and National Data Buoy Center (NDBC) Station 46246.  197 

2.5. Ship Data 198 

2.5.1. DFO Line P shipboard data 199 

Station P26, at OSP, is the farthest offshore station of the “Line P” survey line. This study 200 
includes Euphausia pacifica dry weight biomass (from E. pacifica abundance; Mackas, 1995), 201 
chlorophyll concentrations, nitrate plus nitrite (nitrite measurements are so small, <0.3 µM, that 202 
nitrate plus nitrite can be expressed as nitrate for simplicity; Whitney et al., 1998), sulfite, and 203 
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oxygen observations at Station P26 for insight into biological activity at OSP. Data displayed as 204 
‘surface’ refers to the depth integrated values from the air-sea interface to 5 m depth. There are 205 
three Line P cruises per year generally in February, June, and August. The Line P data are 206 
managed and coordinated by the Institute of Ocean Sciences from Fisheries and Oceans Canada 207 
(DFO). Data submitted to PACIFICA from NCEI (Suzuki et al., 2013), within 49-51°N & 144-208 
146°W, are used as a 1985-2008 climatology for nitrate plus nitrite, sulfite, and oxygen. 209 

2.5.2. OOI Various Cruises 210 

Supplemental chlorophyll, oxygen, nitrate plus nitrite, and sulfite cruise ship samples at OSP are 211 
included from OOI’s shipboard data log ranging from July 2013 to present with about one cruise 212 
per year, generally in late summer. 213 

2.6. NOAA Noise Reference Station Mooring: Autonomous Hydrophone Data and Whale 214 
Call Detection 215 

The hydrophone recording package used to collect ambient acoustic data at the OSP Noise 216 
Reference Station (NRS) subsurface mooring consists of a single ceramic hydrophone with a 217 
filter/amplifier, clock, and a low-power processor, all powered by an internal battery pack. The 218 
hydrophone (model ITC-1032) is omnidirectional with a nominal sensitivity of –192 dB re 1 V 219 
μPa-1. The instrument records at a sampling rate of 5 kHz with 16-bit resolution, providing a 220 
continuous record of ocean ambient sound levels from July 2018 to September 2020. The pre-221 
amplifier has an eight-pole anti-aliasing filter at 2.5 kHz with a filter curve to equalize the 222 
spectrum against typical ocean noise over the passband (Dziak et al., 2019). A low power cesium 223 
atomic clock with an average time drift of ∼0.1 s year−1 was used for internal timing. The NRS 224 
sensor was located at 900 m within the ocean sound channel, with the goal of maximizing the 225 
detection range of biological sound sources. 226 

The seasonal, acoustic presence of blue whales in the northeastern Pacific has been established in 227 
previous studies using hydrophone recordings of their vocalizations (Stafford et al., 2009). To 228 
detect recent blue whale call presence using the moored hydrophone at OSP, we used 229 
spectrogram correlation techniques (Mellinger & Clark, 2000) to target the tonal parts of the blue 230 
whale B call at signal frequencies between 25 and 26.5 Hz and time durations between 2.5 and 231 
15 seconds in duration. The B call is suggested to be a result of pneumatic air bursts from the 232 
whales opening and closing respiratory air valves and can be used to identify the presence of 233 
blue whales (Dziak et al., 2017). The whale detection analysis was run in Ishmael (V.2.3.1) 234 
(Mellinger, 2001) over the two years of continuous hydrophone data at OSP (2018-2020). To 235 
identify the B call, a two-dimensional synthetic kernel is constructed and cross-correlated with a 236 
spectrogram of a recording, producing a recognition function—the likelihood at each point in 237 
time that the sound type was present. A threshold is then applied to this function to obtain 238 
discrete detection events, which are discrete points in time when the B call was likely present. 239 
The same spectrogram correlation method was used to detect sperm whale clicks, with the kernel 240 
adjusted in frequency and time to capture the short duration (<0.5 sec) broadband (~100-500 Hz) 241 
signal character of the clicks (Mellinger, 2004). 242 

2.7. Gridded SST Data 243 
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The NOAA ¼ degree daily Optimum Interpolation Sea Surface Temperature (OISST) v2.1 data 244 
(Huang et al., 2020) were used to display locations of SST anomalies associated with the 2013-245 
2015 and 2019 MHWs as well as a time series of SST anomalies associated with other studies, 246 
computed from the 1982-2010 climatology. The OISSTv2.1 data available from September 1, 247 
1981 until the present are a combination of observations from different satellites, ships, buoys, 248 
and Argo floats interpolated to produce a spatially complete global SST map. 249 

3 Results 250 

3.1. Surface and Subsurface Anomalies 251 
 252 

The general spatial pattern of SST anomalies for the 2013-2015 MHW (Figure 2a) and 253 
the 2019 MHW (Figure 2b) are similar. The centers of each event are generally located south of 254 
Anchorage, AK USA and west of Oregon USA. Centered in the Gulf of Alaska, OSP provides 255 
in-situ observations that create a unique natural laboratory for understanding MHWs. Although 256 
OSP is generally along the northernmost boundary for many area-averaged studies (Figure 2ab), 257 
the observed SST anomalies at the NOAA surface mooring at OSP align well with area-averaged 258 
studies using satellite data, identifying the periods of peak anomalies for each MHW (Figure 2c). 259 
The red shading in the time series in Figure 2c represents MHW periods (see methods) that were 260 
observed at the NOAA surface mooring (in black) and area averaged OISSTv2.1 SST anomalies 261 
defined by various other studies (colored) from 2013 to 2020. During the 2013-2015 MHW 262 
period, three MHW periods were observed at OSP, all part of the 2013-2015 MHW event. The 263 
longest period of high SST anomalies at OSP occurred from Dec 30, 2013, to Apr 17, 2014, that 264 
persisted for 109 days and reached a maximum SST anomaly of 2.1oC. The 2019 MHW was 265 
observed at OSP from Jun 8, 2019, to Aug 25, 2019 (79 days) with a peak SST anomaly of 266 
2.6oC. 267 
  268 
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During the 2019 MHW, subsurface anomalously warm waters extended down to 1000 m, likely 293 
associated with a downward heaving of the thermocline associated with large-scale changes in 294 
the circulation.   295 

 296 

 297 
Figure 3. (a) Subsurface temperature anomalies [oC] at OSP. Data from the surface to 300 m are 298 
from the OSP NOAA surface mooring, and data below 300 m are averaged from OSP OOI 299 
Flanking Moorings A and B. Subsurface anomalies computed from 1999-2020 Argo 300 
climatology.Base of deep isothermal layer [m; purple solid line] and base of shallow isopycnal 301 
mixed layer depth (MLD) [m; black solid line] are overlaid. (b) Temperature difference between 302 
the mixed layer and 20 m below the mixed layer [oC]. Data are shown as a 31-day running 303 
average.  304 
  305 

The upper ocean was anomalously stratified preceding the 2019 MHW (as early as mid-306 
2018 to the summer of 2019), as seen by the anomalously less dense (blue) waters above the 307 
anomalously denser waters (red) in Figure 4b. Since mid-2017 onward, there were fresher than 308 
normal conditions in the upper 100 m of the ocean at OSP that overlie a warm subsurface 309 
temperature anomaly (Figure 4a). Scannell et al. (2020) suggest that these fresh anomalies were a 310 
result of increased freshwater input from precipitation in the Gulf of Alaska; however, there was 311 
not an increase in precipitation at OSP (Figure S1). Together, the surface ocean warm and fresh 312 
anomalies worked together to anomalously stratify the upper ocean in the winter of 2018/2019. 313 
The increase in stratification inhibited entrainment of deeper cooler waters, leading to favorable 314 
conditions for extreme SSTs.  315 
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4 Summary 462 

Ocean Station Papa (OSP) provides a unique laboratory for investigating the cascade of 463 
offshore impacts of northeast (NE) Pacific MHWs. Although OSP is a point location, many of 464 
our observations and conclusions support previous areal-averaged studies of the 2013-2015 and 465 
2019 MHWs (Figure 2) (Amaya et al., 2020; Bond et al., 2015; Mogen et al., 2022; Scannell et 466 
al., 2020) while providing insight into the widespread impacts of MHWs. OSP provides a unique 467 
opportunity to explore the linkages between the physical manifestation of MHWs in the 468 
Northeast Pacific and impacts on biogeochemistry and the ecosystem. 469 
 470 
4.1. Connecting the two most recent MHWs in the northeastern Pacific 471 
 472 

Subsurface observations (Figure 3 and 4) at OSP provide critical insights into the 473 
potential connection between the two recent MHW events along with interactions with the local 474 
ecosystems. The water column was stably stratified due to warm and fresh subsurface conditions 475 
prior to and during the 2019 MHW. The temperatures at OSP during the peak SST anomalies in 476 
summer of 2019 were anomalous throughout the water column, unlike the 2013-2015 MHW 477 
where the subsurface temperature anomalies did not reach beyond 150 m (Figure 3a). Subsurface 478 
temperature anomalies associated with the 2013-2015 MHW appeared to have been subducted 479 
into deeper waters that could have connected the 2013-2015 and 2019 MHWs as previously 480 
noted by Scannell et al. (2020). We also found a strong salinity-stratified barrier layer (Figure 481 
3a) that persisted between the two MHWs and helped to sustain the deep warm anomalies in-482 
between the events. 483 
 484 
4.2. Impacts of stratification on biogeochemistry 485 
 486 

There was a large decrease in surface DIC and pCO2 along with higher than normal 487 
surface pH during the 2019 MHW (Figure 8). The decrease in DIC could have been a result of 488 
increased stratification and coincident changes in circulation that were observed in 2019 at OSP, 489 
similar to the conditions observed during the 2013-2015 MHW as suggested by Mogen et al. 490 
(2022) and Franco et al. (2021); however, the increase in productivity observed in 2019 may 491 
have also contributed to this decrease in DIC.  492 
 493 
4.2. Pre-conditioning of the upper ocean for warm temperatures through a shallow mixed 494 
layer and air-sea fluxes 495 
 496 

The local heat flux anomalies for both the 2013-2015 and 2019 MHWs at OSP were 497 
relatively small compared to the area-average values documented by Schmeisser et al. (2019), 498 
Amaya et al. (2020), and Bond et al. (2015). OSP is located at the northern edge of the 499 
aforementioned studies (as seen in Figure 2ab). However, there were anomalous shortwave 500 
radiative fluxes prior to the 2019 MHW and stratification anomalies at OSP. Since the mixed 501 
layer is very thin during the summer in the Gulf of Alaska, the perturbations of the mixed layer 502 
have a direct influence on the sea surface temperature tendency, and the mixed layer depth 503 
perturbation likely dominates the SST variability (Amaya et al., 2020). Thus, the shallow mixed 504 
layer and anomalously high shortwave heat flux into the ocean could explain the extreme 505 
intensification of the 2019 SST anomalies at OSP. 506 
 507 
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4.3. Impacts of available chemical nutrients and stratification on productivity  508 
 509 

Coincident with the increased stratification leading up to the MHW of 2019, there was an 510 
increase in primary productivity in June at OSP (relative to prior summer samples taken at Line 511 
P Station P26 within 2013- 2020). Line P collected samples at P26 at the beginning (Jun 10) and 512 
at the end (Aug 24) of the MHW of 2019 (Jun 8 - Aug 25). In June, there was an increase in 513 
chlorophyll and negative AOU, followed by a decrease of silicate and depletion of nitrate in 514 
August (Figure 9).  515 
 516 

It is likely that there were other processes at play that drove the productivity other than 517 
the MHW itself. There was also the possibility of iron enrichment, a limiting factor for larger 518 
phytoplankton (Wyatt et al., 2022), which could also have contributed to a large phytoplankton 519 
bloom and coincident decreases in nitrate and silicate between the June and August cruises in 520 
2019 (Figure 9). The surface pCO2 decline and surface pH increase during 2019 at OSP are 521 
consistent with pCO2 and pH observations made during a phytoplankton bloom in the Gulf of 522 
Alaska that resulted from volcanic ash iron input in August 2008 (Hamme et al., 2010). Similar 523 
to Hamme et al. (2010), there was also evidence of iron deposited from atmospheric dust into 524 
surface waters near OSP during the peak of the 2019 MHW (Long et al., 2021; Figure S2). Thus, 525 
the MHW’s shallow mixed layer might have worked in concert with the iron-enriched dust 526 
deposition to support an increase in productivity.  527 
 528 

Other recent MHWs have been shown to have negative effects on higher trophic levels 529 
closer to shore (Barlow et al., 2023; Cavole et al., 2016). At OSP in 2019, an offshore site, it 530 
appears that there might have been a slightly positive effect on higher trophic levels. There was 531 
indication that blue whales came earlier in their foraging season and in greater numbers than in 532 
the previous year (Figure 11); however, there is not a clear connection between productivity and 533 
krill (Figure 10) due to data limitations. The krill data is collected three times a year at Line P’s 534 
P26 Station, whereas the acoustic data is continuously recorded from all directions surrounding 535 
OSP. The different temporal and spatial data collection techniques cause further challenges to 536 
connecting blue whale behavior to the krill abundance.  537 

5 Conclusion 538 

The long-term multi-disciplinary time series at OSP allows insight into the evolution and 539 
impacts of MHWs. The oceanographic environment at OSP is complex. Interannual and decadal 540 
variations in the atmospheric jet stream and Pacific storm track can lead to a wide range of 541 
variability in the NE Pacific subarctic gyre and physical environment at OSP. Influences of other 542 
processes, such as iron fertilization from wildfires and volcanoes, likely impact the physical, 543 
biogeochemical, and ecosystem dynamics at OSP. Due to the relatively short records, gaps, and 544 
limited spatial extent in the observational data sets, this analysis should be considered as a case 545 
study of the conditions associated with the 2019 NE Pacific MHW at OSP, rather than 546 
generalized relationships expected with MHWs at any location. The relationship between the 547 
2019 MHW, increased productivity and the early arrival of blue whales, or increased 548 
stratification and de-acidification at OSP should be considered as provocative, rather than 549 
definitive. The link to these occurrences may be the enhanced near-surface stratification 550 
associated with the MHW, rather than necessarily the extreme temperature itself. The enhanced 551 
stratification increased the intensity of the surface forcing on the upper ocean leading to extreme 552 
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warming. The enhanced stratification also aided in productivity by providing a well-lit and 553 
nutrient-available upper ocean to primary producers that led to a bloom in productivity 554 
coinciding the extreme temperatures. MHWs can cause a cascade of impacts all over the world, 555 
and longer multi-disciplinary time series and time series of MHWs in other regions of the 556 
World’s oceans are necessary to understand their impacts and interdisciplinary connections. 557 
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