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Abstract

Imperfect models are often used for forecasting and state estimation of complex dynamical systems, typically by mapping a

reference initial state into model phase space, making a forecast, and then mapping back to the reference space. In many

cases these mappings are implicit, and forecast errors thus reflect a combination of model forecast errors and mapping errors.

Techniques to infer parameterizations and parameters to reduce model bias have been the subject of intense scrutiny; however,

we lack a general framework for discovering optimal mappings between system and model attractors. Here we propose a novel

Machine Learning paradigm for inferring cross-attractor transformations (CATs) that minimize forecast error. CATs are pairs

of transformations from the phase space of a reference system to the phase space of a model and vice versa that serve as a bridge

between the attractors of a true system and an imperfect model. A computationally efficient analog approximation to tangent

linear and adjoint models is developed to enable efficient stochastic gradient descent algorithms to train CAT parameters.

Neural networks constructed with a custom analog-adjoint layer permit specification of affine transformations as well as more

general nonlinear transformations.
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Introduction
Imperfect models are often used for forecasting and state estimation of complex
dynamical systems, typically by mapping a reference initial state into model phase
space, making a forecast, and then mapping back to the reference space. In many
cases these mappings are implicit, and forecast errors thus reflect a combination
of model forecast errors and mapping errors. Techniques to infer
parameterizations and parameters to reduce model bias have been the subject of
intense scrutiny; however, we lack a general framework for discovering optimal
mappings between system and model attractors.

Here we propose a novel Machine Learning paradigm for inferring cross-attractor
transformations (CATs) that minimize forecast error. CATs are pairs of
transformations from the phase space of a reference system to the phase space
of a model and vice versa that serve as a bridge between the attractors of a true
system and an imperfect model. A computationally efficient analog
approximation to tangent linear and adjoint models is developed to enable
efficient stochastic gradient descent algorithms to train CAT parameters. Neural
networks constructed with a custom analog-adjoint layer permit specification of
affine transformations as well as more general nonlinear transformations.

Training methodology:
• Consider catalogs (datasets) of  the two dynamical systems, composed of 

pairs of states separated by a lag 𝜏 (denoted by + and -), i.e., 
𝒞! = 𝑥!,#$ , 𝑥!,#% #&'

(! , 𝒞) = 𝑥),*$ , 𝑥),*%
*&'

(" .

• To compute the forecast of any state 𝑥) in 𝑉), we first express it as a linear 
combination of its N nearest neighbors (or, analogs), i.e

𝑥) = 𝑐' 𝑥),*#
$ +⋯ + 𝑐( 𝑥),*$

$ ,
where {𝑗', 𝑗+, … , 𝑗(} ⊂ {1,2, … , 𝑁)} are nearest neighbors’ indices. This can 
be expressed as,

𝑐 = (𝑨,𝑨)$' 𝑨, 𝑥) ,
where  𝑨 = [𝑥), *#

$ , 𝑥), *%
$ , … , 𝑥), *$

$ ],  𝑐 = [𝑐', 𝑐+, … , 𝑐(]

• Then use analog forecasting ( !𝐹 ) to advance the state as 
!𝐹 𝑥) = 𝑩 𝑐 = 𝑩 (𝑨,𝑨)$' 𝑨,𝑥) ,

where 𝑩 = [𝑥),*#
% , 𝑥),*%

% , … , 𝑥),*$
% ]. Here, 𝑨 and 𝑩 are piecewise-constant 

functions of 𝑥), and thus 𝑑$𝑭 𝑥! /𝑑𝑥! = 𝑩 (𝑨,𝑨)$' 𝑨,. This allows 
computing gradient of the loss function.

• A multilayer Neural Network (NN) is used to optimize 𝑇!) and 𝑇)! with a 
custom analog forecast layer in the middle; this layer also uses a custom 
gradient, as calculated above. NN input: 𝑥!,#$ , NN output: 𝑥!,#% .

Post training, the original model dynamical system ℱ) can be used to produce 
forecasts instead of the analogs. However, only analog results are shown here.
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Theory and Methods
Consider two dynamical systems, reference and model, denoted by r and m,
respectively. Their states, 𝑥! and 𝑥), belong to Hilbert spaces 𝑉! and 𝑉),
respectively, with propagation maps ℱ! : 𝑉! → 𝑉! and ℱ) ∶ 𝑉) → 𝑉) . We seek
two maps 𝑇!) (reference to model) and 𝑇)! (model to reference) such that

[T)!∘ ℱ) ∘ 𝑇!)] 𝑥! ≈ ℱ! (𝑥!).

An obvious loss function for the training of T-map parameters is:
𝑥! 𝑡 + 𝜏 − 𝑇)! ∘ ℱ) ∘ 𝑇!) 𝑥! 𝑡

+

However, for optimization, differentiation through the model dynamical
system ℱ) is required, which is generally infeasible. Therefore, an analog
approximation of ℱ) was considered with a carefully designed tangent linear
model.
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Conclusions and Discussion

Results
Testbed: Lorenz’63  (L63) butterfly system

𝑑𝑥
𝑑𝑡

= 𝜎 𝑦 − 𝑥 ;
𝑑𝑦
𝑑𝑡

= 𝑥 𝜌 − 𝑧 − 𝑦;
𝑑𝑧
𝑑𝑡
= 𝑥𝑦 − 𝛽𝑧

Reference: L63 with the parameter values 𝜎 = 10, 𝜌 = 28, 𝛽 = 8/3. 
Model Forecast: L63 with different levels of errors. Four cases are considered. 

A schematic 
diagram of CATs
(𝜏: forecast lead 
time)

Case 1: L63 with x and y interchanged, i.e., 𝑥 → 𝑦 and 𝑦 → 𝑥. This is a simple
affine transformation. Note that 𝑇!) & 𝑇)! are known analytically in this case.

Case 2: L63 with 𝜎 = 7.5, 𝜌 = 35, 𝛽 = 1.9. This shifts the
attractors along the z axis.

Case 3: L63 with 𝜎 = 10, 𝜌 = 220, 𝛽 = 8/3. The Lorenz
two-attractor system converts to to a simple 3D orbit.

Case 4: L63 with 𝜎 = 12.25, 𝜌 = 19, 𝛽 = 3.3. The Lorenz
system collapses to an equilibrium state.

• CATs can skillfully map different phase space attractors of the
Lorenz’63 system using minimally complex NNs.

• The current results are for 𝜏 = 1, but a short study using
higher lead times produced similar quality results.

• Testing on Lorenz’96 is in progress and will be followed by
testing on multi-layered quasi-geostrophic ocean dynamics
with different vertical levels.

• However, CATs can be generalized much further to, e.g., high-
res vs low-res systems, coupled vs atmosphere-/ocean-only
models.

• One significant downside of the current CATs implementation
is the dependency on analog forecasting, which carries errors
by definition.

CATs

NN configuration 
same as in case 3

CATs

CATs
3 hidden layers; 
100 neurons/layer; 
SELU activation; 
MAE loss; Adam 
optimizer; Min-
Max normalization; 
100 Epochs; 16 
batch size

1 hidden layer 
with 3 neurons; 
Linear activation;
MAE loss; Adam 
optimizer; 
Standardized 
inputs; 50 Epochs; 
32 batch size

CATs

NN configuration 
same as in case 1


