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Abstract

Melt rates at the base of Antarctic ice shelves are needed to drive projections of the Antarctic ice sheet mass loss. Current basal
melt parameterisations struggle to link open ocean properties to ice-shelf basal melt rates for the range of current sub-shelf
cavity geometries around Antarctica. We present a novel parameterisation based on deep learning. With a simple feedforward
neural network, or multilayer perceptron, acting on each grid cell separately, we emulate the behavior of circum-Antarctic
cavity-resolving ocean simulations. We explore different neural network sizes and find that, in all cases containing at least
one hidden layer, this kind of emulator produces reasonable basal melt rates for our training ensemble, closer to the reference
simulation than traditional parameterisations. For testing, we use an independent ensemble of simulations that was produced
with the same ocean model but with different model parameters, different cavity geometries and different forcing. In this
challenging test, traditional and neural network parameterisations yield similar results on present conditions. In much warmer
conditions than the training ensemble, both traditional parameterisations and neural networks struggle, but the neural networks
tend to produce basal melt rates closer to the reference than a majority of traditional parameterisations. These neural networks

are therefore suitable for century-scale Antarctic ice-sheet projections.
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Key Points:

¢ We show that simple neural networks can produce reasonable basal melt rates by
emulating circum-Antarctic cavity-opening ocean simulations.

e Predicted melt rates for present and warmer conditions are similar or closer to the
reference simulation than traditional parameterisations.

» We show that neural networks are suited to be used as basal melt parameterisa-
tions for century-scale ice-sheet projections.
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Abstract

Melt rates at the base of Antarctic ice shelves are needed to drive projections of the Antarc-
tic ice sheet mass loss. Current basal melt parameterisations struggle to link open ocean
properties to ice-shelf basal melt rates for the range of current sub-shelf cavity geome-
tries around Antarctica. We present a novel parameterisation based on deep learning.
With a simple feedforward neural network, or multilayer perceptron, acting on each grid
cell separately, we emulate the behavior of circum-Antarctic cavity-resolving ocean sim-
ulations. We explore different neural network sizes and find that, in all cases contain-

ing at least one hidden layer, this kind of emulator produces reasonable basal melt rates
for our training ensemble, closer to the reference simulation than traditional parameter-
isations. For testing, we use an independent ensemble of simulations that was produced
with the same ocean model but with different model parameters, different cavity geome-
tries and different forcing. In this challenging test, traditional and neural network pa-
rameterisations yield similar results on present conditions. In much warmer conditions
than the training ensemble, both traditional parameterisations and neural networks strug-
gle, but the neural networks tend to produce basal melt rates closer to the reference than
a majority of traditional parameterisations. These neural networks are therefore suit-
able for century-scale Antarctic ice-sheet projections.

Plain Language Summary

A warmer ocean around Antarctica leads to higher melting of the floating ice shelves,
which influence the ice loss from the Antarctic ice sheet and therefore sea-level rise. In
computer simulations of the ocean, these ice shelves are often not represented. For sim-
ulations of the ice sheet, so-called parameterisations are used to link the oceanic prop-
erties in front of the shelf and the melt at their base. We show that this link can be em-
ulated with a simple neural network, which performs at least as well as traditional phys-
ical parameterisations both for present and much warmer conditions. This study also
proposes several potential ways of further improving the use of deep learning to param-
eterise basal melt.

1 Introduction

The contribution of the Antarctic Ice Sheet to sea-level rise has been increasing in
past decades and this increase is projected to continue with increasing greenhouse gas
emissions (Fox-Kemper et al., 2021). Most of the mass loss is occurring at the margins
of the ice sheet through faster ice flow from the grounded ice sheet to the ocean, mainly
in West Antarctica (Mouginot et al., 2014; Rignot et al., 2014; Scheuchl et al., 2016; Khazen-
dar et al., 2016; Shen et al., 2018; The IMBIE Team, 2018). This is because the float-
ing ice shelves at the margins of the ice sheet, which usually buttress the ice flow, are
rapidly thinning and retreating due to ocean-induced melt at their base (Rignot et al.,
2013; Paolo et al., 2015; Adusumilli et al., 2020). In some bedrock configurations, increased
ocean-induced melt can even trigger marine ice sheet instabilities (Weertman, 1974; Schoof,
2007; Gudmundsson et al., 2012), which have the potential to strongly increase Antarc-
tic mass loss, on timescales below a century (Fox-Kemper et al., 2021). This makes ocean-
induced sub-shelf melt, or basal melt, one of the main sources of uncertainty for future
projections of sea-level rise.

Basal melt is a result of warm ocean water coming into contact with the base of
the ice shelf. Which water masses reach the ice-ocean interface depends on the circula-
tion of the water, not only in front of the ice shelf, but also after entering the ice-shelf
cavity (Dinniman et al., 2016). As a consequence, to simulate the properties of the wa-
ter at the ice-ocean interface accurately, both the ocean circulation around Antarctica
and the circulation in the cavities below the ice shelves need to be simulated accurately.
A few global or circum-Antarctic ocean models already include ice-shelf modules (Losch,
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2008; Timmermann et al., 2012; Dinniman et al., 2015; Mathiot et al., 2017; Comeau et
al., 2022), but such ocean models are expensive to run on long timescales or for large en-
sembles. Instead, a majority of the global climate models used until now in the Coupled
(CMIP) or Paleoclimate (PMIP) Model Intercomparison Projects still poorly represent

the ocean dynamics along the Antarctic margins and do not include ice-shelf cavities (Beadling

et al., 2020; Heuzé, 2021). Getting the right water masses in the right place around Antarc-
tica is a matter for global and regional ocean modelling and will not be the focus of this
study. In this study, we focus on the circulation within the ice-shelf cavities and the re-
sulting melt.

To infer the basal melt forcing for projections of the Antarctic contribution to sea-
level rise, ice-sheet models commonly rely on parameterisations linking hydrographic prop-
erties in front of the ice shelves, given by observations or oceanic output from global cli-
mate models, and the basal melt (Jourdain et al., 2020). Due to different assumptions
and simplifications concerning the circulation in the cavities, the range of existing basal
melt parameterisations leads to widely differing melt patterns and associated contribu-
tions to sea-level rise (Favier et al., 2019; Burgard et al., 2022). The magnitude of the
resulting uncertainty contribution is similar, or even larger, than the choice of emission
scenario used to force the projections (Seroussi et al., 2020; Edwards & the ISMIP6 Team,
2021).

Emulating the three-dimensional ocean circulation within the cavity in simplified
physical parameterisations is challenging and calls for exploring alternative approaches.
We suggest that deep learning can be one tool to tackle this challenge. In recent years,
the amount of ocean simulation output including ice-shelf cavities has increased and tools
that make the application of deep learning techniques easily accessible have been devel-
oped, opening up the possibility of developing a neural network parameterisation for basal
melt. If trained with high-resolution model output, a neural network parameterisation
could implicitly include more intrinsic information about the system than a traditional
physical parameterisation. This approach has been applied promisingly in several areas
of Earth System Sciences in the form of multilayer perceptrons applied on the grid-cell
level (e.g. Gentine et al., 2018; Rasp et al., 2018), convolutional neural networks applied
on multidimensional fields (e.g. Bolton & Zanna, 2019; Rosier et al., 2023) or random
forests (e.g. Yuval & O’Gorman, 2020).

Deep learning has also been explored for basal melt parameterisations. Rosier et
al. (2023) performed promising experiments that showed that a cavity-resolving ocean
model can be emulated with a convolutional neural network in a variety of idealised ice-
shelf geometries. In the present study, we choose a different deep learning approach to
developing such a deep emulator, or surrogate model, which differs on two fundamental
points. On the one hand, we train on the circum-Antarctic cavity-resolving ocean sim-
ulations with realistic geometries used in Burgard et al. (2022). On the other hand, we
use a multilayer perceptron architecture applied to each grid cell, as preliminarily ex-
plored in Bouissou et al. (2022). In the following, we present a proof of concept for a mul-
tilayer perceptron, which takes in hydrographic properties in front of the ice shelf and
the geometric information at each grid point. In Sec. 2, we present the training and test-
ing data, the neural network architecture, and the evaluation procedure. In Sec. 3, we
show that the multilayer perceptron can successfully emulate cavity-resolving ocean sim-
ulations and produce integrated basal melt and patterns at least as close as but gener-
ally closer to the reference than traditional parameterisations in conditions similar to present.
In Sec. 4 we explore the applicability of such a neural network to an independent set of
simulations produced with a few different model parameters, slightly different geome-
tries and in warmer oceanic conditions. Finally, in Sec. 5, we discuss the lessons learned
from our study and give an outlook on possible directions to explore further in the fu-
ture.



119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

2 Data and Methods

The goal of this study is to explore if and how a neural network, in the form of a
multilayer perceptron, can emulate the link between hydrographic properties in front of
an ice shelf, geometric characteristics of the cavity, and the melt rates at its base as sim-
ulated by a cavity-resolving ocean model. In the following, we present the ocean model
used and the set of simulations used for training, validation and testing the neural net-
work; the neural network, its architecture, and its input variables; and the training and
testing procedure.

2.1 Data

We choose to emulate a cavity-resolving version of the 3-D primitive-equation cou-
pled ocean—sea-ice model NEMO (Nucleus for European Modelling of the Ocean, NEMO
Team, 2019) run on the eORCA025 horizontal grid (Storkey et al., 2018). This grid has
a resolution of 0.25° in longitude on average, i.e. a resolution of 4 to 14 km in the Antarc-
tic seas and below the ice shelves, which is sufficient to capture the basic ocean circu-
lation below multiple Antarctic ice shelves (Mathiot et al., 2017; Bull et al., 2021).

For the training phase, we use the same ensemble of simulations as used for the as-
sessment of traditional basal melt parameterisations in Burgard et al. (2022). The en-
semble is composed of four ocean simulations spanning 30 to 40 years, depending on the
simulation, between 1979 and 2018. They were run with a standalone version of NEMO
and forced with atmospheric forcing from JRA55-do version 1.4 (Tsujino et al., 2018).
The Antarctic continental shelf bathymetry and ice shelf draft are constant and based
on Bedmachine Antarctica version 2 (Morlighem, 2020; Morlighem et al., 2020). The sim-
ulations in the ensemble differ in a small number of parameters which are not directly
related to the physics driving the ocean circulation and melt within the ice-shelf cavi-
ties but rather lead to a variety of hydrographic properties all around Antarctica. A more
detailed description of the exact model configuration and differences in parameters can
be found in Burgard et al. (2022).

For the testing phase, we use two simulations independent from the ensemble used
for training. In this case, NEMO was run in coupled mode as the oceanic component of
the Earth System Model UKESM1.0-ice (Smith et al., 2021), which couples the UK Earth
System Model (UKESMI1, Sellar et al., 2019) to an adapted version of the ice-sheet model
BISICLES (Cornford et al., 2013). In this coupled configuration, the cavities below the
ice shelves are open and the ice-shelf melt is computed with the same approach as in the
training ensemble (as proposed by Mathiot et al., 2017). This means that a z* coordi-
nate is used for depth and the three equations are used to parameterise the ice-shelf melt
in the ice-ocean boundary layer. Due to the coupled setup, the ice-shelf draft evolves ac-
cording to the simulated evolution of the ice sheet. Note that the position of the ice front
at the surface remains fixed by ice-sheet model design. More details about the config-
uration of NEMO in this model setup can be found in Smith et al. (2021). The two test
simulations differ in their atmospheric forcing. In the first one, which we will call "RE-
PEAT1970”, UKESM1.0-ice was run for several decades under constant 1970 greenhouse
gas and other forcings. In the second one, which we will call 74xCO2”, UKESM1.0-ice
was run for several decades under instantaneously quadrupled 1970 CO4 concentrations.
In our study, we use 60 years of simulation, from year 10 to year 70, for both runs.

The training and the testing dataset result from NEMO simulations. Nevertheless,
next to differences in forcing from the atmosphere and the ice and bed geometry, the train-
ing and testing ensembles also differ in several technical aspects of NEMO. The train-
ing simulations were run with the version of 4.0.4. of NEMO (NEMO Team, 2019), in-
cluding the sea-ice model SI?, while the test simulations were run with the version 3.6
of NEMO (Madec & NEMO Team, 2017) and version 5.1 of the Community Ice CodE
(CICE, Hunke et al., 2015). In addition, a few different parameter choices may affect the
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link between hydrographic properties in front of the ice shelf and the melt at the base

of the ice shelf. The training ensemble was computed on 121 vertical levels (represent-

ing 20 m at 600 m depth), while the testing ensemble was computed on 75 vertical lev-
els (representing 60 m at 600 m depth). In both ensembles, the thickness of the top bound-
ary layer is bound at 20 m but can differ locally due to the different vertical resolutions.
In the training ensemble, the thermal Stanton number is set to 7x10~% while in the test-
ing ensemble the thermal Stanton number is set to 1.45x1073. In the training ensem-

ble, the top tidal velocity varies locally based on the CATS2008 dataset (Padman et al.,
2008; Howard et al., 2019), while it is fixed to 5 cm/s in the testing ensemble. In con-
clusion, this means that the testing ensemble is a slightly different model than the model
which the neural network is trained to emulate and therefore represents a demanding test-
ing experiment.

The training and testing ensembles cover a range of states that do not necessar-
ily match observational estimates of hydrographic properties and basal melt rates. In
both standalone and coupled mode, eORCA025 configurations are prone to biases in the
ocean circulation around Antarctica (Smith et al., 2021). Nevertheless, in Burgard et al.
(2022), we showed that, if the forcing and parameters were carefully chosen to reproduce
realistic ocean conditions in the Southern Ocean, the resulting basal melt rates were in
agreement with observational estimates from Rignot et al. (2013). The physical link be-
tween the hydrographic properties in front of the ice shelves and the basal melt rates is
therefore reasonable. Based on this assumption, biases in the input properties should not
affect the credibility of the training and evaluation procedure and the resulting neural
network. On the contrary, a large variety of states is even beneficial because it provides
more cases for our neural network to train on than only using the very limited sample
of observations.

On a more technical note, for this study, the NEMO output was interpolated bi-
linearly to a stereographic grid of 5 km spacing, as ice-sheet models and basal melt pa-
rameterisations are commonly run on a stereographic grid. All pre-processing, training,
testing, and analysis is conducted using this regridded data. From this regridded data,
we cut out the different ice shelves according to latitude and longitude limits defined on
the present geometry (details found in Burgard (2022)) and then apply a routine to adapt
this mask to slightly different geometries, like the ones resulting from the fully coupled
UKESM1.0-ice runs. Of these ice shelves, we only keep the largest ice shelves. The ef-
fective resolution of physical ocean models, i.e. the resolution below which the circula-
tion might not be resolved well, is typically 5 to 10 times the grid spacing (Bricaud et
al., 2020). We empirically choose a cutoff at an area of 2500 km? (i.e. 6.25 Az) to be
in this range while keeping a sufficiently large number of ice shelves. Due to different ge-
ometries in the training and testing ensemble, this results into a slightly different ensem-
ble of resolved ice shelves in these two ensembles (as listed in the figures of Appendix

A).

2.2 Neural network

We design our neural network to predict the basal melt rates based on information
about the ocean temperature and salinity in front of the ice shelf and about the ice-shelf
geometry (Fig. 1). To link the input to the prediction, we use a multilayer perceptron,
which is applied to each grid cell independently. A multilayer perceptron is the simplest
form of a neural network and is a composition of functions (also called hidden layers),
which takes an input array containing any number of variables and outputs a prediction.
Specifying its number of neurons, each hidden layer is characterised by its parameters
— the weights and biases, that connect each layer to its previous layer and shift the val-
ues in the hidden layer, respectively. An activation function in the hidden layer intro-
duces non-linearities in the relationship between input and output. In this study, we ex-
plore different numbers of layers and numbers of neurons per layer. As activation func-



222 tion, we use the rectified linear unit (ReLU, Fukushima, 1975; Nair & Hinton, 2010). The
23 multilayer perceptron is implemented in Python with the package Keras (Chollet et al.,
204 2015).

Hidden layers

- XXS (none)

- XS (2 layers: 96 - 96)
-S(3layers:32-64-32)

- M (5 layers: 96 - 96 - 96 - 96 - 96)

Lo_:al properties o -L(5layers: 128 - 128 - 128 - 128 - 128)
- Distance to grounding line - XL (6 layers: 256 - 256 - 256 - 256 - 256 - 256)
- Distance to ice shelf front P .
Activation function
- Ice draft depth

- Meridional ice slope ReLU

- Zonal ice slope
- Bathymetry

- Meridional bedrock slope
- Zonal bedrock slope

Entry temperature (T) and salinity (S)
- Extrapolated from profile to ice-draft depth

- Average over extrapolated properties

- Standard deviation of extrapolated properties

INPUT - NEURAL NETWORK OUTPUT
) o . (multilayer perceptron acting (for each ice-covered
(fogeaeulicecateledonleely independently on each ice- grid cell)

covered grid cell)

Southern Ocean

Bedrock

Figure 1. Schematic of the workflow around our neural network.

25 The strength of a neural network, and supervised machine learning techniques in
226 general, is that it can reproduce complex non-linear relationships without being given

207 the driving equations behind the data. Instead, its performance is driven by the super-
208 vised training phase, which determines the weights and biases of each neuron in the net-
229 work. During training, the loss, describing the averaged distance of the network predic-
230 tions to a given target output, is backpropagated to the weights of the network. The weights
231 are then optimised with stochastic gradient descent. The training dataset is randomly

23 split up into batches, over which the optimisation is looped. A complete pass through

233 the batches defines an epoch, and the weights and biases are optimised over several such
234 epochs. In parallel to the training, the neural network is applied to a validation dataset
235 to monitor its performance on data that has not been used for the training. After train-
236 ing, the final performance of the neural network is estimated by applying it to a previ-
237 ously unseen testing dataset.

238 In this study, to train the neural network, the loss which we reduce is the mean-

239 squared-error over all ice-covered points between the predicted (myy) and target (my.y)
240 basal melt rates,

Npts Nyears . .
2> (manlist] = muei, t])?

it

MSE NptsNyears (1)
201 where Ny is the number of ice-covered grid points and Nyears is the number of years
212 used in the training. In Burgard et al. (2022), we argued that tuning on the grid-cell level
23 would give too much weight to the larger ice shelves, as they cover a larger area. We still
204 agree with this statement for traditional parameterisations because they already intrin-
25 sically contain assumptions about the physics of the circulation and the melt before tun-
246 ing and have only one or two tuneable parameters. In the case of our neural network,
247 the relationship between the properties in front of the ice shelf and the melt is learnt from
28 scratch, and it contains a larger number of parameters to adjust. We therefore argue that
249 training on the grid-cell level is more sensible.
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The neural network is optimised with Adam (Kingma & Ba, 2014), an initial learn-
ing rate of 0.001, 5;=0.9 and 5>,=0.999. We split the training dataset in batches with
a size of 512 samples and optimise the neural network for at most 100 epochs. If the val-
idation loss is not improved for 5 epochs, we reduce the learning rate by a factor of 2.
If the validation loss is not improved for 10 epochs, we stop the training early. After early
stopping, the model weights with the lowest validation loss are restored.

2.3 Input variables

The multilayer perceptron takes an array of variables as input for each grid cell in-
dependently. In our case, the input array contains information about the geometrical prop-
erties of the grid cell and the hydrographic forcing (Fig. 1).

For the geometrical properties, the input contains the following information: the
ice draft depth, the local meridional and zonal slopes of the ice draft, the bathymetry,
the local meridional and zonal slopes of the bedrock, and the distance of the grid cell
to the nearest grounding line cell and the distance to the nearest ice front cell. All these
variables are defined on the same horizontal plane and domain as the output array, the
basal melt rates.

For the hydrographic forcing, more pre-processing is needed. To map the hydro-
graphic forcing to the same grid cells as the other input variables, we proceed in the same
manner as for traditional simple parameterisations in Burgard et al. (2022). First, we
convert the conservative temperature and absolute salinity given by NEMO into poten-
tial temperature and practical salinity with the GSW oceanographic toolbox (Firing et
al., 2021). Second, we average the potential temperature and practical salinity, respec-
tively, over the continental shelf within 50 km of the front of each ice shelf. The conti-
nental shelf is defined as grid cells where the depth of the bathymetry is shallower than
1500 m. The 50 km criterion imitates CMIP-type global ocean models that have reso-
lutions around 1° (Heuzé, 2021), corresponding to a distance of between 38 km (70°S)
and 56 km (60°S) in longitude. Third, we extrapolate the temperature and salinity from
these mean profiles in front of the ice shelf to the local ice-draft depth, resulting in one
local temperature and local salinity value per grid cell in the ice-shelf domain. Fourth,
we also compute, for each time step, the average and standard deviation of these extrap-
olated temperature and salinity fields and use them as additional input variables for each
grid cell.

2.4 Training, validation and testing methodology

In a first step, we explore different neural network sizes using the method of cross
validation on our training ensemble. In a second step, we choose a subsample of the neu-
ral networks to explore their performance on the testing dataset.

We conduct two variations of leave-one-block-out cross validation to estimate the
validation loss (MSE as defined in Eq. 1), one on the ice shelf dimension and one on the
time dimension, like in Burgard et al. (2022). This approach consists of dividing the dataset
into IV blocks, training the neural network to minimise the training loss on N—1 blocks
and using the left-out block to compute the validation loss (Wilks, 2006; Roberts et al.,
2017). The procedure is re-iterated N times, leaving out each of the N blocks succes-
sively, so that, in the end, each N-th block has been left out of training once. All pre-
dictions for the left-out blocks, using the separately trained neural networks, are then
concatenated to form a ”synthetically independent” evaluation dataset. Applying an eval-
uation metric on this evaluation dataset, we assess how well the neural network gener-
alises to data "unseen” during training. We use N=35 for the cross validation over ice
shelves. For the cross validation over time, we divide the years into blocks of approxi-
mately 10 years (ten 10-year blocks and three 9-year blocks) to reduce the effect of au-



299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

Table 1. Neural network size of the different variations explored in the cross validation.

Neural network configuration Number of hidden layers Number of neurons
XXS 0 0

XS 2 96/96

S 3 32/64/32

M 5 96/96,/96,/96/96

L 5 128/128/128/128/128
XL 6 256/256/256 /256 /256 /256

tocorrelation, which is typically 2 to 3 years in our input temperatures. This results in
N=13 for the cross validation over time.

Before training, we normalise the training sample to put each of the 14 input vari-
ables (listed in Fig. 1) as well as the output variable on a similar order of magnitude and
avoid potential problems of gradient explosion. We do so by subtracting the mean and
dividing by the standard deviation of the training sample. To avoid that validation data
leaks into the training, this normalisation is reiterated for each iteration of the cross val-
idation.

We use the framework of cross validation to evaluate not only one but several neu-
ral networks to estimate the effect of their size on their performance. We sample differ-
ent sizes ranging from an extra-extra small (XXS) neural network, with no hidden layer,
and thus corresponding to a linear regression, to an extra-large (XL) neural network, with
six hidden layers, each containing 256 neurons. The different sizes are listed in Table 1.

To evaluate the resulting basal melt rates, we use the same metrics as in Burgard
et al. (2022), namely: (1) the root-mean-squared error (RMSE) of the yearly integrated
melt on the ice-shelf level and (2) the RMSE of the mean melt near the grounding line
for each ice shelf. For the former, we compute the RMSE between the simulated and em-
ulated yearly integrated melt (M) of the individual ice shelves [in Gt/yr] as follows:

Nist Nyears
> > (Mnxlk,t] — Meeg[k, t])2
RMSEiy, = \| -—! (2)

Nistyears

where the subscript NN stands for neural network, Njg is the number of ice shelves and
Nyears the number of simulated years, and the integrated melt M of ice shelf k [in Gt/yr]

1S:

Ngrid cells in k

M) =p; x 1072 Y~ mja, (3)
J

where p; is the ice density, m; is the melt [in m ice per year] in grid cell j, and a; is the
area of grid cell j. For the latter, we compute the RMSE between the simulated and em-
ulated yearly mean melt rate near the grounding line [in m ice per year]:

Nist Nsimu
2 2 (marnwlk,n] = mar e[k, n])?
k n

Nistsimu

RMSEg, =
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where Ngmu 1s the number of simulations in the ensemble and where mgr, for ice shelf
k and simulation n is:

Ngrid cells near GL in k

| N > (mja;)
_ J
mGL[k’ ’I’L] N Z Ngrid cells near GL in k (5)

years in n 7 a;
5

The domain "near the grounding line” is the area covered by the first box prepared for

the box parameterisation, when considering a maximum amount of five boxes, and is equiv-

alent to approximately 10 % of the shelf area.

After cross validation, we choose a subsample of these neural networks to do fur-
ther evaluation on a completely independent dataset. To do so, we reiterate the train-
ing of the subsample of neural networks over the whole training dataset and choose to
work with a deep ensemble (Lakshminarayanan et al., 2017). The final weights and bi-
ases of neural networks depend on the initialisation of the weights before the first train-
ing iteration (Goodfellow et al., 2016). To account for this uncertainty and gain a more
robust performance from the neural networks, we reiterate the training of the subsam-
ple of neural networks ten times with ten different random initialisations. We then ap-
ply this deep ensemble of ten neural networks to the independent testing input and com-
pute an ensemble mean over the ten resulting melt rates. Note that we only investigate
a small sample of neural network sizes for exploration in this study and do not claim that
the best performing neural network here is the best performing neural network for the
problem. This study is rather a proof of concept to encourage further research in this
direction.

3 Training and cross validation
3.1 Integrated melt and mean melt near the grounding line

The two evaluation metrics for the cross validation of the different neural network
sizes are shown in Fig. 2. In addition, to compare the performance to traditional param-
eterisations, we show the evaluation metrics for a subset of existing parameterisations:
the quadratic local parameterisation using a constant Antarctic slope (e.g. Holland et
al., 2008) and using a local slope (e.g. Favier et al., 2019; Jourdain et al., 2020), the plume
parameterisation proposed by Lazeroms et al. (2019), the box parameterisation with the
same box amount as in Reese et al. (2018), and the PICOP parameterisation from Pelle
et al. (2019). The parameterisations are used as presented and tuned in Burgard et al.
(2022).

Corresponding to a linear regression, the XXS neural network leads to a RMSE of
a similar order as traditional parameterisations in the cross validation over time and, for
the melt near the grounding line, in the cross validation over ice shelves as well. For the
integrated melt, the cross validation over ice shelves leads to a comparably high RMSE.
In the further course of this study, we therefore focus on neural networks that include
hidden layers.

For both metrics, the RMSE for the cross validation over time is considerably re-
duced when using a neural network with hidden layers compared to traditional param-
eterisations and the XXS neural network. The RMSE for the cross validation over ice
shelves is higher than for the cross validation over time but remains on the lower end
of the range of RMSEs given by traditional parameterisations.

The RMSE;,; of the cross validation over time is very similar between neural net-
work sizes and spans between 6 Gt/yr (XL) and 11 Gt/yr (S). It remains well below the
mean reference integrated melt on the ice-shelf level of 39 Gt/yr. The RMSE;,; of the
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Figure 2. Summary of the RMSE of the integrated melt (RM S Ein:) for the cross validation
over time (X) and for the cross validation over ice shelves (4) for a selection of traditional pa-
rameterisations (as shown in Burgard et al., 2022) [in Gt/yr] (left) and summary of the RMSE
of the melt rate averaged over time and space near the grounding line (RMSEq) [in m ice/yr]
(right). The colors represent the different parameterisation approaches: traditional parameter-
isations (grey), neural network (shades of blue). The RMSE is computed following Eq. (2), left
panel, and Eq. (4), right panel, on the synthetically independent evaluation dataset.

cross validation over ice shelves varies more and is higher, between 24 (S) and 45 Gt/yr
(M). The performance does not correlate with the neural network size. On the contrary,
the lowest RMSE;, of the cross validation over ice shelves is found for a comparably small
neural network (S).

For the melt near the grounding line, the RMSEg, does not vary much in both cross
validations between neural network sizes. The cross validation over time leads to a very
low RMSE, varying from 0.02 m/yr (M,L,XL) to 0.06 m/yr (S). The cross validation over
ice shelves leads to a RMSE between 0.42 m/yr (XS,S) and 0.50 m/yr (L), on the same
order as the mean reference melt near the grounding line on the ice-shelf level, which is
0.45 m ice/yr.

The neural networks have more difficulties generalising to unseen ice shelves than
generalising to unseen time periods. This means that one of the obstacles for the neu-
ral networks’ performance is the application to unknown cavity geometries. Some of the
cavity geometries are so different from the rest of the ensemble that they force the neu-
ral networks to extrapolate far from their training domain. However, if they have seen
a given geometry at least once during training, they perform well on this geometry for
another time step. This aspect is encouraging, as this means that the neural networks
adapt well to temperature and salinity variations across the training ensemble.

3.2 Spatial patterns

To add on the metrics at the ice-shelf level, we analyse the spatial patterns result-
ing from the XS, S and L neural networks (Fig. 3) for the training ensemble member clos-
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est to realistic conditions (called REALISTIC in Burgard et al., 2022). For the cross val-
idation over time, the patterns of XS, S and L are nearly indistinguishable from the ref-
erence for Filchner-Ronne, Pine Island, Fimbul, and Totten ice shelves. For Ross ice shelf,
all patterns are close to the reference, but the S pattern contains more widespread melt-
ing.
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Figure 3. Subset of ice shelves for a visual evaluation of the melt patterns. This is the time
average for the training ensemble member closest to real conditions (39 years) where the melt

for each timestep has been computed with the neural network trained on the dataset leaving out
that timestep (cross validation over time, columns 2 to 4) and where the melt of each ice-shelf
has been computed with the neural network trained on the dataset leaving out that ice shelf
(cross validation over ice shelves, columns 5 to 7). The blue line indicates the region used to eval-
uate the melt rate near the grounding line (which is defined as the first box in the 5-box setup of

the box parameterisation).

For the cross validation over ice shelves, the patterns are not matching in as much
detail as in the cross validation over time. In particular for the two largest ice shelves,
Filchner-Ronne and Ross, it becomes clear that if the neural network has been trained
without one of them, it will mimic the spatial pattern of the other because they are the
only ones to share given ranges in the input variables, such as for example large distances
to the ice front and grounding line. For Filchner-Ronne and Ross, the result of the cross
validation over ice shelves does not match the reference in any of the neural networks.
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For Pine Island and Amery, the XS and S patterns match the reference better than the
L pattern, while, for Fimbul and Totten, the L pattern is a little better.

The low RMSE in the cross validation over time suggests an overfit on the geom-
etry, which is fixed over time in the training dataset. The patterns very close to the ref-
erence in the cross validation over time show that, even if our neural networks are ap-
plied on each grid-cell separately, the location of the grid cell is more or less encoded in
one or more input variables. However, as our problem is not necessarily well constrained
with the input variables given, we suggest that this overfit can be used to our advantage.
Our hypothesis is that, if the neural network has seen each ice shelf once, it has captured
the variety of geometries and will be able to generalise to future changes in these ”known”
ice shelves. We do not expect new and completely different ice shelves to appear in the
next centuries. To assess this idea, we need to investigate how well the neural network
will perform on a geometry which is similar to but not identical to the training.

In the following, we investigate further if the neural networks are suitable for evolv-
ing ice-shelf geometries that are close to existing geometries and to temperature and salin-
ity input properties outside the training range. We choose to continue with (1) the S size,
because it has the lowest RMSE in the cross validation over ice shelves, (2) the XS size
because it has similarly low RMSE to the larger sizes but remains very small and sim-
ple, and (3) the L size to include a larger neural network and explore potential differ-
ences during the testing compared to its behavior in the cross validation.

4 Testing on independent simulations

We apply our subsample of neural network sizes on two independent datasets, one
representing 60 years of constant 1970-forcing (REPEAT1970), and one representing warmer
conditions, i.e. 60 years of abrupt 4xCO3 forcing (4xCOz), from Smith et al. (2021). The
REPEAT1970 simulation has a relatively steady ice-sheet geometry, similar (but not iden-
tical) to the training geometry and is useful to assess the sensitivity of the neural net-
works to different near-present-day atmospheric conditions (from the UKESM atmosphere
component), to different parameters used in NEMO, and to slightly different geometries.
The 4xCO- simulation experiences larger changes in ice-sheet geometry and much warmer
conditions, which is useful to test the neural networks far outside of their training range.
As a consequence, this evaluation is demanding and permits to evaluate the limits of the
neural networks.

For evaluation, we divide the 4xCO5 run into two 30-year blocks to capture poten-
tial differences with warming in time. As explained in Sec. 2.4, we train the XS, S and
L neural networks ten times each, with ten different random initialisations. In the fol-
lowing, the results shown are averages over the predictions of the ten ensemble members
for each neural network size.

4.1 Integrated melt and melt near the grounding line

The neural networks reproduce well the REPEAT1970 melt rates integrated over
individual ice shelves, with a RMSE;,; of 16 to 19 Gt/yr (Fig. 4a, left). This error is slightly
larger than in the cross validation over time (see Fig. 2), and becomes similar to the quadratic
and plume parameterisations. It should be noted that the RMSE;,; of these parameter-
isations is lower than in the cross validation, likely because of the overall lower melt rates
in this simulation (24 Gt/yr compared to 39 Gt/yr in the training ensemble). The neu-
ral networks still clearly outperform the box and PICOP parameterisation (RMSE;,; ~35 Gt/yr).

For the melt near the grounding line, all parameterisations are uncertain, with RMSEq1,
close to the reference mean melt near the grounding line of 0.34 m/yr (Fig. 4a, right).
The neural networks and the traditional parameterisations yield similar RMSEqy,, be-
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Figure 4. Summary of the RMSE of the integrated melt (RMSEin) [in Gt/yr] and of the
RMSE of the melt rate averaged over time and space near the grounding line (RMSEqL) [in m
ice/yr] for a selection of traditional parameterisations and a subsample of neural networks for the
application on REPEAT1970 (a) and 4xCO2 (b). Note the change in x-axis between the (a) and
(b) panels.

tween 0.36 and 0.42 m/yr, except the quadratic using a local slope, which leads to a slightly
lower RMSE, on the order of 0.22 m/yr.

For the warmer conditions (4xCO-), all parameterisations struggle to reproduce
the integrated melt on the ice-shelf level, with high spread in performance between the
parameterisations (Fig. 4b, left). The RMSE;,; is multiplied by more than 10 for the neu-
ral networks and reaches nearly 650 Gt/yr for the quadratic parameterisation using an
Antarctic slope in the second period. While this jump in RMSE can be explained by a
higher mean reference integrated melt (100 Gt/yr for the first period and 159 Gt/yr for
the second period, see also Fig. A3), it is probably also a result of forcing unseen dur-
ing training such as much warmer and less saline ocean conditions (Figs. A1l and A2).
Over both periods, the neural networks remain at the lower range of the difference to
the reference melt rates. While neural networks, plume, box and PICOP parameterisa-
tion have comparable RMSEs for the first warm period (between 103 and 163 Gt/yr),
the RMSE increases more for the plume, box and PICOP parameterisation (between 211
and 248 Gt/yr) than for the neural networks (between 138 and 191 Gt/yr) in the even
warmer second period.

For the melt near the grounding line, the parameterisations perform differently than
for the integrated melt, pointing to potential challenges outside the domain near the ground-
ing line. The neural networks perform in a similar uncertain manner as in the REPEAT1970
case (Fig. 4b, right). Their RMSE¢y, (0.69-0.75 m/yr in the first period and 0.95-1.10 m/yr
in the second period) is close to the reference mean melt near the grounding line (0.75 m/yr
for the first period and 1.02 m/yr for the second period). In the first period, only the
quadratic local parameterisation using an Antarctic slope and the plume parameterisa-
tion have lower RMSEqj, (0.62 and 0.59 m/yr respectively), while in the second period
only the quadratic parameterisation using a local slope performs clearly worse than the
other parameterisations. For all, the RMSE increases with warmer conditions but the
gap between the periods depends on the parameterisation, ranging from a difference of
0.04 m/yr for the plume parameterisation to a difference of 0.76 m/yr for the quadratic
parameterisation using a local slope.
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From this demanding application on an independent testing dataset, several con-
clusions can be drawn. First, the neural networks apply reasonably well to data inde-
pendent from training in present conditions. This means that, if they have seen all ge-
ometries of the main circum-Antarctic ice shelves, they can adapt to slightly different
geometries. This is even more encouraging as the testing simulations were conducted with
a slightly different version of NEMO than the neural networks were trained on. Second,
none of the neural networks seems to constantly be the one with the best performance
for all metrics. Third, the RMSE of the neural networks is higher when applied to warmer
conditions, but, in comparison with the traditional parameterisations, it performs at least
as well or even better.

4.2 Spatial patterns

Looking at the spatial patterns averaged over the last 10 years of the 4xCQO5 run,
it becomes clear that all parameterisations, both neural networks and traditional ones,
struggle with warmer conditions and different geometries to the training ensemble (Fig. 5).
The maximum melt rates remain far below the maximum melt rates of the reference for
all of them except the quadratic parameterisation using the local slope, which largely
overestimates the maximum melt rates (as seen already in Burgard et al., 2022). Look-
ing at the general patterns, the neural networks tend to overestimate the melt on wide
areas of Filchner-Ronne and Ross but underestimate it over the whole ice shelf for smaller
ones. The quadratic parameterisations (both using Antarctic and local slope) and, in some
cases, the plume parameterisation, tend to overestimate the melt over wide areas, in par-
ticular for the Ross and Filchner-Ronne ice shelves. The box parameterisation under-
estimates the melt for all ice shelves, completely missing regions of strong melt.

5 Discussion

In this study, we showed that a simple multilayer perceptron can emulate melt rates
as simulated by the cavity-resolving ocean model NEMO. This result is encouraging for
further development because, as it is applied on a grid-cell level, it allows larger amounts
of training data to be used than architectures containing convolutions such as MELT-
NET (Rosier et al., 2023) or, more generally, U-Nets (Ronneberger et al., 2015), which
take spatial domains as inputs. In addition, this architecture is independent of the do-
main size and is therefore directly applicable to any ice shelf around Antarctica. In the
following, we discuss insights from this study and possible further improvements to this
approach.

5.1 Variable importance

One argument that is often made against the use of neural networks is that they
remain statistical emulators of the training data and do not contain any physical con-
straints. The performance when applied to a slightly different model and to different con-
ditions (see Sec. 4) already gives us a sense that the neural networks can reasonably adapt
to conditions outside of training. In addition, we now perform a sanity check to verify
that the neural network is doing ”the right thing for the right reasons”. This sanity check
also gives insight into the importance of the different input variables and could help fu-
ture development of deep learning parameterisations as well as physical parameterisa-
tions to focus on these variables.

To assess the importance of the different variables on the performance of the neu-
ral networks, we apply two variations of the permute-and-predict approach. In the permute-
and-predict approach, one of the variables is shuffled randomly and used as input for the
neural network alongside the other variables that remain in the original order. In the first
variation (Fig. 6a), we shuffle the input variables within the REPEAT1970 sample to eval-
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Figure 5. Subset of ice shelves for a visual evaluation of the melt patterns. This is the time
average for the last 10 years of the 4xCOz run. The colorbar is limited to the 95th percentile of
the NEMO reference. The blue line indicates the region used to evaluate the melt rate near the

grounding line (which is defined as the first box in the 5-box setup of the box parameterisation).

uate the importance of the different variables in a situation close to the training condi-
tions. In the second variation (Fig. 6b), we use a random sample from the 4xCOs input
for the shuffled variable and run the neural network using all other original input vari-
ables from the REPEAT1970 run to evaluate the importance of different variables in much
warmer conditions. The shuffling is reiterated for each variable separately. In addition,

we also shuffle blocks of potentially correlated variables simultaneously to gain insight

on the effect of correlation on the shuffling results.

For the shuffling within the REPEAT1970, the geometric properties dominate the
performance of all three neural networks for the integrated melt (Fig. 6a, left). For the
XS version, the ice-shelf size, for which the distance to the ice front could be seen as a
proxy, and the water column height, through ice-draft depth and bathymetry, have the
highest importance. For the S and L version, the bathymetry is less important but the
distance to the ice front and the ice-draft depth remain the most important variables,
with an effect on the RMSE decreasing from S to L. The shuffling of the temperature
and salinity variables have a smaller effect when shuffled separately, which can be ex-
plained by the correlation between these variables. However, when shuffled by group, the
temperature information gains in importance, leading to a similar increase in RMSE as
the distance to the ice front in the L version. The bedrock and ice slopes are not impor-
tant for the performance on the integrated melt. For the melt near the grounding line
(Fig. 6a, right), many variables are not important, the RMSE is reduced when they are
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Integrated melt Melt near grounding line

[Gt/yr] [mice/yr]

Xs S L Xs S L

Original RMSE 17.6 18.9 16.5 0.42 0.36 0.40
(REPEAT 1970) 3 . . . .
(a) Difference in RMSE to original after shuffling within REPEAT1970
Distance GL 2.5 2.2 0.4 -0.05 -0.04 -0.06
Distance IF 0.03 0.06 0.05
Ice draft depth 105 0.02 -0.04 -0.02
Bathymetry 3.8 0.04 0.01 0.01
Slope bed lon 0.3 0.6 -0.2 -0.01 -0 -0.01
Slope bed lat 0.3 02 0.1 0 0.01 0.01
Slope ice lon @ e 05 0.02 0.05 0.03
Slope ice lat s 0 0 0.01 0.02 0.01
Temperature 47

Salinity 9.4 8.2 13 -0.03 -0.01 0
Temperature mean 33 5.3 4.4 0.06 0.09
Salinity mean — 3.2 3.6 0.01 0.02 0.03
Temperature std 0.7 0.9 0.5 0 -0.02 0.05
Salinity std 2.2 0.4 1.4 0.02 0.05 0.04
Position 14.2 19 -0.02 0.01 -0.01
Water column 14.7 18.9 6.9 -0.03 -0.01 -0.01

Slopes bed 0.6 0.2 0.1 -0.01 0 0
Slopes ice 11 1.1 1 0.05 0.07 0.05
Temperature info 10.2 0.14 0.18 0.17
Salinity info 33 5.1 2.6 0.05 0.06 0.08

(b) Difference in RMSE to original after inserting random sample from 4xCO, into REPEAT1970

Distance GL 25 2.1 0.4 -0.05 -0.03 -0.07
Distance IF 14.9 15 11.3 0.05 0.06 0.06
Ice draft depth 25.4 15.5 12.7 0.02 -0.04 -0.01
Bathymetry 16.7 2.4 4 0.04 0.01 0.01
Slope bed lon 0.3 0.5 0.2 -0.01 0 -0.01
Slope bed lat 0.3 0.1 0.1 0 0.01 0.01
Slope ice lon 0.4 1 0.5 0.02 0.04 0.03
Slopeice lat 0.2 0.2 0.1 0.01 0.02 0.01
Temperature 179.7 151.7 85 -0.06 -0.01 -0.04
Salinity 51.1 115.2 10.1 0.08 0.04 0.05
Temperature mean 92.5 127.1 91.1 0.1 -0.06 -0.09
Salinity mean 1209 553 -0.01 0.01 -0.01
Temperature std 12.9 1.9 13.2 -0 0.01 0.02
Salinity std 29.6 11.9 7.9 0.02 0.02 0.01
Position 13.9 18.6 13 -0.01 0.02 0
Water column 15.9 16.3 7.1 -0.03 -0 -0.01
Slopes bed 0.5 0.2 0.1 -0 0 0
Slopes ice 1.1 12 0.9 0.04 0.07 0.05
Temperature info 3306 307.1 266.5 -0.03
Salinity info 20.7 95.8 3.2 0.07 0 0.06

Figure 6. Difference in RMSE between an application using a random sample for the given
variable of the REPEAT1970 input (a) and of the 4xCO3 input (b) and the original application
on the REPEAT1970 input using the XS, S and L deep ensemble. The original RMSE when ap-
plied to REPEAT1970 is indicated above each column. The upper part of the tables shows the
results when shuffling the variables individually while the lower part is for variables that have
been shuffled as a group. ” Temperature” and ”Salinity” are the ocean properties extrapolated to
the ice-draft depth, " Temperature mean” and ”Salinity mean” are their average over each cavity,
and ”Temperature std” and ”Salinity std” their standard deviation over each cavity. In the block
Position we group the distance to the grounding line and to the ice front, in the block Water
column we group the ice-draft depth and the bathymetry, in the block Slopes bed and Slopes ice
we group the meridional and zonal slope of the bedrock and ice respectively, in the block Temper-
ature info and Salinity info we group the local value, the average and the standard deviation of

temperature and salinity respectively.
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shuffled. The strongest effect is seen when shuffling the temperature variables as a group.
The salinity variables, the ice slopes, and the distance to the ice front are the second most
important group.

When inserting random samples of 4xCOs input, the importance of the ice front,
the ice-draft depth and the bathymetry remains of a similar order of magnitude for the
integrated melt as in the REPEAT1970 shuffling (Fig. 6b, left). However, the effect of
the temperature increases drastically and leads to increases in the RMSE of more than
300 Gt/yr. For the XS and S, the importance of the grouped salinity information increases
as well. This result reflects the difficulty for neural networks to extrapolate outside of
the training range. Looking at the distribution of the input variables, the geometrical
conditions in the 4xCO run are in a similar range as the training ensemble, despite an
involving ice-shelf geometry, while the temperature and salinity variables are clearly out-
side of the distribution (Fig. A4). For the melt near the grounding line (Fig. 6b, right),
introducing variables from warmer conditions does not affect the RMSE very differently
than in the REPEAT1970 case.

Several conclusions can be drawn from this experiment. First, this experiment shows
that the geometry, in particular the distance to the ice front and the ice-draft depth, are
key variables for the neural networks to infer reasonable integrated melt when applied
on variables close to the training range, closely followed by the temperature. Ice-draft
depth and temperature already are an integral part of existing parameterisations (Burgard
et al., 2022). However, the distance to the ice-shelf front or the ice-shelf size are currently
only partly considered, and only in the more complex parameterisations such as the plume
and box parameterisations (Lazeroms et al., 2019; Reese et al., 2018).

Second, when applied to much warmer conditions, the distribution of geometric vari-
ables remains close to their distribution in the training ensemble. In contrast, the tem-
perature and salinity, well outside the training range, clearly affect the resulting inte-
grated melt. This suggests that training the neural networks on simulations of warmer
conditions could already improve their performance. Even more promising, the low ef-
fect of geometry changes on integrated melt in warmer conditions suggests that coupled
ice-ocean simulations of warmer conditions are not necessarily needed for training and
that cavity-opening ocean simulations with fixed geometry could already be sufficient.

Third, for the melt near the grounding line, the position of the grid cell is (maybe
surprisingly) less important than for the integrated melt and the key variable is the tem-
perature information, both near the training range and in warmer conditions. While the
ice slope does not affect the integrated melt, it has some effect on the melt near the ground-
ing line. This suggests that including ice slopes is necessary for a good performance near
the grounding line. However, the way it is currently included in simple parameterisations
is not successful as we showed in Burgard et al. (2022) that it leads to a clear overesti-
mation of the melt in this region.

Fourth, the effect of the shuffling on the RMSE is generally lower for the L size of
the neural networks. This could suggest an overfit as it could mean that the neural net-
work is not following variations in the input variables as much as the other neural net-
work sizes and is therefore less flexible. This possible overfit would also explain why we
did not see an increase in the performance during the cross-validation with increasing
network size in Sec. 3.

5.2 Possible improvements

While the results of our neural networks are encouraging, a variety of further im-
provements can be conducted in the future. The most obvious conclusion from this study
is that predicting warmer conditions, similar to climate change conditions, is challeng-
ing for this particular neural network architecture because these conditions were not con-
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tained during training and neural networks are known to struggle with extrapolation prob-
lems. We therefore suggest, when possible, to introduce a set of simulations containing
high-end future scenarios in the training dataset to make the neural network more ro-
bust for future projections. At the same time, we saw that the traditional parameter-
isations struggle to represent future conditions as well. How to tune melt parameteri-
sations to be applicable in both present and future conditions is therefore a problem that
is not limited to deep learning approaches.

Another possible improvement is the treatment of the largest ice shelves. When
looking at the cross-validation results into more detail, i.e. at the scale of each ice shelf
(not shown), the total RMSE over all ice shelves is strongly influenced by the high RMSE
for the Ross ice shelf and, to a smaller extent, by the relatively high RMSE for the Filchner-
Ronne ice shelves. These two ice shelves have an area which is much larger than the other
ice shelves around Antarctica. Their cavities are so large that they develop their own
internal circulation (e.g. Gerdes et al., 1999; Naughten et al., 2021) and the residence
time of water masses reaches several years (Michel et al., 1979; Nicholls & @sterhus, 2004).
It is therefore not too surprising that parameterisations, which use input temperature
and salinity averaged over thousands of kilometers at the front of the ice shelves and do
not represent horizontal circulation explicitly, struggle with the representation of melt
in these cavities. If we remove these two from the RMSE in the 4xCQO5 case for exam-
ple, we find that the RMSE is clearly reduced for both neural networks and traditional
parameterisations (Fig. 7 compared to Fig. 4b). It would therefore be worth consider-
ing whether these rath<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>