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Abstract

Melt rates at the base of Antarctic ice shelves are needed to drive projections of the Antarctic ice sheet mass loss. Current basal

melt parameterisations struggle to link open ocean properties to ice-shelf basal melt rates for the range of current sub-shelf

cavity geometries around Antarctica. We present a novel parameterisation based on deep learning. With a simple feedforward

neural network, or multilayer perceptron, acting on each grid cell separately, we emulate the behavior of circum-Antarctic

cavity-resolving ocean simulations. We explore different neural network sizes and find that, in all cases containing at least

one hidden layer, this kind of emulator produces reasonable basal melt rates for our training ensemble, closer to the reference

simulation than traditional parameterisations. For testing, we use an independent ensemble of simulations that was produced

with the same ocean model but with different model parameters, different cavity geometries and different forcing. In this

challenging test, traditional and neural network parameterisations yield similar results on present conditions. In much warmer

conditions than the training ensemble, both traditional parameterisations and neural networks struggle, but the neural networks

tend to produce basal melt rates closer to the reference than a majority of traditional parameterisations. These neural networks

are therefore suitable for century-scale Antarctic ice-sheet projections.
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Key Points:10

• We show that simple neural networks can produce reasonable basal melt rates by11

emulating circum-Antarctic cavity-opening ocean simulations.12

• Predicted melt rates for present and warmer conditions are similar or closer to the13

reference simulation than traditional parameterisations.14

• We show that neural networks are suited to be used as basal melt parameterisa-15

tions for century-scale ice-sheet projections.16
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Abstract17

Melt rates at the base of Antarctic ice shelves are needed to drive projections of the Antarc-18

tic ice sheet mass loss. Current basal melt parameterisations struggle to link open ocean19

properties to ice-shelf basal melt rates for the range of current sub-shelf cavity geome-20

tries around Antarctica. We present a novel parameterisation based on deep learning.21

With a simple feedforward neural network, or multilayer perceptron, acting on each grid22

cell separately, we emulate the behavior of circum-Antarctic cavity-resolving ocean sim-23

ulations. We explore different neural network sizes and find that, in all cases contain-24

ing at least one hidden layer, this kind of emulator produces reasonable basal melt rates25

for our training ensemble, closer to the reference simulation than traditional parameter-26

isations. For testing, we use an independent ensemble of simulations that was produced27

with the same ocean model but with different model parameters, different cavity geome-28

tries and different forcing. In this challenging test, traditional and neural network pa-29

rameterisations yield similar results on present conditions. In much warmer conditions30

than the training ensemble, both traditional parameterisations and neural networks strug-31

gle, but the neural networks tend to produce basal melt rates closer to the reference than32

a majority of traditional parameterisations. These neural networks are therefore suit-33

able for century-scale Antarctic ice-sheet projections.34

Plain Language Summary35

A warmer ocean around Antarctica leads to higher melting of the floating ice shelves,36

which influence the ice loss from the Antarctic ice sheet and therefore sea-level rise. In37

computer simulations of the ocean, these ice shelves are often not represented. For sim-38

ulations of the ice sheet, so-called parameterisations are used to link the oceanic prop-39

erties in front of the shelf and the melt at their base. We show that this link can be em-40

ulated with a simple neural network, which performs at least as well as traditional phys-41

ical parameterisations both for present and much warmer conditions. This study also42

proposes several potential ways of further improving the use of deep learning to param-43

eterise basal melt.44

1 Introduction45

The contribution of the Antarctic Ice Sheet to sea-level rise has been increasing in46

past decades and this increase is projected to continue with increasing greenhouse gas47

emissions (Fox-Kemper et al., 2021). Most of the mass loss is occurring at the margins48

of the ice sheet through faster ice flow from the grounded ice sheet to the ocean, mainly49

in West Antarctica (Mouginot et al., 2014; Rignot et al., 2014; Scheuchl et al., 2016; Khazen-50

dar et al., 2016; Shen et al., 2018; The IMBIE Team, 2018). This is because the float-51

ing ice shelves at the margins of the ice sheet, which usually buttress the ice flow, are52

rapidly thinning and retreating due to ocean-induced melt at their base (Rignot et al.,53

2013; Paolo et al., 2015; Adusumilli et al., 2020). In some bedrock configurations, increased54

ocean-induced melt can even trigger marine ice sheet instabilities (Weertman, 1974; Schoof,55

2007; Gudmundsson et al., 2012), which have the potential to strongly increase Antarc-56

tic mass loss, on timescales below a century (Fox-Kemper et al., 2021). This makes ocean-57

induced sub-shelf melt, or basal melt, one of the main sources of uncertainty for future58

projections of sea-level rise.59

Basal melt is a result of warm ocean water coming into contact with the base of60

the ice shelf. Which water masses reach the ice-ocean interface depends on the circula-61

tion of the water, not only in front of the ice shelf, but also after entering the ice-shelf62

cavity (Dinniman et al., 2016). As a consequence, to simulate the properties of the wa-63

ter at the ice-ocean interface accurately, both the ocean circulation around Antarctica64

and the circulation in the cavities below the ice shelves need to be simulated accurately.65

A few global or circum-Antarctic ocean models already include ice-shelf modules (Losch,66
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2008; Timmermann et al., 2012; Dinniman et al., 2015; Mathiot et al., 2017; Comeau et67

al., 2022), but such ocean models are expensive to run on long timescales or for large en-68

sembles. Instead, a majority of the global climate models used until now in the Coupled69

(CMIP) or Paleoclimate (PMIP) Model Intercomparison Projects still poorly represent70

the ocean dynamics along the Antarctic margins and do not include ice-shelf cavities (Beadling71

et al., 2020; Heuzé, 2021). Getting the right water masses in the right place around Antarc-72

tica is a matter for global and regional ocean modelling and will not be the focus of this73

study. In this study, we focus on the circulation within the ice-shelf cavities and the re-74

sulting melt.75

To infer the basal melt forcing for projections of the Antarctic contribution to sea-76

level rise, ice-sheet models commonly rely on parameterisations linking hydrographic prop-77

erties in front of the ice shelves, given by observations or oceanic output from global cli-78

mate models, and the basal melt (Jourdain et al., 2020). Due to different assumptions79

and simplifications concerning the circulation in the cavities, the range of existing basal80

melt parameterisations leads to widely differing melt patterns and associated contribu-81

tions to sea-level rise (Favier et al., 2019; Burgard et al., 2022). The magnitude of the82

resulting uncertainty contribution is similar, or even larger, than the choice of emission83

scenario used to force the projections (Seroussi et al., 2020; Edwards & the ISMIP6 Team,84

2021).85

Emulating the three-dimensional ocean circulation within the cavity in simplified86

physical parameterisations is challenging and calls for exploring alternative approaches.87

We suggest that deep learning can be one tool to tackle this challenge. In recent years,88

the amount of ocean simulation output including ice-shelf cavities has increased and tools89

that make the application of deep learning techniques easily accessible have been devel-90

oped, opening up the possibility of developing a neural network parameterisation for basal91

melt. If trained with high-resolution model output, a neural network parameterisation92

could implicitly include more intrinsic information about the system than a traditional93

physical parameterisation. This approach has been applied promisingly in several areas94

of Earth System Sciences in the form of multilayer perceptrons applied on the grid-cell95

level (e.g. Gentine et al., 2018; Rasp et al., 2018), convolutional neural networks applied96

on multidimensional fields (e.g. Bolton & Zanna, 2019; Rosier et al., 2023) or random97

forests (e.g. Yuval & O’Gorman, 2020).98

Deep learning has also been explored for basal melt parameterisations. Rosier et99

al. (2023) performed promising experiments that showed that a cavity-resolving ocean100

model can be emulated with a convolutional neural network in a variety of idealised ice-101

shelf geometries. In the present study, we choose a different deep learning approach to102

developing such a deep emulator, or surrogate model, which differs on two fundamental103

points. On the one hand, we train on the circum-Antarctic cavity-resolving ocean sim-104

ulations with realistic geometries used in Burgard et al. (2022). On the other hand, we105

use a multilayer perceptron architecture applied to each grid cell, as preliminarily ex-106

plored in Bouissou et al. (2022). In the following, we present a proof of concept for a mul-107

tilayer perceptron, which takes in hydrographic properties in front of the ice shelf and108

the geometric information at each grid point. In Sec. 2, we present the training and test-109

ing data, the neural network architecture, and the evaluation procedure. In Sec. 3, we110

show that the multilayer perceptron can successfully emulate cavity-resolving ocean sim-111

ulations and produce integrated basal melt and patterns at least as close as but gener-112

ally closer to the reference than traditional parameterisations in conditions similar to present.113

In Sec. 4 we explore the applicability of such a neural network to an independent set of114

simulations produced with a few different model parameters, slightly different geome-115

tries and in warmer oceanic conditions. Finally, in Sec. 5, we discuss the lessons learned116

from our study and give an outlook on possible directions to explore further in the fu-117

ture.118
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2 Data and Methods119

The goal of this study is to explore if and how a neural network, in the form of a120

multilayer perceptron, can emulate the link between hydrographic properties in front of121

an ice shelf, geometric characteristics of the cavity, and the melt rates at its base as sim-122

ulated by a cavity-resolving ocean model. In the following, we present the ocean model123

used and the set of simulations used for training, validation and testing the neural net-124

work; the neural network, its architecture, and its input variables; and the training and125

testing procedure.126

2.1 Data127

We choose to emulate a cavity-resolving version of the 3-D primitive-equation cou-128

pled ocean–sea-ice model NEMO (Nucleus for European Modelling of the Ocean, NEMO129

Team, 2019) run on the eORCA025 horizontal grid (Storkey et al., 2018). This grid has130

a resolution of 0.25◦ in longitude on average, i.e. a resolution of 4 to 14 km in the Antarc-131

tic seas and below the ice shelves, which is sufficient to capture the basic ocean circu-132

lation below multiple Antarctic ice shelves (Mathiot et al., 2017; Bull et al., 2021).133

For the training phase, we use the same ensemble of simulations as used for the as-134

sessment of traditional basal melt parameterisations in Burgard et al. (2022). The en-135

semble is composed of four ocean simulations spanning 30 to 40 years, depending on the136

simulation, between 1979 and 2018. They were run with a standalone version of NEMO137

and forced with atmospheric forcing from JRA55-do version 1.4 (Tsujino et al., 2018).138

The Antarctic continental shelf bathymetry and ice shelf draft are constant and based139

on Bedmachine Antarctica version 2 (Morlighem, 2020; Morlighem et al., 2020). The sim-140

ulations in the ensemble differ in a small number of parameters which are not directly141

related to the physics driving the ocean circulation and melt within the ice-shelf cavi-142

ties but rather lead to a variety of hydrographic properties all around Antarctica. A more143

detailed description of the exact model configuration and differences in parameters can144

be found in Burgard et al. (2022).145

For the testing phase, we use two simulations independent from the ensemble used146

for training. In this case, NEMO was run in coupled mode as the oceanic component of147

the Earth System Model UKESM1.0-ice (Smith et al., 2021), which couples the UK Earth148

System Model (UKESM1, Sellar et al., 2019) to an adapted version of the ice-sheet model149

BISICLES (Cornford et al., 2013). In this coupled configuration, the cavities below the150

ice shelves are open and the ice-shelf melt is computed with the same approach as in the151

training ensemble (as proposed by Mathiot et al., 2017). This means that a z⋆ coordi-152

nate is used for depth and the three equations are used to parameterise the ice-shelf melt153

in the ice-ocean boundary layer. Due to the coupled setup, the ice-shelf draft evolves ac-154

cording to the simulated evolution of the ice sheet. Note that the position of the ice front155

at the surface remains fixed by ice-sheet model design. More details about the config-156

uration of NEMO in this model setup can be found in Smith et al. (2021). The two test157

simulations differ in their atmospheric forcing. In the first one, which we will call ”RE-158

PEAT1970”, UKESM1.0-ice was run for several decades under constant 1970 greenhouse159

gas and other forcings. In the second one, which we will call ”4xCO2”, UKESM1.0-ice160

was run for several decades under instantaneously quadrupled 1970 CO2 concentrations.161

In our study, we use 60 years of simulation, from year 10 to year 70, for both runs.162

The training and the testing dataset result from NEMO simulations. Nevertheless,163

next to differences in forcing from the atmosphere and the ice and bed geometry, the train-164

ing and testing ensembles also differ in several technical aspects of NEMO. The train-165

ing simulations were run with the version of 4.0.4. of NEMO (NEMO Team, 2019), in-166

cluding the sea-ice model SI3, while the test simulations were run with the version 3.6167

of NEMO (Madec & NEMO Team, 2017) and version 5.1 of the Community Ice CodE168

(CICE, Hunke et al., 2015). In addition, a few different parameter choices may affect the169
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link between hydrographic properties in front of the ice shelf and the melt at the base170

of the ice shelf. The training ensemble was computed on 121 vertical levels (represent-171

ing 20 m at 600 m depth), while the testing ensemble was computed on 75 vertical lev-172

els (representing 60 m at 600 m depth). In both ensembles, the thickness of the top bound-173

ary layer is bound at 20 m but can differ locally due to the different vertical resolutions.174

In the training ensemble, the thermal Stanton number is set to 7×10−4 while in the test-175

ing ensemble the thermal Stanton number is set to 1.45×10−3. In the training ensem-176

ble, the top tidal velocity varies locally based on the CATS2008 dataset (Padman et al.,177

2008; Howard et al., 2019), while it is fixed to 5 cm/s in the testing ensemble. In con-178

clusion, this means that the testing ensemble is a slightly different model than the model179

which the neural network is trained to emulate and therefore represents a demanding test-180

ing experiment.181

The training and testing ensembles cover a range of states that do not necessar-182

ily match observational estimates of hydrographic properties and basal melt rates. In183

both standalone and coupled mode, eORCA025 configurations are prone to biases in the184

ocean circulation around Antarctica (Smith et al., 2021). Nevertheless, in Burgard et al.185

(2022), we showed that, if the forcing and parameters were carefully chosen to reproduce186

realistic ocean conditions in the Southern Ocean, the resulting basal melt rates were in187

agreement with observational estimates from Rignot et al. (2013). The physical link be-188

tween the hydrographic properties in front of the ice shelves and the basal melt rates is189

therefore reasonable. Based on this assumption, biases in the input properties should not190

affect the credibility of the training and evaluation procedure and the resulting neural191

network. On the contrary, a large variety of states is even beneficial because it provides192

more cases for our neural network to train on than only using the very limited sample193

of observations.194

On a more technical note, for this study, the NEMO output was interpolated bi-195

linearly to a stereographic grid of 5 km spacing, as ice-sheet models and basal melt pa-196

rameterisations are commonly run on a stereographic grid. All pre-processing, training,197

testing, and analysis is conducted using this regridded data. From this regridded data,198

we cut out the different ice shelves according to latitude and longitude limits defined on199

the present geometry (details found in Burgard (2022)) and then apply a routine to adapt200

this mask to slightly different geometries, like the ones resulting from the fully coupled201

UKESM1.0-ice runs. Of these ice shelves, we only keep the largest ice shelves. The ef-202

fective resolution of physical ocean models, i.e. the resolution below which the circula-203

tion might not be resolved well, is typically 5 to 10 times the grid spacing (Bricaud et204

al., 2020). We empirically choose a cutoff at an area of 2500 km2 (i.e. 6.25 ∆x) to be205

in this range while keeping a sufficiently large number of ice shelves. Due to different ge-206

ometries in the training and testing ensemble, this results into a slightly different ensem-207

ble of resolved ice shelves in these two ensembles (as listed in the figures of Appendix208

A).209

2.2 Neural network210

We design our neural network to predict the basal melt rates based on information211

about the ocean temperature and salinity in front of the ice shelf and about the ice-shelf212

geometry (Fig. 1). To link the input to the prediction, we use a multilayer perceptron,213

which is applied to each grid cell independently. A multilayer perceptron is the simplest214

form of a neural network and is a composition of functions (also called hidden layers),215

which takes an input array containing any number of variables and outputs a prediction.216

Specifying its number of neurons, each hidden layer is characterised by its parameters217

– the weights and biases, that connect each layer to its previous layer and shift the val-218

ues in the hidden layer, respectively. An activation function in the hidden layer intro-219

duces non-linearities in the relationship between input and output. In this study, we ex-220

plore different numbers of layers and numbers of neurons per layer. As activation func-221
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tion, we use the rectified linear unit (ReLU, Fukushima, 1975; Nair & Hinton, 2010). The222

multilayer perceptron is implemented in Python with the package Keras (Chollet et al.,223

2015).224

INPUT
(for each ice-covered grid cell)

Local properties
- Distance to grounding line
- Distance to ice shelf front
- Ice draft depth
- Meridional ice slope
- Zonal ice slope
- Bathymetry
- Meridional bedrock slope
- Zonal bedrock slope

Entry temperature (T) and salinity (S)
- Extrapolated from profile to ice-draft depth 
- Average over extrapolated properties
- Standard deviation of extrapolated properties

NEURAL NETWORK
(multilayer perceptron acting 

independently on each ice-
covered grid cell)

Hidden layers
- XXS (none)
- XS (2 layers: 96 - 96) 
- S (3 layers: 32 – 64 – 32)
- M (5 layers: 96 – 96 – 96 – 96 – 96)
- L (5 layers: 128 – 128 – 128 – 128 – 128)
- XL (6 layers: 256 – 256 – 256 – 256 – 256 – 256)

Activation function
ReLU

OUTPUT
(for each ice-covered 

grid cell)

Basal melt rates

An
ta

rc
tic

 ic
e s

he
et

So
ut

he
rn

 O
ce

an

Bedrock

Ice shelf

Figure 1. Schematic of the workflow around our neural network.

The strength of a neural network, and supervised machine learning techniques in225

general, is that it can reproduce complex non-linear relationships without being given226

the driving equations behind the data. Instead, its performance is driven by the super-227

vised training phase, which determines the weights and biases of each neuron in the net-228

work. During training, the loss, describing the averaged distance of the network predic-229

tions to a given target output, is backpropagated to the weights of the network. The weights230

are then optimised with stochastic gradient descent. The training dataset is randomly231

split up into batches, over which the optimisation is looped. A complete pass through232

the batches defines an epoch, and the weights and biases are optimised over several such233

epochs. In parallel to the training, the neural network is applied to a validation dataset234

to monitor its performance on data that has not been used for the training. After train-235

ing, the final performance of the neural network is estimated by applying it to a previ-236

ously unseen testing dataset.237

In this study, to train the neural network, the loss which we reduce is the mean-238

squared-error over all ice-covered points between the predicted (mNN ) and target (mref )239

basal melt rates,240

MSE =

Npts∑
i

Nyears∑
t

(mNN[i, t]−mref [i, t])
2

NptsNyears
(1)

where Npts is the number of ice-covered grid points and Nyears is the number of years241

used in the training. In Burgard et al. (2022), we argued that tuning on the grid-cell level242

would give too much weight to the larger ice shelves, as they cover a larger area. We still243

agree with this statement for traditional parameterisations because they already intrin-244

sically contain assumptions about the physics of the circulation and the melt before tun-245

ing and have only one or two tuneable parameters. In the case of our neural network,246

the relationship between the properties in front of the ice shelf and the melt is learnt from247

scratch, and it contains a larger number of parameters to adjust. We therefore argue that248

training on the grid-cell level is more sensible.249
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The neural network is optimised with Adam (Kingma & Ba, 2014), an initial learn-250

ing rate of 0.001, β1=0.9 and β2=0.999. We split the training dataset in batches with251

a size of 512 samples and optimise the neural network for at most 100 epochs. If the val-252

idation loss is not improved for 5 epochs, we reduce the learning rate by a factor of 2.253

If the validation loss is not improved for 10 epochs, we stop the training early. After early254

stopping, the model weights with the lowest validation loss are restored.255

2.3 Input variables256

The multilayer perceptron takes an array of variables as input for each grid cell in-257

dependently. In our case, the input array contains information about the geometrical prop-258

erties of the grid cell and the hydrographic forcing (Fig. 1).259

For the geometrical properties, the input contains the following information: the260

ice draft depth, the local meridional and zonal slopes of the ice draft, the bathymetry,261

the local meridional and zonal slopes of the bedrock, and the distance of the grid cell262

to the nearest grounding line cell and the distance to the nearest ice front cell. All these263

variables are defined on the same horizontal plane and domain as the output array, the264

basal melt rates.265

For the hydrographic forcing, more pre-processing is needed. To map the hydro-266

graphic forcing to the same grid cells as the other input variables, we proceed in the same267

manner as for traditional simple parameterisations in Burgard et al. (2022). First, we268

convert the conservative temperature and absolute salinity given by NEMO into poten-269

tial temperature and practical salinity with the GSW oceanographic toolbox (Firing et270

al., 2021). Second, we average the potential temperature and practical salinity, respec-271

tively, over the continental shelf within 50 km of the front of each ice shelf. The conti-272

nental shelf is defined as grid cells where the depth of the bathymetry is shallower than273

1500 m. The 50 km criterion imitates CMIP-type global ocean models that have reso-274

lutions around 1◦ (Heuzé, 2021), corresponding to a distance of between 38 km (70◦S)275

and 56 km (60◦S) in longitude. Third, we extrapolate the temperature and salinity from276

these mean profiles in front of the ice shelf to the local ice-draft depth, resulting in one277

local temperature and local salinity value per grid cell in the ice-shelf domain. Fourth,278

we also compute, for each time step, the average and standard deviation of these extrap-279

olated temperature and salinity fields and use them as additional input variables for each280

grid cell.281

2.4 Training, validation and testing methodology282

In a first step, we explore different neural network sizes using the method of cross283

validation on our training ensemble. In a second step, we choose a subsample of the neu-284

ral networks to explore their performance on the testing dataset.285

We conduct two variations of leave-one-block-out cross validation to estimate the286

validation loss (MSE as defined in Eq. 1), one on the ice shelf dimension and one on the287

time dimension, like in Burgard et al. (2022). This approach consists of dividing the dataset288

into N blocks, training the neural network to minimise the training loss on N−1 blocks289

and using the left-out block to compute the validation loss (Wilks, 2006; Roberts et al.,290

2017). The procedure is re-iterated N times, leaving out each of the N blocks succes-291

sively, so that, in the end, each N -th block has been left out of training once. All pre-292

dictions for the left-out blocks, using the separately trained neural networks, are then293

concatenated to form a ”synthetically independent” evaluation dataset. Applying an eval-294

uation metric on this evaluation dataset, we assess how well the neural network gener-295

alises to data ”unseen” during training. We use N=35 for the cross validation over ice296

shelves. For the cross validation over time, we divide the years into blocks of approxi-297

mately 10 years (ten 10-year blocks and three 9-year blocks) to reduce the effect of au-298
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Table 1. Neural network size of the different variations explored in the cross validation.

Neural network configuration Number of hidden layers Number of neurons

XXS 0 0
XS 2 96/96
S 3 32/64/32
M 5 96/96/96/96/96
L 5 128/128/128/128/128
XL 6 256/256/256/256/256/256

tocorrelation, which is typically 2 to 3 years in our input temperatures. This results in299

N=13 for the cross validation over time.300

Before training, we normalise the training sample to put each of the 14 input vari-301

ables (listed in Fig. 1) as well as the output variable on a similar order of magnitude and302

avoid potential problems of gradient explosion. We do so by subtracting the mean and303

dividing by the standard deviation of the training sample. To avoid that validation data304

leaks into the training, this normalisation is reiterated for each iteration of the cross val-305

idation.306

We use the framework of cross validation to evaluate not only one but several neu-307

ral networks to estimate the effect of their size on their performance. We sample differ-308

ent sizes ranging from an extra-extra small (XXS) neural network, with no hidden layer,309

and thus corresponding to a linear regression, to an extra-large (XL) neural network, with310

six hidden layers, each containing 256 neurons. The different sizes are listed in Table 1.311

To evaluate the resulting basal melt rates, we use the same metrics as in Burgard312

et al. (2022), namely: (1) the root-mean-squared error (RMSE) of the yearly integrated313

melt on the ice-shelf level and (2) the RMSE of the mean melt near the grounding line314

for each ice shelf. For the former, we compute the RMSE between the simulated and em-315

ulated yearly integrated melt (M) of the individual ice shelves [in Gt/yr] as follows:316

RMSEint =

√√√√√Nisf∑
k

Nyears∑
t

(MNN[k, t]−Mref [k, t])2

NisfNyears
(2)

where the subscript NN stands for neural network, Nisf is the number of ice shelves and317

Nyears the number of simulated years, and the integrated melt M of ice shelf k [in Gt/yr]318

is:319

M [k] = ρi × 10−12

Ngrid cells in k∑
j

mjaj (3)

where ρi is the ice density, mj is the melt [in m ice per year] in grid cell j, and aj is the320

area of grid cell j. For the latter, we compute the RMSE between the simulated and em-321

ulated yearly mean melt rate near the grounding line [in m ice per year]:322

RMSEGL =

√√√√√Nisf∑
k

Nsimu∑
n

(mGL,NN[k, n]−mGL,ref [k, n])2

NisfNsimu
(4)
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where Nsimu is the number of simulations in the ensemble and where mGL for ice shelf323

k and simulation n is:324

mGL[k, n] =
1

Nyears in n

Nyears in n∑
t

Ngrid cells near GL in k∑
j

(mjaj)

Ngrid cells near GL in k∑
j

aj

(5)

The domain ”near the grounding line” is the area covered by the first box prepared for325

the box parameterisation, when considering a maximum amount of five boxes, and is equiv-326

alent to approximately 10 % of the shelf area.327

After cross validation, we choose a subsample of these neural networks to do fur-328

ther evaluation on a completely independent dataset. To do so, we reiterate the train-329

ing of the subsample of neural networks over the whole training dataset and choose to330

work with a deep ensemble (Lakshminarayanan et al., 2017). The final weights and bi-331

ases of neural networks depend on the initialisation of the weights before the first train-332

ing iteration (Goodfellow et al., 2016). To account for this uncertainty and gain a more333

robust performance from the neural networks, we reiterate the training of the subsam-334

ple of neural networks ten times with ten different random initialisations. We then ap-335

ply this deep ensemble of ten neural networks to the independent testing input and com-336

pute an ensemble mean over the ten resulting melt rates. Note that we only investigate337

a small sample of neural network sizes for exploration in this study and do not claim that338

the best performing neural network here is the best performing neural network for the339

problem. This study is rather a proof of concept to encourage further research in this340

direction.341

3 Training and cross validation342

3.1 Integrated melt and mean melt near the grounding line343

The two evaluation metrics for the cross validation of the different neural network344

sizes are shown in Fig. 2. In addition, to compare the performance to traditional param-345

eterisations, we show the evaluation metrics for a subset of existing parameterisations:346

the quadratic local parameterisation using a constant Antarctic slope (e.g. Holland et347

al., 2008) and using a local slope (e.g. Favier et al., 2019; Jourdain et al., 2020), the plume348

parameterisation proposed by Lazeroms et al. (2019), the box parameterisation with the349

same box amount as in Reese et al. (2018), and the PICOP parameterisation from Pelle350

et al. (2019). The parameterisations are used as presented and tuned in Burgard et al.351

(2022).352

Corresponding to a linear regression, the XXS neural network leads to a RMSE of353

a similar order as traditional parameterisations in the cross validation over time and, for354

the melt near the grounding line, in the cross validation over ice shelves as well. For the355

integrated melt, the cross validation over ice shelves leads to a comparably high RMSE.356

In the further course of this study, we therefore focus on neural networks that include357

hidden layers.358

For both metrics, the RMSE for the cross validation over time is considerably re-359

duced when using a neural network with hidden layers compared to traditional param-360

eterisations and the XXS neural network. The RMSE for the cross validation over ice361

shelves is higher than for the cross validation over time but remains on the lower end362

of the range of RMSEs given by traditional parameterisations.363

The RMSEint of the cross validation over time is very similar between neural net-364

work sizes and spans between 6 Gt/yr (XL) and 11 Gt/yr (S). It remains well below the365

mean reference integrated melt on the ice-shelf level of 39 Gt/yr. The RMSEint of the366
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Quadratic, Antarctic slope

Plume

Box

PICOP

Integrated melt Melt near the grounding line

RMSE [Gt/yr] over the left-out blocks 
of the cross validation 

(127 simulation years and 35 ice shelves)

Cross-validation
over time
over ice shelves

RMSE [m ice/yr] of space and (left-out) time 
mean near grounding line for (left-out) 35 ice 

shelves and 4 simulations

XXS
No hidden layer (// linear regression)

XS
2 layers, 96 – 96 neurons

S
3 layers, 32 – 64 - 32 neurons

M
5 layers, 96 – 96 – 96 – 96 – 96 neurons

L
5 layers, 128 – 128 – 128 – 128 – 128 neurons

XL
6 layers, 256 – 256 – 256 – 256 – 256 – 256 neurons

Quadratic, local slope

Mean reference: 39 Gt/yr Mean reference: 0.45 m ice/yr

Figure 2. Summary of the RMSE of the integrated melt (RMSEint) for the cross validation

over time (×) and for the cross validation over ice shelves (+) for a selection of traditional pa-

rameterisations (as shown in Burgard et al., 2022) [in Gt/yr] (left) and summary of the RMSE

of the melt rate averaged over time and space near the grounding line (RMSEGL) [in m ice/yr]

(right). The colors represent the different parameterisation approaches: traditional parameter-

isations (grey), neural network (shades of blue). The RMSE is computed following Eq. (2), left

panel, and Eq. (4), right panel, on the synthetically independent evaluation dataset.

cross validation over ice shelves varies more and is higher, between 24 (S) and 45 Gt/yr367

(M). The performance does not correlate with the neural network size. On the contrary,368

the lowest RMSEint of the cross validation over ice shelves is found for a comparably small369

neural network (S).370

For the melt near the grounding line, the RMSEGL does not vary much in both cross371

validations between neural network sizes. The cross validation over time leads to a very372

low RMSE, varying from 0.02 m/yr (M,L,XL) to 0.06 m/yr (S). The cross validation over373

ice shelves leads to a RMSE between 0.42 m/yr (XS,S) and 0.50 m/yr (L), on the same374

order as the mean reference melt near the grounding line on the ice-shelf level, which is375

0.45 m ice/yr.376

The neural networks have more difficulties generalising to unseen ice shelves than377

generalising to unseen time periods. This means that one of the obstacles for the neu-378

ral networks’ performance is the application to unknown cavity geometries. Some of the379

cavity geometries are so different from the rest of the ensemble that they force the neu-380

ral networks to extrapolate far from their training domain. However, if they have seen381

a given geometry at least once during training, they perform well on this geometry for382

another time step. This aspect is encouraging, as this means that the neural networks383

adapt well to temperature and salinity variations across the training ensemble.384

3.2 Spatial patterns385

To add on the metrics at the ice-shelf level, we analyse the spatial patterns result-386

ing from the XS, S and L neural networks (Fig. 3) for the training ensemble member clos-387
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est to realistic conditions (called REALISTIC in Burgard et al., 2022). For the cross val-388

idation over time, the patterns of XS, S and L are nearly indistinguishable from the ref-389

erence for Filchner-Ronne, Pine Island, Fimbul, and Totten ice shelves. For Ross ice shelf,390

all patterns are close to the reference, but the S pattern contains more widespread melt-391

ing.392
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Cross-validation over time Cross-validation over ice shelves

Figure 3. Subset of ice shelves for a visual evaluation of the melt patterns. This is the time

average for the training ensemble member closest to real conditions (39 years) where the melt

for each timestep has been computed with the neural network trained on the dataset leaving out

that timestep (cross validation over time, columns 2 to 4) and where the melt of each ice-shelf

has been computed with the neural network trained on the dataset leaving out that ice shelf

(cross validation over ice shelves, columns 5 to 7). The blue line indicates the region used to eval-

uate the melt rate near the grounding line (which is defined as the first box in the 5-box setup of

the box parameterisation).

For the cross validation over ice shelves, the patterns are not matching in as much393

detail as in the cross validation over time. In particular for the two largest ice shelves,394

Filchner-Ronne and Ross, it becomes clear that if the neural network has been trained395

without one of them, it will mimic the spatial pattern of the other because they are the396

only ones to share given ranges in the input variables, such as for example large distances397

to the ice front and grounding line. For Filchner-Ronne and Ross, the result of the cross398

validation over ice shelves does not match the reference in any of the neural networks.399
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For Pine Island and Amery, the XS and S patterns match the reference better than the400

L pattern, while, for Fimbul and Totten, the L pattern is a little better.401

The low RMSE in the cross validation over time suggests an overfit on the geom-402

etry, which is fixed over time in the training dataset. The patterns very close to the ref-403

erence in the cross validation over time show that, even if our neural networks are ap-404

plied on each grid-cell separately, the location of the grid cell is more or less encoded in405

one or more input variables. However, as our problem is not necessarily well constrained406

with the input variables given, we suggest that this overfit can be used to our advantage.407

Our hypothesis is that, if the neural network has seen each ice shelf once, it has captured408

the variety of geometries and will be able to generalise to future changes in these ”known”409

ice shelves. We do not expect new and completely different ice shelves to appear in the410

next centuries. To assess this idea, we need to investigate how well the neural network411

will perform on a geometry which is similar to but not identical to the training.412

In the following, we investigate further if the neural networks are suitable for evolv-413

ing ice-shelf geometries that are close to existing geometries and to temperature and salin-414

ity input properties outside the training range. We choose to continue with (1) the S size,415

because it has the lowest RMSE in the cross validation over ice shelves, (2) the XS size416

because it has similarly low RMSE to the larger sizes but remains very small and sim-417

ple, and (3) the L size to include a larger neural network and explore potential differ-418

ences during the testing compared to its behavior in the cross validation.419

4 Testing on independent simulations420

We apply our subsample of neural network sizes on two independent datasets, one421

representing 60 years of constant 1970-forcing (REPEAT1970), and one representing warmer422

conditions, i.e. 60 years of abrupt 4xCO2 forcing (4xCO2), from Smith et al. (2021). The423

REPEAT1970 simulation has a relatively steady ice-sheet geometry, similar (but not iden-424

tical) to the training geometry and is useful to assess the sensitivity of the neural net-425

works to different near-present-day atmospheric conditions (from the UKESM atmosphere426

component), to different parameters used in NEMO, and to slightly different geometries.427

The 4xCO2 simulation experiences larger changes in ice-sheet geometry and much warmer428

conditions, which is useful to test the neural networks far outside of their training range.429

As a consequence, this evaluation is demanding and permits to evaluate the limits of the430

neural networks.431

For evaluation, we divide the 4xCO2 run into two 30-year blocks to capture poten-432

tial differences with warming in time. As explained in Sec. 2.4, we train the XS, S and433

L neural networks ten times each, with ten different random initialisations. In the fol-434

lowing, the results shown are averages over the predictions of the ten ensemble members435

for each neural network size.436

4.1 Integrated melt and melt near the grounding line437

The neural networks reproduce well the REPEAT1970 melt rates integrated over438

individual ice shelves, with a RMSEint of 16 to 19 Gt/yr (Fig. 4a, left). This error is slightly439

larger than in the cross validation over time (see Fig. 2), and becomes similar to the quadratic440

and plume parameterisations. It should be noted that the RMSEint of these parameter-441

isations is lower than in the cross validation, likely because of the overall lower melt rates442

in this simulation (24 Gt/yr compared to 39 Gt/yr in the training ensemble). The neu-443

ral networks still clearly outperform the box and PICOP parameterisation (RMSEint ≃35 Gt/yr).444

For the melt near the grounding line, all parameterisations are uncertain, with RMSEGL445

close to the reference mean melt near the grounding line of 0.34 m/yr (Fig. 4a, right).446

The neural networks and the traditional parameterisations yield similar RMSEGL, be-447
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Quadratic, 
Antarctic slope

Plume
Box

PICOP

Integrated melt Melt near the grounding line

XS

S
L

Quadratic, local slope

RMSE [Gt/yr] RMSE [m ice/yr] of space and 
time mean near grounding line

Integrated melt Melt near the grounding line

RMSE [Gt/yr] RMSE [m ice/yr] of space and 
time mean near grounding line

Years 1-30 Years 31-60

a) REPEAT1970 b) 4xCO2

Mean reference: 24 Gt/yr Mean reference: 0.34 m ice/yr Mean reference: 100 and 
160 Gt/yr

Mean reference: 0.75 and 
1.02 m ice/yr

Figure 4. Summary of the RMSE of the integrated melt (RMSEint) [in Gt/yr] and of the

RMSE of the melt rate averaged over time and space near the grounding line (RMSEGL) [in m

ice/yr] for a selection of traditional parameterisations and a subsample of neural networks for the

application on REPEAT1970 (a) and 4xCO2 (b). Note the change in x-axis between the (a) and

(b) panels.

tween 0.36 and 0.42 m/yr, except the quadratic using a local slope, which leads to a slightly448

lower RMSE, on the order of 0.22 m/yr.449

For the warmer conditions (4xCO2), all parameterisations struggle to reproduce450

the integrated melt on the ice-shelf level, with high spread in performance between the451

parameterisations (Fig. 4b, left). The RMSEint is multiplied by more than 10 for the neu-452

ral networks and reaches nearly 650 Gt/yr for the quadratic parameterisation using an453

Antarctic slope in the second period. While this jump in RMSE can be explained by a454

higher mean reference integrated melt (100 Gt/yr for the first period and 159 Gt/yr for455

the second period, see also Fig. A3), it is probably also a result of forcing unseen dur-456

ing training such as much warmer and less saline ocean conditions (Figs. A1 and A2).457

Over both periods, the neural networks remain at the lower range of the difference to458

the reference melt rates. While neural networks, plume, box and PICOP parameterisa-459

tion have comparable RMSEs for the first warm period (between 103 and 163 Gt/yr),460

the RMSE increases more for the plume, box and PICOP parameterisation (between 211461

and 248 Gt/yr) than for the neural networks (between 138 and 191 Gt/yr) in the even462

warmer second period.463

For the melt near the grounding line, the parameterisations perform differently than464

for the integrated melt, pointing to potential challenges outside the domain near the ground-465

ing line. The neural networks perform in a similar uncertain manner as in the REPEAT1970466

case (Fig. 4b, right). Their RMSEGL (0.69-0.75 m/yr in the first period and 0.95-1.10 m/yr467

in the second period) is close to the reference mean melt near the grounding line (0.75 m/yr468

for the first period and 1.02 m/yr for the second period). In the first period, only the469

quadratic local parameterisation using an Antarctic slope and the plume parameterisa-470

tion have lower RMSEGL (0.62 and 0.59 m/yr respectively), while in the second period471

only the quadratic parameterisation using a local slope performs clearly worse than the472

other parameterisations. For all, the RMSE increases with warmer conditions but the473

gap between the periods depends on the parameterisation, ranging from a difference of474

0.04 m/yr for the plume parameterisation to a difference of 0.76 m/yr for the quadratic475

parameterisation using a local slope.476
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From this demanding application on an independent testing dataset, several con-477

clusions can be drawn. First, the neural networks apply reasonably well to data inde-478

pendent from training in present conditions. This means that, if they have seen all ge-479

ometries of the main circum-Antarctic ice shelves, they can adapt to slightly different480

geometries. This is even more encouraging as the testing simulations were conducted with481

a slightly different version of NEMO than the neural networks were trained on. Second,482

none of the neural networks seems to constantly be the one with the best performance483

for all metrics. Third, the RMSE of the neural networks is higher when applied to warmer484

conditions, but, in comparison with the traditional parameterisations, it performs at least485

as well or even better.486

4.2 Spatial patterns487

Looking at the spatial patterns averaged over the last 10 years of the 4xCO2 run,488

it becomes clear that all parameterisations, both neural networks and traditional ones,489

struggle with warmer conditions and different geometries to the training ensemble (Fig. 5).490

The maximum melt rates remain far below the maximum melt rates of the reference for491

all of them except the quadratic parameterisation using the local slope, which largely492

overestimates the maximum melt rates (as seen already in Burgard et al., 2022). Look-493

ing at the general patterns, the neural networks tend to overestimate the melt on wide494

areas of Filchner-Ronne and Ross but underestimate it over the whole ice shelf for smaller495

ones. The quadratic parameterisations (both using Antarctic and local slope) and, in some496

cases, the plume parameterisation, tend to overestimate the melt over wide areas, in par-497

ticular for the Ross and Filchner-Ronne ice shelves. The box parameterisation under-498

estimates the melt for all ice shelves, completely missing regions of strong melt.499

5 Discussion500

In this study, we showed that a simple multilayer perceptron can emulate melt rates501

as simulated by the cavity-resolving ocean model NEMO. This result is encouraging for502

further development because, as it is applied on a grid-cell level, it allows larger amounts503

of training data to be used than architectures containing convolutions such as MELT-504

NET (Rosier et al., 2023) or, more generally, U-Nets (Ronneberger et al., 2015), which505

take spatial domains as inputs. In addition, this architecture is independent of the do-506

main size and is therefore directly applicable to any ice shelf around Antarctica. In the507

following, we discuss insights from this study and possible further improvements to this508

approach.509

5.1 Variable importance510

One argument that is often made against the use of neural networks is that they511

remain statistical emulators of the training data and do not contain any physical con-512

straints. The performance when applied to a slightly different model and to different con-513

ditions (see Sec. 4) already gives us a sense that the neural networks can reasonably adapt514

to conditions outside of training. In addition, we now perform a sanity check to verify515

that the neural network is doing ”the right thing for the right reasons”. This sanity check516

also gives insight into the importance of the different input variables and could help fu-517

ture development of deep learning parameterisations as well as physical parameterisa-518

tions to focus on these variables.519

To assess the importance of the different variables on the performance of the neu-520

ral networks, we apply two variations of the permute-and-predict approach. In the permute-521

and-predict approach, one of the variables is shuffled randomly and used as input for the522

neural network alongside the other variables that remain in the original order. In the first523

variation (Fig. 6a), we shuffle the input variables within the REPEAT1970 sample to eval-524
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Figure 5. Subset of ice shelves for a visual evaluation of the melt patterns. This is the time

average for the last 10 years of the 4xCO2 run. The colorbar is limited to the 95th percentile of

the NEMO reference. The blue line indicates the region used to evaluate the melt rate near the

grounding line (which is defined as the first box in the 5-box setup of the box parameterisation).

uate the importance of the different variables in a situation close to the training condi-525

tions. In the second variation (Fig. 6b), we use a random sample from the 4xCO2 input526

for the shuffled variable and run the neural network using all other original input vari-527

ables from the REPEAT1970 run to evaluate the importance of different variables in much528

warmer conditions. The shuffling is reiterated for each variable separately. In addition,529

we also shuffle blocks of potentially correlated variables simultaneously to gain insight530

on the effect of correlation on the shuffling results.531

For the shuffling within the REPEAT1970, the geometric properties dominate the532

performance of all three neural networks for the integrated melt (Fig. 6a, left). For the533

XS version, the ice-shelf size, for which the distance to the ice front could be seen as a534

proxy, and the water column height, through ice-draft depth and bathymetry, have the535

highest importance. For the S and L version, the bathymetry is less important but the536

distance to the ice front and the ice-draft depth remain the most important variables,537

with an effect on the RMSE decreasing from S to L. The shuffling of the temperature538

and salinity variables have a smaller effect when shuffled separately, which can be ex-539

plained by the correlation between these variables. However, when shuffled by group, the540

temperature information gains in importance, leading to a similar increase in RMSE as541

the distance to the ice front in the L version. The bedrock and ice slopes are not impor-542

tant for the performance on the integrated melt. For the melt near the grounding line543

(Fig. 6a, right), many variables are not important, the RMSE is reduced when they are544
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XS L

Integrated melt 
[Gt/yr]

Melt near grounding line 
[m ice/yr]

XS L
17.6 16.5Original RMSE

(REPEAT 1970)

Distance GL
Distance IF

Ice draft depth
Bathymetry

Slope bed lon
Slope bed lat
Slope ice lon
Slope ice lat

Temperature
Salinity

Temperature mean
Salinity mean

Temperature std
Salinity std

Position
Water column

Slopes bed
Slopes ice

Temperature info
Salinity info

0.42 0.40
S

18.9

(a) Difference in RMSE to original after shuffling within REPEAT1970

0.36
S

(b) Difference in RMSE to original after inserting random sample from 4xCO2 into REPEAT1970  
Distance GL
Distance IF

Ice draft depth
Bathymetry

Slope bed lon
Slope bed lat
Slope ice lon
Slope ice lat

Temperature
Salinity

Temperature mean
Salinity mean

Temperature std
Salinity std

Position
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Slopes bed
Slopes ice

Temperature info
Salinity info

Figure 6. Difference in RMSE between an application using a random sample for the given

variable of the REPEAT1970 input (a) and of the 4xCO2 input (b) and the original application

on the REPEAT1970 input using the XS, S and L deep ensemble. The original RMSE when ap-

plied to REPEAT1970 is indicated above each column. The upper part of the tables shows the

results when shuffling the variables individually while the lower part is for variables that have

been shuffled as a group. ”Temperature” and ”Salinity” are the ocean properties extrapolated to

the ice-draft depth, ”Temperature mean” and ”Salinity mean” are their average over each cavity,

and ”Temperature std” and ”Salinity std” their standard deviation over each cavity. In the block

Position we group the distance to the grounding line and to the ice front, in the block Water

column we group the ice-draft depth and the bathymetry, in the block Slopes bed and Slopes ice

we group the meridional and zonal slope of the bedrock and ice respectively, in the block Temper-

ature info and Salinity info we group the local value, the average and the standard deviation of

temperature and salinity respectively.
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shuffled. The strongest effect is seen when shuffling the temperature variables as a group.545

The salinity variables, the ice slopes, and the distance to the ice front are the second most546

important group.547

When inserting random samples of 4xCO2 input, the importance of the ice front,548

the ice-draft depth and the bathymetry remains of a similar order of magnitude for the549

integrated melt as in the REPEAT1970 shuffling (Fig. 6b, left). However, the effect of550

the temperature increases drastically and leads to increases in the RMSE of more than551

300 Gt/yr. For the XS and S, the importance of the grouped salinity information increases552

as well. This result reflects the difficulty for neural networks to extrapolate outside of553

the training range. Looking at the distribution of the input variables, the geometrical554

conditions in the 4xCO2 run are in a similar range as the training ensemble, despite an555

involving ice-shelf geometry, while the temperature and salinity variables are clearly out-556

side of the distribution (Fig. A4). For the melt near the grounding line (Fig. 6b, right),557

introducing variables from warmer conditions does not affect the RMSE very differently558

than in the REPEAT1970 case.559

Several conclusions can be drawn from this experiment. First, this experiment shows560

that the geometry, in particular the distance to the ice front and the ice-draft depth, are561

key variables for the neural networks to infer reasonable integrated melt when applied562

on variables close to the training range, closely followed by the temperature. Ice-draft563

depth and temperature already are an integral part of existing parameterisations (Burgard564

et al., 2022). However, the distance to the ice-shelf front or the ice-shelf size are currently565

only partly considered, and only in the more complex parameterisations such as the plume566

and box parameterisations (Lazeroms et al., 2019; Reese et al., 2018).567

Second, when applied to much warmer conditions, the distribution of geometric vari-568

ables remains close to their distribution in the training ensemble. In contrast, the tem-569

perature and salinity, well outside the training range, clearly affect the resulting inte-570

grated melt. This suggests that training the neural networks on simulations of warmer571

conditions could already improve their performance. Even more promising, the low ef-572

fect of geometry changes on integrated melt in warmer conditions suggests that coupled573

ice-ocean simulations of warmer conditions are not necessarily needed for training and574

that cavity-opening ocean simulations with fixed geometry could already be sufficient.575

Third, for the melt near the grounding line, the position of the grid cell is (maybe576

surprisingly) less important than for the integrated melt and the key variable is the tem-577

perature information, both near the training range and in warmer conditions. While the578

ice slope does not affect the integrated melt, it has some effect on the melt near the ground-579

ing line. This suggests that including ice slopes is necessary for a good performance near580

the grounding line. However, the way it is currently included in simple parameterisations581

is not successful as we showed in Burgard et al. (2022) that it leads to a clear overesti-582

mation of the melt in this region.583

Fourth, the effect of the shuffling on the RMSE is generally lower for the L size of584

the neural networks. This could suggest an overfit as it could mean that the neural net-585

work is not following variations in the input variables as much as the other neural net-586

work sizes and is therefore less flexible. This possible overfit would also explain why we587

did not see an increase in the performance during the cross-validation with increasing588

network size in Sec. 3.589

5.2 Possible improvements590

While the results of our neural networks are encouraging, a variety of further im-591

provements can be conducted in the future. The most obvious conclusion from this study592

is that predicting warmer conditions, similar to climate change conditions, is challeng-593

ing for this particular neural network architecture because these conditions were not con-594
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tained during training and neural networks are known to struggle with extrapolation prob-595

lems. We therefore suggest, when possible, to introduce a set of simulations containing596

high-end future scenarios in the training dataset to make the neural network more ro-597

bust for future projections. At the same time, we saw that the traditional parameter-598

isations struggle to represent future conditions as well. How to tune melt parameteri-599

sations to be applicable in both present and future conditions is therefore a problem that600

is not limited to deep learning approaches.601

Another possible improvement is the treatment of the largest ice shelves. When602

looking at the cross-validation results into more detail, i.e. at the scale of each ice shelf603

(not shown), the total RMSE over all ice shelves is strongly influenced by the high RMSE604

for the Ross ice shelf and, to a smaller extent, by the relatively high RMSE for the Filchner-605

Ronne ice shelves. These two ice shelves have an area which is much larger than the other606

ice shelves around Antarctica. Their cavities are so large that they develop their own607

internal circulation (e.g. Gerdes et al., 1999; Naughten et al., 2021) and the residence608

time of water masses reaches several years (Michel et al., 1979; Nicholls & Østerhus, 2004).609

It is therefore not too surprising that parameterisations, which use input temperature610

and salinity averaged over thousands of kilometers at the front of the ice shelves and do611

not represent horizontal circulation explicitly, struggle with the representation of melt612

in these cavities. If we remove these two from the RMSE in the 4xCO2 case for exam-613

ple, we find that the RMSE is clearly reduced for both neural networks and traditional614

parameterisations (Fig. 7 compared to Fig. 4b). It would therefore be worth consider-615

ing whether these rather simple parameterisations are appropriate for the application616

on the Ross and Filchner-Ronne ice shelves and if it would not be wiser to push efforts617

towards the opening of these two cavities in ocean models, even at the lower resolution618

of 1◦, as was already done for NEMO in Smith et al. (2021) or Hutchinson et al. (2023).619

On the same line, we suggest it is worth thinking about tuning the parameterisations620

on the smaller ice shelves, and tuning the parameters and neural networks differently on621

the larger ice shelves.622

There is also space for improvement in the definition of input temperatures and623

salinities. Like in Burgard et al. (2022), the input profiles of temperature and salinity624

are here averaged over a given domain in front of the ice shelf. Then, we extrapolate the625

properties to the ice-draft depth. To give the neural network more information about626

the whole profile, we also gave it the mean and standard deviation of these extrapolated627

temperature and salinity. However, machine learning gives us the opportunity to think628

bigger than traditional statistics when representing information about a given domain.629

One direction that could be explored in further development is the encoding of the im-630

portant information about the water masses in front of the ice shelf using a machine learn-631

ing technique. Ideally, this technique would take in a three-dimensional (horizontal plane632

and depth), or even a four-dimensional (taking also time as input to account for lags and633

residence time), field of temperature and salinity in front of the ice shelf and encode in-634

formation about this field in a format to be given to the neural network. Such encod-635

ing might contain more information about the spatial distribution of the properties in636

front of the ice shelf and therefore potentially encode changes in the ocean circulation637

which might change the circulation within the cavities, as expected to happen in warmer638

conditions for the Filchner-Ronne ice shelf (Naughten et al., 2021).639

Rosier et al. (2023) showed that a convolutional architecture can also be used to640

infer basal melt rates from hydrographic and geometric properties. A convolutional ar-641

chitecture, often U-Nets, is the preferred choice in many current studies exploring the642

application of machine learning to Earth System Sciences (e.g. Ebert-Uphoff & Hilburn,643

2020; Andersson et al., 2021; Finn et al., 2023). In the case of basal melt and the ocean644

circulation in the cavity, such architectures clearly make sense as they can capture spa-645

tial patterns and correlations. However, these architectures require much more simula-646

tion data for training as they take each time step as one training sample while our ap-647
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3 layers, 32 – 64 - 32 neurons
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Figure 7. Summary of the RMSE of the integrated melt (RMSEint) [in Gt/yr] and of the

RMSE of the melt rate averaged over time and space near the grounding line (RMSEGL) [in m

ice/yr] computed on all ice shelves except Ross and Filchner-Ronne ice shelves for a selection of

traditional parameterisations and a subsample of neural networks for the application on a simu-

lation with 4xCO2 forcing. The lighter colors represent the first 30 years of simulation and the

darker colors the last 30 years of simulation.

proach takes each time step and grid cell as one training sample. Also, Rosier et al. (2023)648

demonstrate the performance of their MELTNET in a fixed domain and have not yet649

shown how to apply it to larger ice shelves than this domain. MELTNET remains how-650

ever a promising approach and we are looking forward to its further development.651

Finally, this study has focussed on the emulation of one ocean model at a given res-652

olution. We acknowledge that NEMO’s simulation of basal melt rates is not a perfect653

reflection of reality. Therefore, an interesting further direction to follow would be to train654

a neural network to emulate NEMO at other resolutions and also to emulate other cavity-655

resolving ocean models. In this context, to ensure that the relationship remains sensi-656

ble, we suggest training separate emulators and using them as an ensemble. This would657

provide an ensemble of emulators to be used as a variety of basal melt parameterisations,658

in addition to physics-based parameterisations. In a context where basal melt remains659

one of the main sources of uncertainty in projections of the Antarctic contribution to sea-660

level rise, a wide sample of this uncertainty in the form of a higher variety of parame-661

terisations is welcome.662

6 Conclusions663

In conclusion, we show that a rather simple neural network architecture can be used664

to emulate a cavity-resolving ocean model. Our multilayer perceptrons are designed to665

be rather simply usable as a basal melt parametrisation for ice-sheet modellers. They666

use input properties needed for the traditional parameterisations already and can be ap-667

plied on the grid-cell level, similarly to most traditional parameterisations. While they668

struggle nearly as much as traditional parameterisations to generalise to ice shelves un-669

seen during tuning, the neural networks generalise much better on time blocks unseen670
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during training and the patterns are clearly better represented. In the demanding test-671

ing phase, on a dataset produced with different NEMO parameters, geometry pertur-672

bations unseen during training and different forcing, they still perform at least as well673

or even better than traditional parameterisations, both in historical and much warmer674

conditions.675

These results are promising as neural networks and machine learning in general are676

topics that have been gaining lots of traction lately and efforts are done in many disci-677

plines of the Earth System Sciences to explore their application. In this study, we pro-678

vide guiding thoughts for further exploration and refinement of this approach, while this679

first proof of concept can already be used as an additional parameterisation in the ice-680

sheet modelling landscape.681

Appendix A Distributions of variables of interest in the training and682

testing ensemble683

Temperature profiles over 50 km in front of the ice shelf 
for the different simulations of the ensemble

De
pt

h
[m

]

TRAINING DATA REPEAT1970  4xCO2
(127 years) (60 years) (60 years)

Temperature [°C]

Figure A1. Input profiles of temperature for the different ice shelves. Profiles of the train-

ing ensemble are shown in grey, profiles for the REPEAT1970 run in orange and profiles for the

4xCO2 run in red.
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Salinity profiles over 50 km in front of the ice shelf 
for the different simulations of the ensemble

De
pt

h
[m

]

Salinity [PSU]

TRAINING DATA REPEAT1970  4xCO2
(127 years) (60 years) (60 years)

Figure A2. Input profiles of salinity for the different ice shelves. Profiles of the training en-

semble are shown in grey, profiles for the REPEAT1970 run in light blue and profiles for the

4xCO2 run in dark blue.
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Integrated melt over time
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Figure A3. Timeseries of the integrated melt for the different ice shelves. The training en-

semble is shown in grey, the REPEAT1970 run in orange and the 4xCO2 run in red. The black

dashed line limits the first and second 30-year block used in Sec. 4 for the 4xCO2 run
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Figure A4. Distribution (occurence count) of the different input variables and the melt over

the training ensemble (grey), the REPEAT1970 run (orange) and the 4xCO2 run (red).
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Open Research684

The simulation data from Burgard et al. (2022) used for the training ensemble can685

be found on Zenodo: https://doi.org/10.5281/zenodo.7308352. The simulation data686

from (Smith et al., 2021) used for the testing ensemble will be uploaded on Zenodo as687

soon as possible. All code to train the neural networks and produce the figures can be688

found on Github: https://github.com/ClimateClara/basal melt neural network689

and will be uploaded to Zenodo upon paper acceptance.690
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T., . . . Yu, Y. (2021). Ocean, Cryosphere and Sea Level Change [Chapter]. In778

V. Masson-Delmotte et al. (Eds.), Climate Change 2021: The Physical Science779

Basis. Contribution of Working Group I to the Sixth Assessment Report of the780

Intergovernmental Panel on Climate Change (chap. 9). Cambridge, United781

Kingdom and New York, NY, USA: Cambridge University Press.782

Fukushima, K. (1975). Cognitron: A self-organizing multilayered neural network. Bi-783

ological Cybernetics, 20 (3), 121-136. doi: 10.1007/BF00342633784

Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., & Yacalis, G. (2018). Could Ma-785

chine Learning Break the Convection Parameterization Deadlock? Geophysical786

Research Letters, 45 (11), 5742-5751. doi: 10.1029/2018GL078202787

Gerdes, R., Determann, J., & Grosfeld, K. (1999). Ocean circulation beneath788

Filchner-Ronne Ice Shelf from three-dimensional model results. Journal of789

Geophysical Research: Oceans, 104 , 15827-15842. doi: 10.1029/1999JC900053790

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.791

(http://www.deeplearningbook.org)792

Gudmundsson, G., Krug, J., Durand, G., Favier, L., & Gagliardini, O. (2012). The793

stability of grounding lines on retrograde slopes. The Cryosphere, 6 (6), 1497-794

1505. doi: 10.5194/tc-6-1497-2012795
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Key Points:10

• We show that simple neural networks can produce reasonable basal melt rates by11

emulating circum-Antarctic cavity-opening ocean simulations.12
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• We show that neural networks are suited to be used as basal melt parameterisa-15

tions for century-scale ice-sheet projections.16
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Abstract17

Melt rates at the base of Antarctic ice shelves are needed to drive projections of the Antarc-18

tic ice sheet mass loss. Current basal melt parameterisations struggle to link open ocean19

properties to ice-shelf basal melt rates for the range of current sub-shelf cavity geome-20

tries around Antarctica. We present a novel parameterisation based on deep learning.21

With a simple feedforward neural network, or multilayer perceptron, acting on each grid22

cell separately, we emulate the behavior of circum-Antarctic cavity-resolving ocean sim-23

ulations. We explore different neural network sizes and find that, in all cases contain-24

ing at least one hidden layer, this kind of emulator produces reasonable basal melt rates25

for our training ensemble, closer to the reference simulation than traditional parameter-26

isations. For testing, we use an independent ensemble of simulations that was produced27

with the same ocean model but with different model parameters, different cavity geome-28

tries and different forcing. In this challenging test, traditional and neural network pa-29

rameterisations yield similar results on present conditions. In much warmer conditions30

than the training ensemble, both traditional parameterisations and neural networks strug-31

gle, but the neural networks tend to produce basal melt rates closer to the reference than32

a majority of traditional parameterisations. These neural networks are therefore suit-33

able for century-scale Antarctic ice-sheet projections.34

Plain Language Summary35

A warmer ocean around Antarctica leads to higher melting of the floating ice shelves,36

which influence the ice loss from the Antarctic ice sheet and therefore sea-level rise. In37

computer simulations of the ocean, these ice shelves are often not represented. For sim-38

ulations of the ice sheet, so-called parameterisations are used to link the oceanic prop-39

erties in front of the shelf and the melt at their base. We show that this link can be em-40

ulated with a simple neural network, which performs at least as well as traditional phys-41

ical parameterisations both for present and much warmer conditions. This study also42

proposes several potential ways of further improving the use of deep learning to param-43

eterise basal melt.44

1 Introduction45

The contribution of the Antarctic Ice Sheet to sea-level rise has been increasing in46

past decades and this increase is projected to continue with increasing greenhouse gas47

emissions (Fox-Kemper et al., 2021). Most of the mass loss is occurring at the margins48

of the ice sheet through faster ice flow from the grounded ice sheet to the ocean, mainly49

in West Antarctica (Mouginot et al., 2014; Rignot et al., 2014; Scheuchl et al., 2016; Khazen-50

dar et al., 2016; Shen et al., 2018; The IMBIE Team, 2018). This is because the float-51

ing ice shelves at the margins of the ice sheet, which usually buttress the ice flow, are52

rapidly thinning and retreating due to ocean-induced melt at their base (Rignot et al.,53

2013; Paolo et al., 2015; Adusumilli et al., 2020). In some bedrock configurations, increased54

ocean-induced melt can even trigger marine ice sheet instabilities (Weertman, 1974; Schoof,55

2007; Gudmundsson et al., 2012), which have the potential to strongly increase Antarc-56

tic mass loss, on timescales below a century (Fox-Kemper et al., 2021). This makes ocean-57

induced sub-shelf melt, or basal melt, one of the main sources of uncertainty for future58

projections of sea-level rise.59

Basal melt is a result of warm ocean water coming into contact with the base of60

the ice shelf. Which water masses reach the ice-ocean interface depends on the circula-61

tion of the water, not only in front of the ice shelf, but also after entering the ice-shelf62

cavity (Dinniman et al., 2016). As a consequence, to simulate the properties of the wa-63

ter at the ice-ocean interface accurately, both the ocean circulation around Antarctica64

and the circulation in the cavities below the ice shelves need to be simulated accurately.65

A few global or circum-Antarctic ocean models already include ice-shelf modules (Losch,66
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2008; Timmermann et al., 2012; Dinniman et al., 2015; Mathiot et al., 2017; Comeau et67

al., 2022), but such ocean models are expensive to run on long timescales or for large en-68

sembles. Instead, a majority of the global climate models used until now in the Coupled69

(CMIP) or Paleoclimate (PMIP) Model Intercomparison Projects still poorly represent70

the ocean dynamics along the Antarctic margins and do not include ice-shelf cavities (Beadling71

et al., 2020; Heuzé, 2021). Getting the right water masses in the right place around Antarc-72

tica is a matter for global and regional ocean modelling and will not be the focus of this73

study. In this study, we focus on the circulation within the ice-shelf cavities and the re-74

sulting melt.75

To infer the basal melt forcing for projections of the Antarctic contribution to sea-76

level rise, ice-sheet models commonly rely on parameterisations linking hydrographic prop-77

erties in front of the ice shelves, given by observations or oceanic output from global cli-78

mate models, and the basal melt (Jourdain et al., 2020). Due to different assumptions79

and simplifications concerning the circulation in the cavities, the range of existing basal80

melt parameterisations leads to widely differing melt patterns and associated contribu-81

tions to sea-level rise (Favier et al., 2019; Burgard et al., 2022). The magnitude of the82

resulting uncertainty contribution is similar, or even larger, than the choice of emission83

scenario used to force the projections (Seroussi et al., 2020; Edwards & the ISMIP6 Team,84

2021).85

Emulating the three-dimensional ocean circulation within the cavity in simplified86

physical parameterisations is challenging and calls for exploring alternative approaches.87

We suggest that deep learning can be one tool to tackle this challenge. In recent years,88

the amount of ocean simulation output including ice-shelf cavities has increased and tools89

that make the application of deep learning techniques easily accessible have been devel-90

oped, opening up the possibility of developing a neural network parameterisation for basal91

melt. If trained with high-resolution model output, a neural network parameterisation92

could implicitly include more intrinsic information about the system than a traditional93

physical parameterisation. This approach has been applied promisingly in several areas94

of Earth System Sciences in the form of multilayer perceptrons applied on the grid-cell95

level (e.g. Gentine et al., 2018; Rasp et al., 2018), convolutional neural networks applied96

on multidimensional fields (e.g. Bolton & Zanna, 2019; Rosier et al., 2023) or random97

forests (e.g. Yuval & O’Gorman, 2020).98

Deep learning has also been explored for basal melt parameterisations. Rosier et99

al. (2023) performed promising experiments that showed that a cavity-resolving ocean100

model can be emulated with a convolutional neural network in a variety of idealised ice-101

shelf geometries. In the present study, we choose a different deep learning approach to102

developing such a deep emulator, or surrogate model, which differs on two fundamental103

points. On the one hand, we train on the circum-Antarctic cavity-resolving ocean sim-104

ulations with realistic geometries used in Burgard et al. (2022). On the other hand, we105

use a multilayer perceptron architecture applied to each grid cell, as preliminarily ex-106

plored in Bouissou et al. (2022). In the following, we present a proof of concept for a mul-107

tilayer perceptron, which takes in hydrographic properties in front of the ice shelf and108

the geometric information at each grid point. In Sec. 2, we present the training and test-109

ing data, the neural network architecture, and the evaluation procedure. In Sec. 3, we110

show that the multilayer perceptron can successfully emulate cavity-resolving ocean sim-111

ulations and produce integrated basal melt and patterns at least as close as but gener-112

ally closer to the reference than traditional parameterisations in conditions similar to present.113

In Sec. 4 we explore the applicability of such a neural network to an independent set of114

simulations produced with a few different model parameters, slightly different geome-115

tries and in warmer oceanic conditions. Finally, in Sec. 5, we discuss the lessons learned116

from our study and give an outlook on possible directions to explore further in the fu-117

ture.118
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2 Data and Methods119

The goal of this study is to explore if and how a neural network, in the form of a120

multilayer perceptron, can emulate the link between hydrographic properties in front of121

an ice shelf, geometric characteristics of the cavity, and the melt rates at its base as sim-122

ulated by a cavity-resolving ocean model. In the following, we present the ocean model123

used and the set of simulations used for training, validation and testing the neural net-124

work; the neural network, its architecture, and its input variables; and the training and125

testing procedure.126

2.1 Data127

We choose to emulate a cavity-resolving version of the 3-D primitive-equation cou-128

pled ocean–sea-ice model NEMO (Nucleus for European Modelling of the Ocean, NEMO129

Team, 2019) run on the eORCA025 horizontal grid (Storkey et al., 2018). This grid has130

a resolution of 0.25◦ in longitude on average, i.e. a resolution of 4 to 14 km in the Antarc-131

tic seas and below the ice shelves, which is sufficient to capture the basic ocean circu-132

lation below multiple Antarctic ice shelves (Mathiot et al., 2017; Bull et al., 2021).133

For the training phase, we use the same ensemble of simulations as used for the as-134

sessment of traditional basal melt parameterisations in Burgard et al. (2022). The en-135

semble is composed of four ocean simulations spanning 30 to 40 years, depending on the136

simulation, between 1979 and 2018. They were run with a standalone version of NEMO137

and forced with atmospheric forcing from JRA55-do version 1.4 (Tsujino et al., 2018).138

The Antarctic continental shelf bathymetry and ice shelf draft are constant and based139

on Bedmachine Antarctica version 2 (Morlighem, 2020; Morlighem et al., 2020). The sim-140

ulations in the ensemble differ in a small number of parameters which are not directly141

related to the physics driving the ocean circulation and melt within the ice-shelf cavi-142

ties but rather lead to a variety of hydrographic properties all around Antarctica. A more143

detailed description of the exact model configuration and differences in parameters can144

be found in Burgard et al. (2022).145

For the testing phase, we use two simulations independent from the ensemble used146

for training. In this case, NEMO was run in coupled mode as the oceanic component of147

the Earth System Model UKESM1.0-ice (Smith et al., 2021), which couples the UK Earth148

System Model (UKESM1, Sellar et al., 2019) to an adapted version of the ice-sheet model149

BISICLES (Cornford et al., 2013). In this coupled configuration, the cavities below the150

ice shelves are open and the ice-shelf melt is computed with the same approach as in the151

training ensemble (as proposed by Mathiot et al., 2017). This means that a z⋆ coordi-152

nate is used for depth and the three equations are used to parameterise the ice-shelf melt153

in the ice-ocean boundary layer. Due to the coupled setup, the ice-shelf draft evolves ac-154

cording to the simulated evolution of the ice sheet. Note that the position of the ice front155

at the surface remains fixed by ice-sheet model design. More details about the config-156

uration of NEMO in this model setup can be found in Smith et al. (2021). The two test157

simulations differ in their atmospheric forcing. In the first one, which we will call ”RE-158

PEAT1970”, UKESM1.0-ice was run for several decades under constant 1970 greenhouse159

gas and other forcings. In the second one, which we will call ”4xCO2”, UKESM1.0-ice160

was run for several decades under instantaneously quadrupled 1970 CO2 concentrations.161

In our study, we use 60 years of simulation, from year 10 to year 70, for both runs.162

The training and the testing dataset result from NEMO simulations. Nevertheless,163

next to differences in forcing from the atmosphere and the ice and bed geometry, the train-164

ing and testing ensembles also differ in several technical aspects of NEMO. The train-165

ing simulations were run with the version of 4.0.4. of NEMO (NEMO Team, 2019), in-166

cluding the sea-ice model SI3, while the test simulations were run with the version 3.6167

of NEMO (Madec & NEMO Team, 2017) and version 5.1 of the Community Ice CodE168

(CICE, Hunke et al., 2015). In addition, a few different parameter choices may affect the169
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link between hydrographic properties in front of the ice shelf and the melt at the base170

of the ice shelf. The training ensemble was computed on 121 vertical levels (represent-171

ing 20 m at 600 m depth), while the testing ensemble was computed on 75 vertical lev-172

els (representing 60 m at 600 m depth). In both ensembles, the thickness of the top bound-173

ary layer is bound at 20 m but can differ locally due to the different vertical resolutions.174

In the training ensemble, the thermal Stanton number is set to 7×10−4 while in the test-175

ing ensemble the thermal Stanton number is set to 1.45×10−3. In the training ensem-176

ble, the top tidal velocity varies locally based on the CATS2008 dataset (Padman et al.,177

2008; Howard et al., 2019), while it is fixed to 5 cm/s in the testing ensemble. In con-178

clusion, this means that the testing ensemble is a slightly different model than the model179

which the neural network is trained to emulate and therefore represents a demanding test-180

ing experiment.181

The training and testing ensembles cover a range of states that do not necessar-182

ily match observational estimates of hydrographic properties and basal melt rates. In183

both standalone and coupled mode, eORCA025 configurations are prone to biases in the184

ocean circulation around Antarctica (Smith et al., 2021). Nevertheless, in Burgard et al.185

(2022), we showed that, if the forcing and parameters were carefully chosen to reproduce186

realistic ocean conditions in the Southern Ocean, the resulting basal melt rates were in187

agreement with observational estimates from Rignot et al. (2013). The physical link be-188

tween the hydrographic properties in front of the ice shelves and the basal melt rates is189

therefore reasonable. Based on this assumption, biases in the input properties should not190

affect the credibility of the training and evaluation procedure and the resulting neural191

network. On the contrary, a large variety of states is even beneficial because it provides192

more cases for our neural network to train on than only using the very limited sample193

of observations.194

On a more technical note, for this study, the NEMO output was interpolated bi-195

linearly to a stereographic grid of 5 km spacing, as ice-sheet models and basal melt pa-196

rameterisations are commonly run on a stereographic grid. All pre-processing, training,197

testing, and analysis is conducted using this regridded data. From this regridded data,198

we cut out the different ice shelves according to latitude and longitude limits defined on199

the present geometry (details found in Burgard (2022)) and then apply a routine to adapt200

this mask to slightly different geometries, like the ones resulting from the fully coupled201

UKESM1.0-ice runs. Of these ice shelves, we only keep the largest ice shelves. The ef-202

fective resolution of physical ocean models, i.e. the resolution below which the circula-203

tion might not be resolved well, is typically 5 to 10 times the grid spacing (Bricaud et204

al., 2020). We empirically choose a cutoff at an area of 2500 km2 (i.e. 6.25 ∆x) to be205

in this range while keeping a sufficiently large number of ice shelves. Due to different ge-206

ometries in the training and testing ensemble, this results into a slightly different ensem-207

ble of resolved ice shelves in these two ensembles (as listed in the figures of Appendix208

A).209

2.2 Neural network210

We design our neural network to predict the basal melt rates based on information211

about the ocean temperature and salinity in front of the ice shelf and about the ice-shelf212

geometry (Fig. 1). To link the input to the prediction, we use a multilayer perceptron,213

which is applied to each grid cell independently. A multilayer perceptron is the simplest214

form of a neural network and is a composition of functions (also called hidden layers),215

which takes an input array containing any number of variables and outputs a prediction.216

Specifying its number of neurons, each hidden layer is characterised by its parameters217

– the weights and biases, that connect each layer to its previous layer and shift the val-218

ues in the hidden layer, respectively. An activation function in the hidden layer intro-219

duces non-linearities in the relationship between input and output. In this study, we ex-220

plore different numbers of layers and numbers of neurons per layer. As activation func-221
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tion, we use the rectified linear unit (ReLU, Fukushima, 1975; Nair & Hinton, 2010). The222

multilayer perceptron is implemented in Python with the package Keras (Chollet et al.,223

2015).224

INPUT
(for each ice-covered grid cell)

Local properties
- Distance to grounding line
- Distance to ice shelf front
- Ice draft depth
- Meridional ice slope
- Zonal ice slope
- Bathymetry
- Meridional bedrock slope
- Zonal bedrock slope

Entry temperature (T) and salinity (S)
- Extrapolated from profile to ice-draft depth 
- Average over extrapolated properties
- Standard deviation of extrapolated properties

NEURAL NETWORK
(multilayer perceptron acting 

independently on each ice-
covered grid cell)

Hidden layers
- XXS (none)
- XS (2 layers: 96 - 96) 
- S (3 layers: 32 – 64 – 32)
- M (5 layers: 96 – 96 – 96 – 96 – 96)
- L (5 layers: 128 – 128 – 128 – 128 – 128)
- XL (6 layers: 256 – 256 – 256 – 256 – 256 – 256)

Activation function
ReLU

OUTPUT
(for each ice-covered 

grid cell)

Basal melt rates

An
ta

rc
tic

 ic
e s

he
et

So
ut

he
rn

 O
ce

an

Bedrock

Ice shelf

Figure 1. Schematic of the workflow around our neural network.

The strength of a neural network, and supervised machine learning techniques in225

general, is that it can reproduce complex non-linear relationships without being given226

the driving equations behind the data. Instead, its performance is driven by the super-227

vised training phase, which determines the weights and biases of each neuron in the net-228

work. During training, the loss, describing the averaged distance of the network predic-229

tions to a given target output, is backpropagated to the weights of the network. The weights230

are then optimised with stochastic gradient descent. The training dataset is randomly231

split up into batches, over which the optimisation is looped. A complete pass through232

the batches defines an epoch, and the weights and biases are optimised over several such233

epochs. In parallel to the training, the neural network is applied to a validation dataset234

to monitor its performance on data that has not been used for the training. After train-235

ing, the final performance of the neural network is estimated by applying it to a previ-236

ously unseen testing dataset.237

In this study, to train the neural network, the loss which we reduce is the mean-238

squared-error over all ice-covered points between the predicted (mNN ) and target (mref )239

basal melt rates,240

MSE =

Npts∑
i

Nyears∑
t

(mNN[i, t]−mref [i, t])
2

NptsNyears
(1)

where Npts is the number of ice-covered grid points and Nyears is the number of years241

used in the training. In Burgard et al. (2022), we argued that tuning on the grid-cell level242

would give too much weight to the larger ice shelves, as they cover a larger area. We still243

agree with this statement for traditional parameterisations because they already intrin-244

sically contain assumptions about the physics of the circulation and the melt before tun-245

ing and have only one or two tuneable parameters. In the case of our neural network,246

the relationship between the properties in front of the ice shelf and the melt is learnt from247

scratch, and it contains a larger number of parameters to adjust. We therefore argue that248

training on the grid-cell level is more sensible.249
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The neural network is optimised with Adam (Kingma & Ba, 2014), an initial learn-250

ing rate of 0.001, β1=0.9 and β2=0.999. We split the training dataset in batches with251

a size of 512 samples and optimise the neural network for at most 100 epochs. If the val-252

idation loss is not improved for 5 epochs, we reduce the learning rate by a factor of 2.253

If the validation loss is not improved for 10 epochs, we stop the training early. After early254

stopping, the model weights with the lowest validation loss are restored.255

2.3 Input variables256

The multilayer perceptron takes an array of variables as input for each grid cell in-257

dependently. In our case, the input array contains information about the geometrical prop-258

erties of the grid cell and the hydrographic forcing (Fig. 1).259

For the geometrical properties, the input contains the following information: the260

ice draft depth, the local meridional and zonal slopes of the ice draft, the bathymetry,261

the local meridional and zonal slopes of the bedrock, and the distance of the grid cell262

to the nearest grounding line cell and the distance to the nearest ice front cell. All these263

variables are defined on the same horizontal plane and domain as the output array, the264

basal melt rates.265

For the hydrographic forcing, more pre-processing is needed. To map the hydro-266

graphic forcing to the same grid cells as the other input variables, we proceed in the same267

manner as for traditional simple parameterisations in Burgard et al. (2022). First, we268

convert the conservative temperature and absolute salinity given by NEMO into poten-269

tial temperature and practical salinity with the GSW oceanographic toolbox (Firing et270

al., 2021). Second, we average the potential temperature and practical salinity, respec-271

tively, over the continental shelf within 50 km of the front of each ice shelf. The conti-272

nental shelf is defined as grid cells where the depth of the bathymetry is shallower than273

1500 m. The 50 km criterion imitates CMIP-type global ocean models that have reso-274

lutions around 1◦ (Heuzé, 2021), corresponding to a distance of between 38 km (70◦S)275

and 56 km (60◦S) in longitude. Third, we extrapolate the temperature and salinity from276

these mean profiles in front of the ice shelf to the local ice-draft depth, resulting in one277

local temperature and local salinity value per grid cell in the ice-shelf domain. Fourth,278

we also compute, for each time step, the average and standard deviation of these extrap-279

olated temperature and salinity fields and use them as additional input variables for each280

grid cell.281

2.4 Training, validation and testing methodology282

In a first step, we explore different neural network sizes using the method of cross283

validation on our training ensemble. In a second step, we choose a subsample of the neu-284

ral networks to explore their performance on the testing dataset.285

We conduct two variations of leave-one-block-out cross validation to estimate the286

validation loss (MSE as defined in Eq. 1), one on the ice shelf dimension and one on the287

time dimension, like in Burgard et al. (2022). This approach consists of dividing the dataset288

into N blocks, training the neural network to minimise the training loss on N−1 blocks289

and using the left-out block to compute the validation loss (Wilks, 2006; Roberts et al.,290

2017). The procedure is re-iterated N times, leaving out each of the N blocks succes-291

sively, so that, in the end, each N -th block has been left out of training once. All pre-292

dictions for the left-out blocks, using the separately trained neural networks, are then293

concatenated to form a ”synthetically independent” evaluation dataset. Applying an eval-294

uation metric on this evaluation dataset, we assess how well the neural network gener-295

alises to data ”unseen” during training. We use N=35 for the cross validation over ice296

shelves. For the cross validation over time, we divide the years into blocks of approxi-297

mately 10 years (ten 10-year blocks and three 9-year blocks) to reduce the effect of au-298
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Table 1. Neural network size of the different variations explored in the cross validation.

Neural network configuration Number of hidden layers Number of neurons

XXS 0 0
XS 2 96/96
S 3 32/64/32
M 5 96/96/96/96/96
L 5 128/128/128/128/128
XL 6 256/256/256/256/256/256

tocorrelation, which is typically 2 to 3 years in our input temperatures. This results in299

N=13 for the cross validation over time.300

Before training, we normalise the training sample to put each of the 14 input vari-301

ables (listed in Fig. 1) as well as the output variable on a similar order of magnitude and302

avoid potential problems of gradient explosion. We do so by subtracting the mean and303

dividing by the standard deviation of the training sample. To avoid that validation data304

leaks into the training, this normalisation is reiterated for each iteration of the cross val-305

idation.306

We use the framework of cross validation to evaluate not only one but several neu-307

ral networks to estimate the effect of their size on their performance. We sample differ-308

ent sizes ranging from an extra-extra small (XXS) neural network, with no hidden layer,309

and thus corresponding to a linear regression, to an extra-large (XL) neural network, with310

six hidden layers, each containing 256 neurons. The different sizes are listed in Table 1.311

To evaluate the resulting basal melt rates, we use the same metrics as in Burgard312

et al. (2022), namely: (1) the root-mean-squared error (RMSE) of the yearly integrated313

melt on the ice-shelf level and (2) the RMSE of the mean melt near the grounding line314

for each ice shelf. For the former, we compute the RMSE between the simulated and em-315

ulated yearly integrated melt (M) of the individual ice shelves [in Gt/yr] as follows:316

RMSEint =

√√√√√Nisf∑
k

Nyears∑
t

(MNN[k, t]−Mref [k, t])2

NisfNyears
(2)

where the subscript NN stands for neural network, Nisf is the number of ice shelves and317

Nyears the number of simulated years, and the integrated melt M of ice shelf k [in Gt/yr]318

is:319

M [k] = ρi × 10−12

Ngrid cells in k∑
j

mjaj (3)

where ρi is the ice density, mj is the melt [in m ice per year] in grid cell j, and aj is the320

area of grid cell j. For the latter, we compute the RMSE between the simulated and em-321

ulated yearly mean melt rate near the grounding line [in m ice per year]:322

RMSEGL =

√√√√√Nisf∑
k

Nsimu∑
n

(mGL,NN[k, n]−mGL,ref [k, n])2

NisfNsimu
(4)
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where Nsimu is the number of simulations in the ensemble and where mGL for ice shelf323

k and simulation n is:324

mGL[k, n] =
1

Nyears in n

Nyears in n∑
t

Ngrid cells near GL in k∑
j

(mjaj)

Ngrid cells near GL in k∑
j

aj

(5)

The domain ”near the grounding line” is the area covered by the first box prepared for325

the box parameterisation, when considering a maximum amount of five boxes, and is equiv-326

alent to approximately 10 % of the shelf area.327

After cross validation, we choose a subsample of these neural networks to do fur-328

ther evaluation on a completely independent dataset. To do so, we reiterate the train-329

ing of the subsample of neural networks over the whole training dataset and choose to330

work with a deep ensemble (Lakshminarayanan et al., 2017). The final weights and bi-331

ases of neural networks depend on the initialisation of the weights before the first train-332

ing iteration (Goodfellow et al., 2016). To account for this uncertainty and gain a more333

robust performance from the neural networks, we reiterate the training of the subsam-334

ple of neural networks ten times with ten different random initialisations. We then ap-335

ply this deep ensemble of ten neural networks to the independent testing input and com-336

pute an ensemble mean over the ten resulting melt rates. Note that we only investigate337

a small sample of neural network sizes for exploration in this study and do not claim that338

the best performing neural network here is the best performing neural network for the339

problem. This study is rather a proof of concept to encourage further research in this340

direction.341

3 Training and cross validation342

3.1 Integrated melt and mean melt near the grounding line343

The two evaluation metrics for the cross validation of the different neural network344

sizes are shown in Fig. 2. In addition, to compare the performance to traditional param-345

eterisations, we show the evaluation metrics for a subset of existing parameterisations:346

the quadratic local parameterisation using a constant Antarctic slope (e.g. Holland et347

al., 2008) and using a local slope (e.g. Favier et al., 2019; Jourdain et al., 2020), the plume348

parameterisation proposed by Lazeroms et al. (2019), the box parameterisation with the349

same box amount as in Reese et al. (2018), and the PICOP parameterisation from Pelle350

et al. (2019). The parameterisations are used as presented and tuned in Burgard et al.351

(2022).352

Corresponding to a linear regression, the XXS neural network leads to a RMSE of353

a similar order as traditional parameterisations in the cross validation over time and, for354

the melt near the grounding line, in the cross validation over ice shelves as well. For the355

integrated melt, the cross validation over ice shelves leads to a comparably high RMSE.356

In the further course of this study, we therefore focus on neural networks that include357

hidden layers.358

For both metrics, the RMSE for the cross validation over time is considerably re-359

duced when using a neural network with hidden layers compared to traditional param-360

eterisations and the XXS neural network. The RMSE for the cross validation over ice361

shelves is higher than for the cross validation over time but remains on the lower end362

of the range of RMSEs given by traditional parameterisations.363

The RMSEint of the cross validation over time is very similar between neural net-364

work sizes and spans between 6 Gt/yr (XL) and 11 Gt/yr (S). It remains well below the365

mean reference integrated melt on the ice-shelf level of 39 Gt/yr. The RMSEint of the366

–9–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Quadratic, Antarctic slope

Plume

Box

PICOP

Integrated melt Melt near the grounding line

RMSE [Gt/yr] over the left-out blocks 
of the cross validation 

(127 simulation years and 35 ice shelves)

Cross-validation
over time
over ice shelves

RMSE [m ice/yr] of space and (left-out) time 
mean near grounding line for (left-out) 35 ice 

shelves and 4 simulations

XXS
No hidden layer (// linear regression)

XS
2 layers, 96 – 96 neurons

S
3 layers, 32 – 64 - 32 neurons

M
5 layers, 96 – 96 – 96 – 96 – 96 neurons

L
5 layers, 128 – 128 – 128 – 128 – 128 neurons

XL
6 layers, 256 – 256 – 256 – 256 – 256 – 256 neurons

Quadratic, local slope

Mean reference: 39 Gt/yr Mean reference: 0.45 m ice/yr

Figure 2. Summary of the RMSE of the integrated melt (RMSEint) for the cross validation

over time (×) and for the cross validation over ice shelves (+) for a selection of traditional pa-

rameterisations (as shown in Burgard et al., 2022) [in Gt/yr] (left) and summary of the RMSE

of the melt rate averaged over time and space near the grounding line (RMSEGL) [in m ice/yr]

(right). The colors represent the different parameterisation approaches: traditional parameter-

isations (grey), neural network (shades of blue). The RMSE is computed following Eq. (2), left

panel, and Eq. (4), right panel, on the synthetically independent evaluation dataset.

cross validation over ice shelves varies more and is higher, between 24 (S) and 45 Gt/yr367

(M). The performance does not correlate with the neural network size. On the contrary,368

the lowest RMSEint of the cross validation over ice shelves is found for a comparably small369

neural network (S).370

For the melt near the grounding line, the RMSEGL does not vary much in both cross371

validations between neural network sizes. The cross validation over time leads to a very372

low RMSE, varying from 0.02 m/yr (M,L,XL) to 0.06 m/yr (S). The cross validation over373

ice shelves leads to a RMSE between 0.42 m/yr (XS,S) and 0.50 m/yr (L), on the same374

order as the mean reference melt near the grounding line on the ice-shelf level, which is375

0.45 m ice/yr.376

The neural networks have more difficulties generalising to unseen ice shelves than377

generalising to unseen time periods. This means that one of the obstacles for the neu-378

ral networks’ performance is the application to unknown cavity geometries. Some of the379

cavity geometries are so different from the rest of the ensemble that they force the neu-380

ral networks to extrapolate far from their training domain. However, if they have seen381

a given geometry at least once during training, they perform well on this geometry for382

another time step. This aspect is encouraging, as this means that the neural networks383

adapt well to temperature and salinity variations across the training ensemble.384

3.2 Spatial patterns385

To add on the metrics at the ice-shelf level, we analyse the spatial patterns result-386

ing from the XS, S and L neural networks (Fig. 3) for the training ensemble member clos-387
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est to realistic conditions (called REALISTIC in Burgard et al., 2022). For the cross val-388

idation over time, the patterns of XS, S and L are nearly indistinguishable from the ref-389

erence for Filchner-Ronne, Pine Island, Fimbul, and Totten ice shelves. For Ross ice shelf,390

all patterns are close to the reference, but the S pattern contains more widespread melt-391

ing.392
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Figure 3. Subset of ice shelves for a visual evaluation of the melt patterns. This is the time

average for the training ensemble member closest to real conditions (39 years) where the melt

for each timestep has been computed with the neural network trained on the dataset leaving out

that timestep (cross validation over time, columns 2 to 4) and where the melt of each ice-shelf

has been computed with the neural network trained on the dataset leaving out that ice shelf

(cross validation over ice shelves, columns 5 to 7). The blue line indicates the region used to eval-

uate the melt rate near the grounding line (which is defined as the first box in the 5-box setup of

the box parameterisation).

For the cross validation over ice shelves, the patterns are not matching in as much393

detail as in the cross validation over time. In particular for the two largest ice shelves,394

Filchner-Ronne and Ross, it becomes clear that if the neural network has been trained395

without one of them, it will mimic the spatial pattern of the other because they are the396

only ones to share given ranges in the input variables, such as for example large distances397

to the ice front and grounding line. For Filchner-Ronne and Ross, the result of the cross398

validation over ice shelves does not match the reference in any of the neural networks.399
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For Pine Island and Amery, the XS and S patterns match the reference better than the400

L pattern, while, for Fimbul and Totten, the L pattern is a little better.401

The low RMSE in the cross validation over time suggests an overfit on the geom-402

etry, which is fixed over time in the training dataset. The patterns very close to the ref-403

erence in the cross validation over time show that, even if our neural networks are ap-404

plied on each grid-cell separately, the location of the grid cell is more or less encoded in405

one or more input variables. However, as our problem is not necessarily well constrained406

with the input variables given, we suggest that this overfit can be used to our advantage.407

Our hypothesis is that, if the neural network has seen each ice shelf once, it has captured408

the variety of geometries and will be able to generalise to future changes in these ”known”409

ice shelves. We do not expect new and completely different ice shelves to appear in the410

next centuries. To assess this idea, we need to investigate how well the neural network411

will perform on a geometry which is similar to but not identical to the training.412

In the following, we investigate further if the neural networks are suitable for evolv-413

ing ice-shelf geometries that are close to existing geometries and to temperature and salin-414

ity input properties outside the training range. We choose to continue with (1) the S size,415

because it has the lowest RMSE in the cross validation over ice shelves, (2) the XS size416

because it has similarly low RMSE to the larger sizes but remains very small and sim-417

ple, and (3) the L size to include a larger neural network and explore potential differ-418

ences during the testing compared to its behavior in the cross validation.419

4 Testing on independent simulations420

We apply our subsample of neural network sizes on two independent datasets, one421

representing 60 years of constant 1970-forcing (REPEAT1970), and one representing warmer422

conditions, i.e. 60 years of abrupt 4xCO2 forcing (4xCO2), from Smith et al. (2021). The423

REPEAT1970 simulation has a relatively steady ice-sheet geometry, similar (but not iden-424

tical) to the training geometry and is useful to assess the sensitivity of the neural net-425

works to different near-present-day atmospheric conditions (from the UKESM atmosphere426

component), to different parameters used in NEMO, and to slightly different geometries.427

The 4xCO2 simulation experiences larger changes in ice-sheet geometry and much warmer428

conditions, which is useful to test the neural networks far outside of their training range.429

As a consequence, this evaluation is demanding and permits to evaluate the limits of the430

neural networks.431

For evaluation, we divide the 4xCO2 run into two 30-year blocks to capture poten-432

tial differences with warming in time. As explained in Sec. 2.4, we train the XS, S and433

L neural networks ten times each, with ten different random initialisations. In the fol-434

lowing, the results shown are averages over the predictions of the ten ensemble members435

for each neural network size.436

4.1 Integrated melt and melt near the grounding line437

The neural networks reproduce well the REPEAT1970 melt rates integrated over438

individual ice shelves, with a RMSEint of 16 to 19 Gt/yr (Fig. 4a, left). This error is slightly439

larger than in the cross validation over time (see Fig. 2), and becomes similar to the quadratic440

and plume parameterisations. It should be noted that the RMSEint of these parameter-441

isations is lower than in the cross validation, likely because of the overall lower melt rates442

in this simulation (24 Gt/yr compared to 39 Gt/yr in the training ensemble). The neu-443

ral networks still clearly outperform the box and PICOP parameterisation (RMSEint ≃35 Gt/yr).444

For the melt near the grounding line, all parameterisations are uncertain, with RMSEGL445

close to the reference mean melt near the grounding line of 0.34 m/yr (Fig. 4a, right).446

The neural networks and the traditional parameterisations yield similar RMSEGL, be-447
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Quadratic, 
Antarctic slope
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Box

PICOP

Integrated melt Melt near the grounding line

XS

S
L

Quadratic, local slope

RMSE [Gt/yr] RMSE [m ice/yr] of space and 
time mean near grounding line

Integrated melt Melt near the grounding line

RMSE [Gt/yr] RMSE [m ice/yr] of space and 
time mean near grounding line

Years 1-30 Years 31-60

a) REPEAT1970 b) 4xCO2

Mean reference: 24 Gt/yr Mean reference: 0.34 m ice/yr Mean reference: 100 and 
160 Gt/yr

Mean reference: 0.75 and 
1.02 m ice/yr

Figure 4. Summary of the RMSE of the integrated melt (RMSEint) [in Gt/yr] and of the

RMSE of the melt rate averaged over time and space near the grounding line (RMSEGL) [in m

ice/yr] for a selection of traditional parameterisations and a subsample of neural networks for the

application on REPEAT1970 (a) and 4xCO2 (b). Note the change in x-axis between the (a) and

(b) panels.

tween 0.36 and 0.42 m/yr, except the quadratic using a local slope, which leads to a slightly448

lower RMSE, on the order of 0.22 m/yr.449

For the warmer conditions (4xCO2), all parameterisations struggle to reproduce450

the integrated melt on the ice-shelf level, with high spread in performance between the451

parameterisations (Fig. 4b, left). The RMSEint is multiplied by more than 10 for the neu-452

ral networks and reaches nearly 650 Gt/yr for the quadratic parameterisation using an453

Antarctic slope in the second period. While this jump in RMSE can be explained by a454

higher mean reference integrated melt (100 Gt/yr for the first period and 159 Gt/yr for455

the second period, see also Fig. A3), it is probably also a result of forcing unseen dur-456

ing training such as much warmer and less saline ocean conditions (Figs. A1 and A2).457

Over both periods, the neural networks remain at the lower range of the difference to458

the reference melt rates. While neural networks, plume, box and PICOP parameterisa-459

tion have comparable RMSEs for the first warm period (between 103 and 163 Gt/yr),460

the RMSE increases more for the plume, box and PICOP parameterisation (between 211461

and 248 Gt/yr) than for the neural networks (between 138 and 191 Gt/yr) in the even462

warmer second period.463

For the melt near the grounding line, the parameterisations perform differently than464

for the integrated melt, pointing to potential challenges outside the domain near the ground-465

ing line. The neural networks perform in a similar uncertain manner as in the REPEAT1970466

case (Fig. 4b, right). Their RMSEGL (0.69-0.75 m/yr in the first period and 0.95-1.10 m/yr467

in the second period) is close to the reference mean melt near the grounding line (0.75 m/yr468

for the first period and 1.02 m/yr for the second period). In the first period, only the469

quadratic local parameterisation using an Antarctic slope and the plume parameterisa-470

tion have lower RMSEGL (0.62 and 0.59 m/yr respectively), while in the second period471

only the quadratic parameterisation using a local slope performs clearly worse than the472

other parameterisations. For all, the RMSE increases with warmer conditions but the473

gap between the periods depends on the parameterisation, ranging from a difference of474

0.04 m/yr for the plume parameterisation to a difference of 0.76 m/yr for the quadratic475

parameterisation using a local slope.476
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From this demanding application on an independent testing dataset, several con-477

clusions can be drawn. First, the neural networks apply reasonably well to data inde-478

pendent from training in present conditions. This means that, if they have seen all ge-479

ometries of the main circum-Antarctic ice shelves, they can adapt to slightly different480

geometries. This is even more encouraging as the testing simulations were conducted with481

a slightly different version of NEMO than the neural networks were trained on. Second,482

none of the neural networks seems to constantly be the one with the best performance483

for all metrics. Third, the RMSE of the neural networks is higher when applied to warmer484

conditions, but, in comparison with the traditional parameterisations, it performs at least485

as well or even better.486

4.2 Spatial patterns487

Looking at the spatial patterns averaged over the last 10 years of the 4xCO2 run,488

it becomes clear that all parameterisations, both neural networks and traditional ones,489

struggle with warmer conditions and different geometries to the training ensemble (Fig. 5).490

The maximum melt rates remain far below the maximum melt rates of the reference for491

all of them except the quadratic parameterisation using the local slope, which largely492

overestimates the maximum melt rates (as seen already in Burgard et al., 2022). Look-493

ing at the general patterns, the neural networks tend to overestimate the melt on wide494

areas of Filchner-Ronne and Ross but underestimate it over the whole ice shelf for smaller495

ones. The quadratic parameterisations (both using Antarctic and local slope) and, in some496

cases, the plume parameterisation, tend to overestimate the melt over wide areas, in par-497

ticular for the Ross and Filchner-Ronne ice shelves. The box parameterisation under-498

estimates the melt for all ice shelves, completely missing regions of strong melt.499

5 Discussion500

In this study, we showed that a simple multilayer perceptron can emulate melt rates501

as simulated by the cavity-resolving ocean model NEMO. This result is encouraging for502

further development because, as it is applied on a grid-cell level, it allows larger amounts503

of training data to be used than architectures containing convolutions such as MELT-504

NET (Rosier et al., 2023) or, more generally, U-Nets (Ronneberger et al., 2015), which505

take spatial domains as inputs. In addition, this architecture is independent of the do-506

main size and is therefore directly applicable to any ice shelf around Antarctica. In the507

following, we discuss insights from this study and possible further improvements to this508

approach.509

5.1 Variable importance510

One argument that is often made against the use of neural networks is that they511

remain statistical emulators of the training data and do not contain any physical con-512

straints. The performance when applied to a slightly different model and to different con-513

ditions (see Sec. 4) already gives us a sense that the neural networks can reasonably adapt514

to conditions outside of training. In addition, we now perform a sanity check to verify515

that the neural network is doing ”the right thing for the right reasons”. This sanity check516

also gives insight into the importance of the different input variables and could help fu-517

ture development of deep learning parameterisations as well as physical parameterisa-518

tions to focus on these variables.519

To assess the importance of the different variables on the performance of the neu-520

ral networks, we apply two variations of the permute-and-predict approach. In the permute-521

and-predict approach, one of the variables is shuffled randomly and used as input for the522

neural network alongside the other variables that remain in the original order. In the first523

variation (Fig. 6a), we shuffle the input variables within the REPEAT1970 sample to eval-524
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Figure 5. Subset of ice shelves for a visual evaluation of the melt patterns. This is the time

average for the last 10 years of the 4xCO2 run. The colorbar is limited to the 95th percentile of

the NEMO reference. The blue line indicates the region used to evaluate the melt rate near the

grounding line (which is defined as the first box in the 5-box setup of the box parameterisation).

uate the importance of the different variables in a situation close to the training condi-525

tions. In the second variation (Fig. 6b), we use a random sample from the 4xCO2 input526

for the shuffled variable and run the neural network using all other original input vari-527

ables from the REPEAT1970 run to evaluate the importance of different variables in much528

warmer conditions. The shuffling is reiterated for each variable separately. In addition,529

we also shuffle blocks of potentially correlated variables simultaneously to gain insight530

on the effect of correlation on the shuffling results.531

For the shuffling within the REPEAT1970, the geometric properties dominate the532

performance of all three neural networks for the integrated melt (Fig. 6a, left). For the533

XS version, the ice-shelf size, for which the distance to the ice front could be seen as a534

proxy, and the water column height, through ice-draft depth and bathymetry, have the535

highest importance. For the S and L version, the bathymetry is less important but the536

distance to the ice front and the ice-draft depth remain the most important variables,537

with an effect on the RMSE decreasing from S to L. The shuffling of the temperature538

and salinity variables have a smaller effect when shuffled separately, which can be ex-539

plained by the correlation between these variables. However, when shuffled by group, the540

temperature information gains in importance, leading to a similar increase in RMSE as541

the distance to the ice front in the L version. The bedrock and ice slopes are not impor-542

tant for the performance on the integrated melt. For the melt near the grounding line543

(Fig. 6a, right), many variables are not important, the RMSE is reduced when they are544
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Melt near grounding line 
[m ice/yr]

XS L
17.6 16.5Original RMSE

(REPEAT 1970)

Distance GL
Distance IF

Ice draft depth
Bathymetry

Slope bed lon
Slope bed lat
Slope ice lon
Slope ice lat

Temperature
Salinity

Temperature mean
Salinity mean

Temperature std
Salinity std

Position
Water column

Slopes bed
Slopes ice

Temperature info
Salinity info

0.42 0.40
S

18.9

(a) Difference in RMSE to original after shuffling within REPEAT1970

0.36
S

(b) Difference in RMSE to original after inserting random sample from 4xCO2 into REPEAT1970  
Distance GL
Distance IF

Ice draft depth
Bathymetry

Slope bed lon
Slope bed lat
Slope ice lon
Slope ice lat

Temperature
Salinity

Temperature mean
Salinity mean

Temperature std
Salinity std

Position
Water column

Slopes bed
Slopes ice

Temperature info
Salinity info

Figure 6. Difference in RMSE between an application using a random sample for the given

variable of the REPEAT1970 input (a) and of the 4xCO2 input (b) and the original application

on the REPEAT1970 input using the XS, S and L deep ensemble. The original RMSE when ap-

plied to REPEAT1970 is indicated above each column. The upper part of the tables shows the

results when shuffling the variables individually while the lower part is for variables that have

been shuffled as a group. ”Temperature” and ”Salinity” are the ocean properties extrapolated to

the ice-draft depth, ”Temperature mean” and ”Salinity mean” are their average over each cavity,

and ”Temperature std” and ”Salinity std” their standard deviation over each cavity. In the block

Position we group the distance to the grounding line and to the ice front, in the block Water

column we group the ice-draft depth and the bathymetry, in the block Slopes bed and Slopes ice

we group the meridional and zonal slope of the bedrock and ice respectively, in the block Temper-

ature info and Salinity info we group the local value, the average and the standard deviation of

temperature and salinity respectively.
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shuffled. The strongest effect is seen when shuffling the temperature variables as a group.545

The salinity variables, the ice slopes, and the distance to the ice front are the second most546

important group.547

When inserting random samples of 4xCO2 input, the importance of the ice front,548

the ice-draft depth and the bathymetry remains of a similar order of magnitude for the549

integrated melt as in the REPEAT1970 shuffling (Fig. 6b, left). However, the effect of550

the temperature increases drastically and leads to increases in the RMSE of more than551

300 Gt/yr. For the XS and S, the importance of the grouped salinity information increases552

as well. This result reflects the difficulty for neural networks to extrapolate outside of553

the training range. Looking at the distribution of the input variables, the geometrical554

conditions in the 4xCO2 run are in a similar range as the training ensemble, despite an555

involving ice-shelf geometry, while the temperature and salinity variables are clearly out-556

side of the distribution (Fig. A4). For the melt near the grounding line (Fig. 6b, right),557

introducing variables from warmer conditions does not affect the RMSE very differently558

than in the REPEAT1970 case.559

Several conclusions can be drawn from this experiment. First, this experiment shows560

that the geometry, in particular the distance to the ice front and the ice-draft depth, are561

key variables for the neural networks to infer reasonable integrated melt when applied562

on variables close to the training range, closely followed by the temperature. Ice-draft563

depth and temperature already are an integral part of existing parameterisations (Burgard564

et al., 2022). However, the distance to the ice-shelf front or the ice-shelf size are currently565

only partly considered, and only in the more complex parameterisations such as the plume566

and box parameterisations (Lazeroms et al., 2019; Reese et al., 2018).567

Second, when applied to much warmer conditions, the distribution of geometric vari-568

ables remains close to their distribution in the training ensemble. In contrast, the tem-569

perature and salinity, well outside the training range, clearly affect the resulting inte-570

grated melt. This suggests that training the neural networks on simulations of warmer571

conditions could already improve their performance. Even more promising, the low ef-572

fect of geometry changes on integrated melt in warmer conditions suggests that coupled573

ice-ocean simulations of warmer conditions are not necessarily needed for training and574

that cavity-opening ocean simulations with fixed geometry could already be sufficient.575

Third, for the melt near the grounding line, the position of the grid cell is (maybe576

surprisingly) less important than for the integrated melt and the key variable is the tem-577

perature information, both near the training range and in warmer conditions. While the578

ice slope does not affect the integrated melt, it has some effect on the melt near the ground-579

ing line. This suggests that including ice slopes is necessary for a good performance near580

the grounding line. However, the way it is currently included in simple parameterisations581

is not successful as we showed in Burgard et al. (2022) that it leads to a clear overesti-582

mation of the melt in this region.583

Fourth, the effect of the shuffling on the RMSE is generally lower for the L size of584

the neural networks. This could suggest an overfit as it could mean that the neural net-585

work is not following variations in the input variables as much as the other neural net-586

work sizes and is therefore less flexible. This possible overfit would also explain why we587

did not see an increase in the performance during the cross-validation with increasing588

network size in Sec. 3.589

5.2 Possible improvements590

While the results of our neural networks are encouraging, a variety of further im-591

provements can be conducted in the future. The most obvious conclusion from this study592

is that predicting warmer conditions, similar to climate change conditions, is challeng-593

ing for this particular neural network architecture because these conditions were not con-594
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tained during training and neural networks are known to struggle with extrapolation prob-595

lems. We therefore suggest, when possible, to introduce a set of simulations containing596

high-end future scenarios in the training dataset to make the neural network more ro-597

bust for future projections. At the same time, we saw that the traditional parameter-598

isations struggle to represent future conditions as well. How to tune melt parameteri-599

sations to be applicable in both present and future conditions is therefore a problem that600

is not limited to deep learning approaches.601

Another possible improvement is the treatment of the largest ice shelves. When602

looking at the cross-validation results into more detail, i.e. at the scale of each ice shelf603

(not shown), the total RMSE over all ice shelves is strongly influenced by the high RMSE604

for the Ross ice shelf and, to a smaller extent, by the relatively high RMSE for the Filchner-605

Ronne ice shelves. These two ice shelves have an area which is much larger than the other606

ice shelves around Antarctica. Their cavities are so large that they develop their own607

internal circulation (e.g. Gerdes et al., 1999; Naughten et al., 2021) and the residence608

time of water masses reaches several years (Michel et al., 1979; Nicholls & Østerhus, 2004).609

It is therefore not too surprising that parameterisations, which use input temperature610

and salinity averaged over thousands of kilometers at the front of the ice shelves and do611

not represent horizontal circulation explicitly, struggle with the representation of melt612

in these cavities. If we remove these two from the RMSE in the 4xCO2 case for exam-613

ple, we find that the RMSE is clearly reduced for both neural networks and traditional614

parameterisations (Fig. 7 compared to Fig. 4b). It would therefore be worth consider-615

ing whether these rather simple parameterisations are appropriate for the application616

on the Ross and Filchner-Ronne ice shelves and if it would not be wiser to push efforts617

towards the opening of these two cavities in ocean models, even at the lower resolution618

of 1◦, as was already done for NEMO in Smith et al. (2021) or Hutchinson et al. (2023).619

On the same line, we suggest it is worth thinking about tuning the parameterisations620

on the smaller ice shelves, and tuning the parameters and neural networks differently on621

the larger ice shelves.622

There is also space for improvement in the definition of input temperatures and623

salinities. Like in Burgard et al. (2022), the input profiles of temperature and salinity624

are here averaged over a given domain in front of the ice shelf. Then, we extrapolate the625

properties to the ice-draft depth. To give the neural network more information about626

the whole profile, we also gave it the mean and standard deviation of these extrapolated627

temperature and salinity. However, machine learning gives us the opportunity to think628

bigger than traditional statistics when representing information about a given domain.629

One direction that could be explored in further development is the encoding of the im-630

portant information about the water masses in front of the ice shelf using a machine learn-631

ing technique. Ideally, this technique would take in a three-dimensional (horizontal plane632

and depth), or even a four-dimensional (taking also time as input to account for lags and633

residence time), field of temperature and salinity in front of the ice shelf and encode in-634

formation about this field in a format to be given to the neural network. Such encod-635

ing might contain more information about the spatial distribution of the properties in636

front of the ice shelf and therefore potentially encode changes in the ocean circulation637

which might change the circulation within the cavities, as expected to happen in warmer638

conditions for the Filchner-Ronne ice shelf (Naughten et al., 2021).639

Rosier et al. (2023) showed that a convolutional architecture can also be used to640

infer basal melt rates from hydrographic and geometric properties. A convolutional ar-641

chitecture, often U-Nets, is the preferred choice in many current studies exploring the642

application of machine learning to Earth System Sciences (e.g. Ebert-Uphoff & Hilburn,643

2020; Andersson et al., 2021; Finn et al., 2023). In the case of basal melt and the ocean644

circulation in the cavity, such architectures clearly make sense as they can capture spa-645

tial patterns and correlations. However, these architectures require much more simula-646

tion data for training as they take each time step as one training sample while our ap-647
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Quadratic, Antarctic slope

Plume

Box

PICOP

Integrated melt Melt near the grounding line

RMSE [Gt/yr] RMSE [m ice/yr] of space and 
time mean near grounding line

XS
2 layers, 96 – 96 neurons

S
3 layers, 32 – 64 - 32 neurons

L
5 layers, 128 – 128 – 128 – 128 – 128 neurons
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FRIS
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Figure 7. Summary of the RMSE of the integrated melt (RMSEint) [in Gt/yr] and of the

RMSE of the melt rate averaged over time and space near the grounding line (RMSEGL) [in m

ice/yr] computed on all ice shelves except Ross and Filchner-Ronne ice shelves for a selection of

traditional parameterisations and a subsample of neural networks for the application on a simu-

lation with 4xCO2 forcing. The lighter colors represent the first 30 years of simulation and the

darker colors the last 30 years of simulation.

proach takes each time step and grid cell as one training sample. Also, Rosier et al. (2023)648

demonstrate the performance of their MELTNET in a fixed domain and have not yet649

shown how to apply it to larger ice shelves than this domain. MELTNET remains how-650

ever a promising approach and we are looking forward to its further development.651

Finally, this study has focussed on the emulation of one ocean model at a given res-652

olution. We acknowledge that NEMO’s simulation of basal melt rates is not a perfect653

reflection of reality. Therefore, an interesting further direction to follow would be to train654

a neural network to emulate NEMO at other resolutions and also to emulate other cavity-655

resolving ocean models. In this context, to ensure that the relationship remains sensi-656

ble, we suggest training separate emulators and using them as an ensemble. This would657

provide an ensemble of emulators to be used as a variety of basal melt parameterisations,658

in addition to physics-based parameterisations. In a context where basal melt remains659

one of the main sources of uncertainty in projections of the Antarctic contribution to sea-660

level rise, a wide sample of this uncertainty in the form of a higher variety of parame-661

terisations is welcome.662

6 Conclusions663

In conclusion, we show that a rather simple neural network architecture can be used664

to emulate a cavity-resolving ocean model. Our multilayer perceptrons are designed to665

be rather simply usable as a basal melt parametrisation for ice-sheet modellers. They666

use input properties needed for the traditional parameterisations already and can be ap-667

plied on the grid-cell level, similarly to most traditional parameterisations. While they668

struggle nearly as much as traditional parameterisations to generalise to ice shelves un-669

seen during tuning, the neural networks generalise much better on time blocks unseen670
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during training and the patterns are clearly better represented. In the demanding test-671

ing phase, on a dataset produced with different NEMO parameters, geometry pertur-672

bations unseen during training and different forcing, they still perform at least as well673

or even better than traditional parameterisations, both in historical and much warmer674

conditions.675

These results are promising as neural networks and machine learning in general are676

topics that have been gaining lots of traction lately and efforts are done in many disci-677

plines of the Earth System Sciences to explore their application. In this study, we pro-678

vide guiding thoughts for further exploration and refinement of this approach, while this679

first proof of concept can already be used as an additional parameterisation in the ice-680

sheet modelling landscape.681

Appendix A Distributions of variables of interest in the training and682

testing ensemble683

Temperature profiles over 50 km in front of the ice shelf 
for the different simulations of the ensemble

De
pt

h
[m

]

TRAINING DATA REPEAT1970  4xCO2
(127 years) (60 years) (60 years)

Temperature [°C]

Figure A1. Input profiles of temperature for the different ice shelves. Profiles of the train-

ing ensemble are shown in grey, profiles for the REPEAT1970 run in orange and profiles for the

4xCO2 run in red.
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Salinity profiles over 50 km in front of the ice shelf 
for the different simulations of the ensemble

De
pt

h
[m

]

Salinity [PSU]

TRAINING DATA REPEAT1970  4xCO2
(127 years) (60 years) (60 years)

Figure A2. Input profiles of salinity for the different ice shelves. Profiles of the training en-

semble are shown in grey, profiles for the REPEAT1970 run in light blue and profiles for the

4xCO2 run in dark blue.
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Integrated melt over time
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Figure A3. Timeseries of the integrated melt for the different ice shelves. The training en-

semble is shown in grey, the REPEAT1970 run in orange and the 4xCO2 run in red. The black

dashed line limits the first and second 30-year block used in Sec. 4 for the 4xCO2 run
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Figure A4. Distribution (occurence count) of the different input variables and the melt over

the training ensemble (grey), the REPEAT1970 run (orange) and the 4xCO2 run (red).
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Open Research684

The simulation data from Burgard et al. (2022) used for the training ensemble can685

be found on Zenodo: https://doi.org/10.5281/zenodo.7308352. The simulation data686

from (Smith et al., 2021) used for the testing ensemble will be uploaded on Zenodo as687

soon as possible. All code to train the neural networks and produce the figures can be688

found on Github: https://github.com/ClimateClara/basal melt neural network689

and will be uploaded to Zenodo upon paper acceptance.690
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