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Abstract

Imperfect models are often used for forecasting and state estimation of complex dynamical systems, typically by mapping a
reference initial state into model phase space, making a forecast, and then mapping back to the reference space. In many
cases these mappings are implicit, and forecast errors thus reflect a combination of model forecast errors and mapping errors.
Techniques to infer parameterizations and parameters to reduce model bias have been the subject of intense scrutiny; however,
we lack a general framework for discovering optimal mappings between system and model attractors. Here we propose a novel
Machine Learning paradigm for inferring cross-attractor transformations (CATs) that minimize forecast error. CATs are pairs
of transformations from the phase space of a reference system to the phase space of a model and vice versa that serve as a bridge
between the attractors of a true system and an imperfect model. A computationally efficient analog approximation to tangent
linear and adjoint models is developed to enable efficient stochastic gradient descent algorithms to train CAT parameters.
Neural networks constructed with a custom analog-adjoint layer permit specification of affine transformations as well as more

general nonlinear transformations.
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Introduction

Imperfect models are often used for forecasting and state estimation of complex
dynamical systems, typically by mapping a reference initial state into model phase
space, making a forecast, and then mapping back to the reference space. In many
cases these mappings are implicit, and forecast errors thus reflect a combination
of model forecast errors and mapping errors. Techniques to infer
parameterizations and parameters to reduce model bias have been the subject of
intense scrutiny; however, we lack a general framework for discovering optimal
mappings between system and model attractors.

Here we propose a novel Machine Learning paradigm for inferring cross-attractor
transformations (CATs) that minimize forecast error. CATs are pairs of
transformations from the phase space of a reference system to the phase space
of a model and vice versa that serve as a bridge between the attractors of a true
system and an imperfect model. A computationally efficient analog
approximation to tangent linear and adjoint models is developed to enable
efficient stochastic gradient descent algorithms to train CAT parameters. Neural
networks constructed with a custom analog-adjoint layer permit specification of
affine transformations as well as more general nonlinear transformations.

Theory and Methods

Consider two dynamical systems, reference and model, denoted by r and m,
respectively. Their states, x,- and x,,, belong to Hilbert spaces V. and 1/,
respectively, with propagation maps %.: V.. - V. and %, : V,,, = ;.. We seek
two maps T;.,,, (reference to model) and T,,,,- (model to reference) such that

| Tonro Fp o Trm](xr) ~ F. (x).
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An obvious loss function for the training of T-map parameters is:
_ 2
H Xp(t +7T) = [Ty 0 Fyp © Trm](xr(t))u

However, for optimization, differentiation through the model dynamical
system F,,, is required, which is generally infeasible. Therefore, an analog
approximation of F,, was considered with a carefully designed tangent linear
model.

Training methodology:

* Consider catalogs (datasets) of the two dynamical systems, composed of
pairs of states separated by a lag T (denoted by + and -), i.e,,

e ={C )y G = ()Y

* To compute the forecast of any state x,,, in V3., we first express it as a linear
combination of its N nearest neighbors (or, analogs), i.e

Xm = €1 X j, T FCn Xy j s

where {j1, j», ..., Jn} € {1,2, ..., N,,,} are nearest neighbors’ indices. This can
be expressed as,

c=A"A)"1A" x,, ,

where A =[x, j,Xp iy X juols € = [€1,C2 ., CN]

* Then use analog forecasting (ﬁ' ) to advance the state as
F(x,,)=Bc= BATA)*A4"x,,,

+ + +
m,j12 Am,jpr 0 Xm,jiy

functions of x,,,, and thus dF(x,,)/dx,, = B (ATA)~* AT. This allows
computing gradient of the loss function.

where B = [x |- Here, A and B are piecewise-constant

* A multilayer Neural Network (NN) is used to optimize T..,, and T,,,,- with a
custom analog forecast layer in the middle; this layer also uses a custom

gradient, as calculated above. NN input: x,. ;, NN output: x,Tl

Post training, the original model dynamical system F,, can be used to produce
forecasts instead of the analogs. However, only analog results are shown here.

Results

Testbed: Lorenz’63 (L63) butterfly system
dx ( ).dy_ ( ) dz
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: L63 with the parameter valueso = 10, p = 28, f = 8/3.
Model Forecast: L63 with different levels of errors. Four cases are considered.

Case 1: L63 with x and y interchanged, i.e., x > y and y — x. This is a simple
affine transformation. Note that T;.,,, & T,,,,- are known analytically in this case.
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Case 2: L63 with o = 7.5, p = 35, [ = 1.9. This shifts the
attractors along the z axis.
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Case 3: L63 with 0 = 10, p = 220, [ = 8/3. The Lorenz
two-attractor system converts to to a simple 3D orbit.
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Case 4: L63 with o0 = 12.25, p =19, [ = 3.3. The Lorenz
system collapses to an equilibrium state.
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Conclusions and Discussion

e CATs can skillfully map different phase space attractors of the
Lorenz’63 system using minimally complex NNs.

* The current results are for T = 1, but a short study using
higher lead times produced similar quality results.

 Testing on Lorenz’96 is in progress and will be followed by
testing on multi-layered quasi-geostrophic ocean dynamics
with different vertical levels.

* However, CATs can be generalized much further to, e.g., high-
res vs low-res systems, coupled vs atmosphere-/ocean-only
models.

* One significant downside of the current CATs implementation
is the dependency on analog forecasting, which carries errors
by definition.




