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Abstract

Atmospheric gravity waves (GWs) span a broad range of length scales. As a result, the un-resolved and under-resolved GWs have

to be represented using a sub-grid scale (SGS) parameterization in general circulation models (GCMs). In recent years, machine

learning (ML) techniques have emerged as novel methods for SGS modeling of climate processes. In the widely-used approach of

supervised (offline) learning, the true representation of the SGS terms have to be properly extracted from high-fidelity data (e.g.,

GW-resolving simulations). However, this is a non-trivial task, and the quality of the ML-based parameterization significantly

hinges on the quality of these SGS terms. Here, we compare three methods to extract 3D GW fluxes and the resulting drag

(GWD) from high-resolution simulations: Helmholtz decomposition, and spatial filtering to compute the Reynolds stress and

the full SGS stress. In addition to previous studies that focused only on vertical fluxes by GWs, we also quantify the SGS GWD

due to lateral momentum fluxes. We build and utilize a library of tropical high-resolution ($\Delta x =3˜km$) simulations using

weather research and forecasting model (WRF). Results show that the SGS lateral momentum fluxes could have a significant

contribution to the total GWD. Moreover, when estimating GWD due to lateral effects, interactions between the SGS and the

resolved large-scale flow need to be considered. The sensitivity of the results to different filter type and length scale (dependent

on GCM resolution) is also explored to inform the scale-awareness in the development of data-driven parameterizations.
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Key Points:8

• In a library of WRF simulations, we compare methods for estimating 3D gravity wave9

drag force that are un- and under-resolved by GCMs.10

• For drag associated with vertical fluxes, different methods agree on time- and zonal-11

mean but not on instantaneous spatiotemporal patterns.12

• Drag associated with horizontal fluxes is significant but is very sensitive to the esti-13

mation methodology.14
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Abstract15

Atmospheric gravity waves (GWs) span a broad range of length scales. As a result, the16

un-resolved and under-resolved GWs have to be represented using a sub-grid scale (SGS)17

parameterization in general circulation models (GCMs). In recent years, machine learning18

(ML) techniques have emerged as novel methods for SGS modeling of climate processes.19

In the widely-used approach of supervised (offline) learning, the true representation of the20

SGS terms have to be properly extracted from high-fidelity data (e.g., GW-resolving simula-21

tions). However, this is a non-trivial task, and the quality of the ML-based parameterization22

significantly hinges on the quality of these SGS terms. Here, we compare three methods23

to extract 3D GW fluxes and the resulting drag (GWD) from high-resolution simulations:24

Helmholtz decomposition, and spatial filtering to compute the Reynolds stress and the full25

SGS stress. In addition to previous studies that focused only on vertical fluxes by GWs, we26

also quantify the SGS GWD due to lateral momentum fluxes. We build and utilize a library27

of tropical high-resolution (∆x = 3 km) simulations using weather research and forecasting28

model (WRF). Results show that the SGS lateral momentum fluxes could have a significant29

contribution to the total GWD. Moreover, when estimating GWD due to lateral effects,30

interactions between the SGS and the resolved large-scale flow need to be considered. The31

sensitivity of the results to different filter type and length scale (dependent on GCM res-32

olution) is also explored to inform the scale-awareness in the development of data-driven33

parameterizations.34

Plain Language Summary35

Gravity waves (GWs) present a challenge to climate prediction: waves on scales of36

O(1 km) to O(100 km) can neither be systematically measured with conventional obser-37

vational systems, nor properly represented (resolved) in operational climate models, which38

have a typical grid spacing on the order of 100 km. Therefore, in these climate models,39

small-scale GWs must be parameterized, or estimated, based on the resolved (large-scale)40

flow. The primary effects of these small-scale waves on the resolved flow is the so-called41

sub-grid scale (SGS) drag (GWD), resulting from the propagation and breaking of these42

waves. Existing SGS parameterizations for GWD in general circulation models (GCMs)43

are all highly simplified; e.g., they only account for vertical propagation of GWs. With44

growing computing power, a promising alternative approach is to use machine learning to45

develop data-driven parameterizations. However, this requires to first generate reliable high-46

resolution computer simulations and then extract GWD from these simulations. This study47

follows these steps, compares different extraction methods, and describes some challenges48

and pathways to make advances. Furthermore, our results suggest that the horizontal prop-49

agation of GWs should be included in parameterizations too, however, extra care is needed50

in order to extract the resulting GWD from high-resolution data.51

1 Introduction52

Atmospheric gravity waves (GWs), with horizontal scales from ∼ 1 km to 1000 km, play53

an important role in the transport of momentum from the surface and lower troposphere54

to the upper troposphere and middle atmosphere (Fritts & Alexander, 2003, and references55

therein). Once excited by various sources (e.g., convective systems, fronts, flow over topog-56

raphy), GWs propagate both vertically and laterally, transporting momentum and energy57

away from their sources (Bretherton, 1969; Palmer et al., 1986; Fritts & Alexander, 2003;58

Plougonven & Zhang, 2014). One challenge for climate and weather prediction is that the59

entire spectrum of GWs cannot be adequately resolved in current general circulation mod-60

els (GCMs), which have a typical horizontal grid spacing of around 20 to 100 km (Fritts61

& Nastrom, 1992; Eyring et al., 2016; Gettelman et al., 2019). The effects of small-scale62

GWs are therefore parameterized based on the large-scale state of the atmosphere resolved63

by the GCM and other information of the sub-grid scale sources. After decades of devel-64

–2–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

opment, gravity wave parameterization (GWP) is now a critical component of GCMs to65

enable them to reproduce realistic atmospheric circulation mean, variability, and response66

to climate change (e.g., McFarlane, 1987; Scinocca & McFarlane, 2000; Y. Kim et al., 2003;67

Beres, 2004; Alexander et al., 2010; Richter et al., 2010; Lott et al., 2012; Plougonven &68

Zhang, 2014). For example, generating quasi-biennial oscillation (QBO) in GCMs requires69

skillful GWPs (e.g., Richter et al., 2020).70

Numerous assumptions are used in the current physics-based GWP schemes. For exam-71

ple, one typically used simplification is the “single-column approximation”, where the hori-72

zontal propagation of GWs is neglected so that all GWs stay in the same GCM column and73

will not directly affect neighboring columns. Other simplifications are also widely adopted,74

including but not limited to, steady-state approximation (neglecting of transient effects such75

as non-dissipative GW–mean-flow interactions), often monochromatic and linear (ignoring76

potential triad wave-wave interactions), saturation assumption of GWs (limits the source77

and dissipation amplitudes), and assumptions of balanced (hydrostatic and geostrophic) re-78

solved flows (Bölöni et al., 2016; Achatz et al., 2017; Wei et al., 2019). In addition to these79

assumptions, the representation of GW sources (e.g., small-scale convection) in GCMs is80

also challenging. Many efforts have been made in addressing these drawbacks of GWPs in81

state-of-the-art GCMs, e.g., by relaxing some simplifications in more complex frameworks82

(Bölöni et al., 2021; Y. H. Kim et al., 2021). While adding realistic complexity to current83

physics-based GWPs improves their performances, more parameters are involved in gen-84

eral, which means additional tuning (Gettelman et al., 2019). The shortcomings of current85

GWPs is a major cause of uncertainties in future changes in stratospheric variability, most86

notably, the QBO, and the resulting surface impacts. (Sigmond & Scinocca, 2010; Richter87

et al., 2020, 2022).88

Recently, Machine Learning (ML) techniques have emerged as alternative tools for89

developing parameterizations for climate models. They have been used in parameterizing a90

variety of SGS processes with promising results (e.g., Schneider et al., 2017; Rasp et al., 2018;91

Bolton & Zanna, 2019; Maulik et al., 2019; Chattopadhyay et al., 2020; Yuval & O’Gorman,92

2020; Kashinath et al., 2021; Gentine et al., 2021; Guan et al., 2022). Matsuoka et al.93

(2020) were among the first to apply ML to GWs. Focused on the orographic GWs over the94

Hokkaido region of Japan, they trained a convolutional neural network to connect the large-95

scale tropospheric state and the small-scale GW wind fluctuations in the lower stratosphere.96

Recently, Amiramjadi et al. (2022) also found success in reconstructing the non-orographic97

GWs in the ERA5 dataset with a random forest regressor. Both of these studies identified98

fluctuations associated with GWs using a simple moving-box average and demonstrated the99

feasibility of using ML to represent GWs. However, these studies only focused on learning100

GWs or momentum fluxes at one level (100 hPa), without further calculating the GWD,101

which is required to develop GWPs for GCMs. A number of other studies have also shown102

the power of ML for GWP through emulating current GWP schemes (Chantry et al., 2021;103

Espinosa et al., 2022). These emulation efforts provide valuable insight on various promises104

and challenges of using ML for GWPs, though a number of key challenges, e.g., related to105

GWD extraction and lateral GW propagation, cannot be investigated through emulation(see106

below).107

One key challenge for the data-driven approach is the availability of sufficient obser-108

vationally constrained data of GW momentum transport for training the ML algorithms.109

With limited availability of observations of GWs and the challenges associated with sparsity110

and noise, high-resolution GW-resolving model simulations must play a critical role in gen-111

erating the training data. A number of case studies have verified that high-resolution models112

are able to capture the key characteristics of observed GWs (Bramberger et al., 2020; Kruse113

et al., 2022). The second key challenge in the most common data-driven approach (the114

so-called “supervised” or “offline” learning) is the need to extract, from the high-resolution115

simulations, the true GWD due to the un- and under-resolved GWs; hereafter, we refer116

to this collectively as the SGS drag. This SGS GWD is what has to be added to a low-117
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resolution GCM to properly account for the un- and under-resolved GWs (note that this118

depends on the GCM’s effective resolution; more discussions to follow later). In the GW119

modeling community, a number of methods have been used in the past to separate GWs120

from the large-scale flow and quantify the SGS fluxes or GWD (e.g., G. J. Shutts & Vosper,121

2011; Kruse & Smith, 2015; Žagar et al., 2015; Stephan et al., 2019; Matsuoka et al., 2020;122

Amiramjadi et al., 2022; Polichtchouk et al., 2022). Some studies pursued a simple box-123

averaging method (e.g., Matsuoka et al., 2020) or a cut-off low-pass filter (e.g., Polichtchouk124

et al., 2022). There are also more rigorous methods to separate the balanced large-scale125

components and the unbalanced GWs based on linear wave theory and Helmholtz decom-126

position (e.g., Callies et al., 2014; Žagar et al., 2015). Stephan et al. (2019) computed the127

resolved GW pseudo-momentum fluxes in month-long global convection-permitting simula-128

tions with two other methods. These methods showed overall good agreement on the general129

shape of the longitudinal profiles of GW fluxes, but systematic differences were found for130

the amplitudes of the pseudo-momentum fluxes even after averaging over the 30-day period,131

implying the importance of the extraction method if we were to use these high-resolution132

data for training the ML algorithms.133

The third key challenge is related to the 3D propagation of GWs and the resulting134

3D SGS GWD. The aforementioned studies focused only on the vertical momentum fluxes135

of GWs, as the current operational GWP schemes ignore lateral propagation of the waves136

and the resulting lateral fluxes and their contribution to the total GWD. However, there137

is growing evidence that horizontal propagation of GWs has to be considered in GWP138

to produce a realistic atmospheric circulation (e.g., Sato et al., 2009; Muraschko et al.,139

2015; Ehard et al., 2017). Only few studies have discussed the lateral momentum fluxes140

in high-resolution simulations (Eckermann et al., 2015; Jiang et al., 2019). More recently,141

through analyzing the lateral momentum flux in the high-resolution simulations over the142

Drake Passage, Kruse et al. (2022) showed that the meridionally propagating mountain143

waves significantly enhanced the zonal drag. Additionally, their work suggested that not144

accounting for these meridional fluxes would result in GWD in the wrong direction at and145

below the polar night jet.146

In this paper, we use data from a library of 20 convection-permitting (3 km) tropical147

WRF simulations to148

1. Compare 3 methods that are commonly used in the GW and large-eddy simula-149

tion (LES) literature to quantify the SGS fluxes and drags. These methods are i)150

Helmholtz decomposition, ii) Spatial filtering to compute the full SGS stress and the151

resulting GWD, and iii) Same as (ii) but only for the Reynolds stress.152

2. Quantify the contribution of both vertical and horizontal fluxes of horizontal mo-153

mentum to the total GWD to investigate if the latter should be included in SGS154

parameterizations too.155

Item 1 is crucial because any data-driven method, ML or otherwise, is as good as the data156

used for the training. Note that the challenges associated with extracting the SGS terms157

for ML training are not limited to the GW applications, and are in fact relevant to many158

climate/turbulence processes and currently an active area of research (e.g., Zhou et al., 2019;159

Zanna & Bolton, 2021; Grooms et al., 2021; Beck & Kurz, 2021; Guan et al., 2022).160

Before moving to the next section, we highlight that a successful data-driven GWP161

for a typical low-resolution GCM is expected to represent the GWD missing in such a162

GCM compared to a GW-resolving model. This missing drag is a result of un-resolved and163

under-resolved GWs, which as mentioned earlier, we collectively refer to their drag as SGS164

GWD.165

In the rest of the paper, we will first introduce the high-resolution data and the 3 meth-166

ods used for SGS GWD extraction. We will then compare the results for the SGS vertical167
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momentum flux and GWD, followed by similar analyses for the SGS GWD associated with168

lateral momentum fluxes. Concluding remarks and discussions are in the last section.169

2 Data and methods170

2.1 WRF setup and data171

All data used in this study are generated using WRF, with initial conditions from re-172

analysis data and boundaries nudged towards reanalysis data. For the purpose of this work,173

the WRF model is modified according to Kruse et al. (2022) to support a deep configura-174

tion that runs up to 1 Pa (∼ 80 km). Two key modifications of the released WRF version175

4.1 model are made to achieve the high model-top here. First, low-order interpolators are176

used to prevent the over-/under-shooting of default higher-order interpolators, preventing177

the intersection of analysis levels near complex topography after horizontal interpolation.178

Second, the default lateral relaxation is replaced with grid-point nudging confined to the179

lateral boundaries for the model to run stably.180

For now, the library only includes the tropical regions (see the domains in Fig. 1). We181

have conducted a total of 20 simulations in 6 domains, where the dates of the week-long182

runs are chosen to sample the seasonal cycle, QBO phases, and precipitation distribution183

(Fig. 1c). Two of these simulations, one from the 2016 summertime all-ocean West Pacific184

(WP), which is in the westerly phase of QBO, and one from the 2020 wintertime land-ocean185

Indian Ocean (IO), which is in the easterly phase of QBO, are chosen as representative cases 1186

and 2, respectively. The first day of all simulations is treated as spin-up periods and not used187

in analyses. The horizontal domain size is 3600 km× 3600 km. The simulations are done at188

3 km grid spacing. There are 180 vertical model levels in total. The vertical grid spacing is189

close to 200 m near the lower boundary and gradually increases to a maximum of 600 m near190

the model top. For these tropical simulations, we largely use the “Tropical” WRF physics191

suite (e.g., Qiao et al., 2019), but with a different surface layer scheme. The parameterization192

set includes the WRF Single-Moment 6-class (WSM6) microphysics scheme (Hong & Lim,193

2006), the Yonsei University planetary boundary layer scheme (Hong et al., 2006), the194

RRTM (Rapid Radiative Transfer Model) for longwave and shortwave radiation (Iacono et195

al., 2008; Pincus et al., 2003), and the revised surface layer scheme developed in Jiménez196

et al. (2012). Note that no cumulus scheme is used given the 3 km grid spacing and, most197

importantly, no GWP is used.198

Both the initial condition and the boundary condition come from the fifth-generation199

European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data (ERA5).200

As we are using the same method as in Kruse et al. (2022) to nudge the simulation boundaries201

towards the ERA5 data (hence limiting the GW signals there), the model output data near202

the domain boundary (< 300 km) are neglected when conducting analysis for the GWs.203

The analysis domains are hence 3000 km× 3000 km.204

In addition to traditional prognostic variables (e.g., u, v, w, T , p, q), we also modified205

the WRF model to add diagnostic variables like 3D reflectivity and 3D diabatic heating,206

which are the key sources for the GWs in the tropics. The output frequency is every 15207

minutes in order to capture the life cycle of the convective cells.208

2.2 Filtering and coarse-graining209

Before introducing the 3 GWD extraction methods, we first discuss two operations that
are essential for almost any data-driven SGS modeling method: a) spatial filtering, denoted
with (̃·), and b) coarse-graining, denoted with (·). For any variable ϕ(x, t), spatial filtering
is defined as (e.g., Sagaut, 2006; Grooms et al., 2021; Guan et al., 2022)

ϕ̃(x, t) = G ∗ ϕ =

∫ ∞

−∞
G(r,∆)ϕ(x− r, t)dr, (1)
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𝑚𝑜𝑑𝑒𝑙	𝑡𝑜𝑝	~	80	𝑘𝑚
𝑹𝒆𝒈𝒊𝒐𝒏	 	𝑺𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏	𝑻𝒊𝒎𝒆 𝑹𝒆𝒈𝒊𝒐𝒏	 	𝑺𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏	𝑻𝒊𝒎𝒆

IO

2016/01
2017/05
2018/09
2020/01

MC

2017/05
2018/01
2020/01
2020/11

WP

2016/08
2017/11
2020/01
2020/12

AF
2017/05
2019/08
2020/01

EP
2016/04
2017/05
2020/01

SA 2017/05
2020/01

a) c)

b)

Figure 1. a) A snapshot of vertical velocity in a WRF simulation. b) Tropical regional domains

where the WRF simulations are conducted. c) The list of 20 week-long WRF simulations conducted

in this regional tropical channel setup, among which two representative cases are chosen (blue color

represents Case 1, and magenta color represents Case 2).

where G is the filter’s kernel, ∆ is the filter’s length scale, ∗ is the convolution operator, and
the integration is performed over the entire domain. Table 1 presents a list of commonly used
2D low-pass spatial filters. Then, any variable ϕ(x, t) can be separated into two components

ϕ = ϕ̃+ ϕ′ (2)

where ϕ̃ contains the large scales (larger than ∆) and ϕ′ containts the small scales (smaller210

than ∆).211

Two key points need to be clarified here. One is that following the convention used212

in recent literature (e.g., Sagaut, 2006; Grooms et al., 2021; Guan et al., 2022), we define213

“filtering” as an operation that only separates the scales but does not change the grid214

resolution (e.g., all 3 terms in Eq. (2) remain on the high-resolution grid). “Coarse-graining”,215

defined later in this section, is the operation that changes resolution, e.g., from the WRF’s216

high-resolution to a GCM’s low-resolution grid.217

Second, it should be highlighted that Eq. (2), while it appears analogous, is not the same218

as Reynolds decomposition in this application. This is because spatial filtering (Eq. (1)) is219

different from Reynolds averaging; unlike the latter, here, ϕ̃′ ̸= 0 and
˜̃
ϕ ̸= ϕ̃ depending on220

the choice of the filter function (Leonard, 1975; Clark et al., 1979; Sagaut, 2006; Alfonsi,221

2009). The importance of this distinction will become clear later in the Results section,222

and has been already pointed out in a number of other studies, e.g., on quantifying (and223

even determining the sign of) momentum exchange between atmosphere and ocean at small224

scales (e.g., Aluie et al., 2018; Rai et al., 2021).225

A major question in using Eq. (2) is the choice of filter type and size (length scale, ∆226

in Eq. (1)). As described below, in the 3 methods used here (and generally, in many other227

methods), Eq. (2) might be used to separate GWs from the large-scale flow, or to separate228
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Table 1. The 2D low-pass spatial filters used in this study (Eq. (1)). All filters are implemented

in spectral space using their transfer function (e.g., Guan et al., 2022). Here, r and k are coordinates

in physical space and spectral space, respectively, with r = (rx, ry), and k = (kx, ky). (̂.) is the

Fourier transform, and ∆ is the filter size as in Eq. (1).

Filter Kernel (physical space) Transfer function (spectral space) Length-scale (km)

G (r,∆) Ĝ (k,∆) =

∫ ∞

−∞
ei2πk·rG (r,∆) dr ∆

Gaussian
6

π∆2
exp

(
−6 |r|2

∆2

)
exp

(
−|k|2 ∆2

24

)
700 or 200

Top-hat (Box)


1

∆2
, if (rx, ry) ≤

∆

2
0, otherwise

sin( 12kx∆) sin
(
1
2ky∆

)(
1
2kx∆

) (
1
2ky∆

) 700 or 200

Sharp-spectral
sin
(
πr
∆

)
πr

{
1, if

(
kc − |k| ≥ 0

)
, kc =

π

∆
0, otherwise

700 or 200

the un-resolved and under-resolved GWs from the resolved GWs, or both. The choice of229

filter type (e.g., Gaussian, top-hat or box, sharp-spectral) can affect the extracted SGS230

terms, as already shown in a number of past studies including in the context of geophysical231

turbulence (e.g., Leonard, 1975; Zanna & Bolton, 2021; Beck & Kurz, 2021). Figure B1232

shows an example of the effect of filter type on the spectrum of zonal wind from our WRF233

simulations. Different low-pass filters (e.g., top-hat and sharp-spectral) have been used in234

previous studies to separate the GWs from the large-scale background (Kruse & Smith,235

2015; Matsuoka et al., 2020; Polichtchouk et al., 2022), though a systematic study on the236

effect of filter type and the potential implications for the extracted SGS terms is lacking.237

The question about filter size ∆ is even more challenging when it comes to systems238

without clear scale separation. While the (low) resolution of the GCMs provides a clear239

length scale, the issue of “effective resolution” makes this even further complicated. Even in a240

GCM with grid spacing dx, GWs with wavelength larger than 2dx may not be fully resolved,241

depending on the specifics of the numerical schemes used in the dynamical core of the242

targeted GCM. Skamarock (2004), through computing kinetic energy spectra, demonstrated243

that in WRF, GWs with scales up to 7dx remain under-resolved. There are also additional244

complications. For example, Stephan et al. (2022) argued that the separation scale ∆ for245

balanced and unbalanced motions, based on partitioning of total wave energies, varies with246

height. Finally, more complications arise on non-uniform grids (e.g., Aluie et al., 2018;247

Grooms et al., 2021), though this is not a problem in the current study as WRF’s grid is248

uniform.249

To systematically quantify the effects of filter type and sizes, here, we use 3 filter250

types and two length scales ∆ = 200 km and 700 km to help with understanding the scale-251

awareness when building a data-driven GWP in the future (Table 1). Note that these choices252

of ∆ are motivated by assuming that the low-resolution GCM has grid spacing of 100 km253

(∼ 1◦ resolution). ∆ = 200 km is based on the common choice for ∆ in the LES literature,254

i.e., twice the low-resolution model’s grid spacing (Pope, 2000; Sagaut, 2006; Guan et al.,255

2022). ∆ = 700 km is based on the effective-resolution study of Skamarock (2004); this is256

the filter size used for the presented results, unless indicated otherwise.257

Once resolved fluxes are quantified point-wise on the original grid, the effective fluxes258

within a hypothetical GCM grid cell must be computed on a coarse GCM grid. As mentioned259

before, we refer to this operation as coarse-graining. Admittedly, this terminology has260

not been uniformly adopted in the literature, though it has been recommended by several261
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recent studies (Grooms et al., 2021; Guan et al., 2022). Also, note that in some studies262

filtering and coarse-graining are done via just one operation, rather than two separate ones263

(e.g., Brenowitz & Bretherton, 2018; Yuval & O’Gorman, 2020). With all these issues in264

mind, here, we use one commonly used coarse-graining strategy: we simply truncate the265

wavenumbers greater than the cut-off wavenumber corresponding to the GCM grid spacing266

(100 km in this case). Note that in this study, for computational efficiency, both filtering and267

coarse-graining are done in the spectral (Fourier) space, and mirrored tiles are added around268

the original domain following Sun & Zhang (2016) to reduce problems with non-periodic269

boundaries.270

To better illustrate the effects of these filtering and coarse-graining operations, Fig. 2271

shows examples of the high-resolution WRF snapshots, and filtered (Gaussian with ∆ =272

700 km) and coarse-grained 3D velocity fields at 30 km height. The full u, v, w in the273

3000 km × 3000 km domain are shown in the left column. After the filtering operation,274

the velocity fields are separated into the large-scale (second column) and the perturbation275

(third column) components. We also apply coarse-graining operators to these fields (fourth276

and fifth columns) to transfer them to a 30 × 30 grid, similar to that of a GCM with a277

grid spacing of 100 km. From this plot, we notice systematic differences between horizontal278

winds and vertical winds. For the horizontal winds u and v, the large-scale background (ũ279

and ṽ) are much larger in amplitudes than the small-scale perturbations u′ and v′, whereas280

for the vertical velocity, the large-scale background is almost negligible, with all the signal281

at small scales w′. Moreover, notice that there can be significant differences between ϕ̃ and282

ϕ, which implies that ϕ̃′ ̸= 0 with the Gaussian filtering applied here.283

–8–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

-1
50

00

15
00

u
y(km)

φ
W

R
F

3k
m

si
m

ul
at

io
n

φ̃
F

ilt
er

ed
φ
′

P
er

tu
rb

at
io

ns
φ̃

F
ilt

er
ed

,c
oa

rs
e-

gr
ai

ne
d

φ
O

nl
y

co
ar

se
-g

ra
in

ed

-1
50

00

15
00

v
y(km)

-1
50

0
0

15
00

x
(k

m
)

-1
50

00

15
00

w
y(km)

-1
50

0
0

15
00

x
(k

m
)

-1
50

0
0

15
00

x
(k

m
)

-1
50

0
0

15
00

x
(k

m
)

-1
50

0
0

15
00

x
(k

m
)

−
20

−
10

01
0

2
0

m
/s

−
4

−
2

024

m
/s

−
0.

2

−
0.

1

0
.0

0
.1

0
.2

m
/s

F
ig
u
re

2
.

E
x
a
m
p
le
s
o
f
th
e
eff

ec
ts

o
f
lo
w
-p
a
ss

fi
lt
er
in
g
a
n
d
co
a
rs
e-
g
ra
in
in
g
o
p
er
a
to
rs

u
se
d
in

th
is

st
u
d
y.

T
h
e
sn
a
p
sh
o
ts

a
re

fr
o
m

C
a
se

1
,
o
n
A
u
g
u
st

3
rd

2
0
1
6
,
1
2
:0
0

U
T
C
,
a
t
3
0
k
m

h
ei
g
h
t.

A
G
a
u
ss
ia
n
fi
lt
er

w
it
h
∆

=
7
0
0
k
m

is
u
se
d
.
T
h
e
co
a
rs
e-
g
ra
in
in
g
is

d
o
n
e
b
y
tr
u
n
ca
ti
n
g
a
ll
w
av
en

u
m
b
er
s
g
re
a
te
r
th
a
n
th
a
t
co
rr
es
p
o
n
d
in
g
to

th
e
1
0
0
−

k
m

g
ri
d
.
φ

h
er
e
ca
n
b
e
ei
th
er

u
,v
,
o
r
w
.

–9–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

2.3 Gravity wave drag (GWD) extraction284

The three methods used for SGS GWD extraction are:285

1. Helmholtz decomposition method : This is a common practice in the GW literature for286

separating GWs from the background flow (e.g., Callies et al., 2014; Wei et al., 2022).287

The key idea is to divide the full flow into divergent and rotational components using288

Helmholtz decomposition, and then assume that the divergent component entirely289

consist of GWs. The drag derived using this method will be referred to as HELM D.290

291

2. Un- and under-resolved sub-grid scale (UUGS) method : This is the common practice292

in the LES community for computing the fluxes or drags that need to be parameter-293

ized (e.g., Leonard, 1975; Germano, 1992; Sagaut, 2006), and has been successfully294

used to provide training data for ML techniques for SGS modeling of a variety of geo-295

physical flows (e.g., Maulik et al., 2019; Zanna & Bolton, 2020; Yuval & O’Gorman,296

2020; Guan et al., 2022; Subel et al., 2022). The key idea here is to use spatial filtering297

and a rigorous mathematical derivation of the SGS terms. The drag derived using298

this method will be referred to as UUGS D.299

300

3. Reynolds stress method : This is an approach that has been used in both GW and LES301

communities (e.g., Clark et al., 1979; Kruse & Smith, 2015; Polichtchouk et al., 2022;302

Amiramjadi et al., 2022), and bears similarities to both Helmholtz decomposition and303

UUGS methods. The drag derived using this method will be referred to as REYN D.304

Next, we introduce these three methods in more details.305

2.3.1 Method 1: Helmholtz decomposition method306

Using Helmholtz decomposition to compute the divergent and rotational components307

of a global wind field has been well studied for decades (e.g., Chen & Wiin-Nielsen, 1976).308

However, for regional domains such as those of our WRF simulations, the Helmholtz de-309

composition is not uniquely defined, and boundary conditions must be imposed to obtain a310

unique solution (e.g., Lynch, 1988; Skamarock & Klemp, 2008). Therefore, how we provide311

the boundary conditions for the Helmholtz decomposition solver could affect the results312

(e.g., Cao et al., 2014). As we are nudging our WRF simulations towards ERA5 reanalysis313

data, the following novel procedure is proposed to avoid the boundary-condition dependency314

for the decomposition of our WRF simulations:315

a) First, the high-resolution WRF data are regridded to the 0.25◦ ERA5 grid within the316

WRF domain using conservative interpolation.317

b) Outside the WRF domain, we fill the global 0.25◦ grid with ERA5 reanalysis data at318

the same time as WRF outputs to construct a “synthetic” global field. Linear inter-319

polation of ERA5 reanalysis data is used if WRF outputs are at different times/levels320

compared to the reanalysis.321

c) Helmholtz decomposition using a widely employed public function (https://www.ncl322

.ucar.edu/Applications/wind.shtml) is applied to the newly constructed “global323

fields” to get the global rotational and divergent wind components. No boundary324

condition is needed in this approach. See Fig. S1 for an example of the global field325

and its rotational and divergence components.326

d) The derived global rotational wind components are then linearly interpolated back to327

the high-resolution WRF grid. This now serves as the large-scale background for the328

simulated flow.329

e) The divergent winds, mostly GWs, are then defined as deviations of the full flow330

in WRF simulations from the large-scale background we get in (d). Given that the331

divergent winds could contain large-scale Kelvin waves in the tropics, and that these332
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waves and large-scale GWs could be resolved by the GCM, an additional high-pass333

spatial filter is applied to remove the signals that could be fully resolved by the low-334

resolution GCM grid. Here, we use a Gaussian high-pass filter with filter size of335

700 km.336

The outcome of step (e) is the GW perturbations for the horizontal winds (u′
H and337

v′H). The subscript H here denotes the use of Helmholtz decomposition in the process. The338

vertical winds w are not involved here in the Helmholtz decomposition of horizontal winds.339

Given that vertical wind w is dominated by small scales and has negligible large-scale signals340

(Fig. 2), we simply apply a high-pass filter as in (e) to the full fields to get w′.341

The 3D zonal momentum flux due to SGS GWs is then defined as:

MF x = [MFxx MFyx MFzx ] (3)

where
MFxx = ρ̃ ˜u′

Hu′
H (4)

MFyx = ρ̃ ˜u′
Hv′H (5)

MFzx = ρ̃ũ′
Hw′. (6)

Note that while the Helmholtz decomposition separate the GWs and their fluxes, for the342

purpose of data-driven SGS modeling, we still need to further separate the SGS (un- and343

under-resolved) component. Here, in step (e), this is done using spatial filtering, which is344

also the approach used by Kruse & Smith (2015) in their analyses of GWs.345

The first two components in Eq. (3) are the zonal and meridional flux of zonal mo-346

mentum due to SGS GWs, respectively. They will also be referred to as lateral momentum347

fluxes. The last component in Eq. (3) is the vertical flux of zonal momentum due to SGS348

GWs.349

As mentioned earlier, for the purpose of training a data-driven parameterization that
could be coupled to a low-resolution GCM, momentum fluxes derived in Eq. (3) need to
be further coarse-grained to the targeted GCM grid. We note here again that the filtering
of MF components with ∆ = 700 km, then coarsening to the 100 km GCM grid, is a way
to include phase-averaged fluxes from GWs with horizontal scales that is under-resolved by
the 100 km GCM. The 3D SGS zonal momentum fluxes then become MF x,

MF x = [MF xx MF yx MF zx ]. (7)

Based on Eq. (7), the zonal SGS GWD after coarse-graining (GWDx = GWDxx+GWDyx+
GWDzx), which is what needed to train a data-driven GWP, can be calculated as the
divergence of MF x:

GWDxx = − 1

ρ̃

∂MF xx

∂x
(8)

GWDyx = − 1

ρ̃

∂MF yx

∂y
(9)

GWDzx = − 1

ρ̃

∂MF zx

∂z
. (10)

Note that Eq. (10), the vertical divergence of the vertical flux of zonal momentum due to350

SGS GWs, is often considered to be the dominant component in previous studies, and the351

only term that is conventionally represented in existing SGS parameterizations. This has352

been the case in the development of physics-based GWP, and in the past efforts focused353

on extracting SGS GWD from high-resolution simulations (e.g., Alexander et al., 2010;354

Matsuoka et al., 2020; Polichtchouk et al., 2022). Yet, as shown in Kruse et al. (2022), this355

is not always the case, and the lateral divergence of lateral momentum fluxes (Eqs. (8) and356

(9)) could also play a substantial role, as will be also shown here later in the Results section.357
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2.3.2 Method 2: UUGS method (UUGS_D)358

One can quantify the missing drag in a low-resolution GCM compared to a high-359

resolution GCM by filtering and coarse-graining of the governing equations of the latter,360

following the common practice in LES (e.g., Pope, 1975; Sagaut, 2006). Details of such361

derivation for zonal momentum are presented in Appendix A. This analysis shows that for362

example the zonal SGS GWD is363

GWDx = GWDxx +GWDxy +GWDxz

= − 1

ρ̃

∂

∂x

[
ρ̃(ũu− ũ ũ)

]
− 1

ρ̃

∂

∂y

[
ρ̃(ũv − ũ ṽ)

]
− 1

ρ̃

∂

∂z

[
ρ̃(ũw − ũ w̃)

]
.(11)

Note that the SGS GW momentum fluxes here can be interpreted as the difference between364

the filtered and coarse-grained flux in high-resolution simulations and the flux a coarse-365

resolution GCM would give based on the filtered and coarse-grained prognostic variables366

(see Appendix A).367

Similar to Eqs. (8)-(10), the zonal SGS GWD in Eq. (11) also has three components368

that are associated with SGS zonal, meridional, and vertical fluxes of zonal momentum,369

respectively, though here these components involve full fields rather than perturbations.370

However, using Eq. (2) for each component of the velocity vector, we can see that a Reynolds371

stress is one of the three components of each term in Eq. (11). For example, as shown in372

Eq. (A13), the Reynolds stress ũ′w′ is a part of the (but not the entire) total SGS vertical373

flux, ũw − ũ w̃. The other two components (e.g., ˜̃uw′) arise because as mentioned before,374

in spatial filtering and coarse-graining, terms like w̃′ are not necessarily zero (e.g., Pope,375

2000; Sagaut, 2006). Similar analysis can be done for GWDxx and GWDxy, showing the376

appearance of Reynolds stresses ũ′u′ and ũ′v′ as well as other stresses, including ˜̃uu′ and ˜̃vu′.377

Different from the HELM D method that only considers direct contributions of SGS GW378

perturbations to the GWD, the UUGS D method (Eq. (11)) also includes the cross-scale379

interactions between the SGS GWs and the resolved large-scale flow, which is also missing380

in the low-resolution GCMs (see the derivation in Appendix A).381

2.3.3 Method 3: Reynolds stress method382

In this approach, the three components of MF x are computed similar to a number of383

past studies (Kruse et al., 2016; Matsuoka et al., 2020; Amiramjadi et al., 2022); hence, the384

components of GWDx can be written as385

GWDxx = − 1

ρ̃

∂(ρ̃ ũ′u′)

∂x
(12)

GWDyx = − 1

ρ̃

∂(ρ̃ ũ′v′)

∂y
(13)

GWDzx = − 1

ρ̃

∂(ρ̃ ũ′w′)

∂z
, (14)

though often only GWDzx is considered. There are two ways to interpret these equations.386

First, one can obtain Eqs. (12)-(14) if only the Reynolds stresses in Eq. (11) are accounted387

for, and the other stresses, including cross-scale interactions are ignored. Second, Eqs. (12)-388

(14) are the same as Eqs. (8)-(10) if the GW perturbations are identified using filtering (e.g.,389

as u′ = u− ũ) rather than as the divergent component of the wind field.390
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Figure 3. Zonal-mean, time-mean zonal wind u for two representative WRF simulation cases.

The contour interval is 10 m, with dash lines implying zero and negative values. a) Case 1 with

westerly QBO winds; b) Case 2 with easterly QBO winds .

3 Results391

3.1 Zonal-mean, time-mean zonal wind in the WRF simulations392

Figure 3 shows the zonal-mean zonal wind averaged over the 5-day simulation period393

in the two representative cases (see Table 1). The QBO winds are clear in both plots394

(different phases), with a maximum of ∼ 20 m/s in the tropical stratosphere (∼ 25 km).395

The semiannual oscillation (SAO) can also be seen near the stratopause (∼ 60 km), with396

a much stronger wind amplitude than the QBO. The existence of westerly winds in the397

QBO and SAO at the Equator means they have greater angular momentum than that of398

the rotating Earth. This ‘superrotation’ cannot be explained by direct thermal forcing or399

symmetric circulations, but must arise from the effects of wave forcing. In our following400

analysis, we will mainly examine the zonal SGS GWD, as both QBO and SAO are mostly401

zonal circulations.402

3.2 Vertical flux of zonal momentum due to SGS GWs403

While GWs propagate both vertically and horizontally once excited, it is believed that404

the GWD due to the vertical fluxes are dominant and hence the single-column approximation405

is used in most GCMs. Here, we first examine the GWD due to SGS vertical fluxes of zonal406

momentum. For the representative cases, the zonal-mean, time-mean zonal SGS GWD407

associated with vertical fluxes is shown in Fig. 4. The left column shows zonal SGS GWD408

calculated using Eq. (10) with the HELM D method. The zonal SGS GWD in the middle409

column is based on the REYN D method (Eq. (14)), where the GW perturbations are410

derived with a low-pass Gaussian filter (∆ = 700 km) in Table 1. The right column is the411

zonal SGS GWD calculated using the UUGS D method (last term of Eq. (11)) with the412

same low-pass Gaussian filter.413

We can see that for these zonally averaged time-mean GWD patterns, all methods give414

fairly consistent results. This supports the simplifications made in many previous studies415

that only consider the Reynolds stress term as in Eq. (14) when they estimated the GWD.416

The agreement between HELM D and the two Gaussian filter-based methods also shows that417

the mean zonal SGS GWD associated with vertical fluxes is not very sensitive to the methods418

used for separating the GWs and the large-scale background flow. We also notice that at419

the upper stratosphere, close to the SAO region, the GWD is mostly positive (negative)420

when the zonal wind shear is positive (negative), showing that vertically propagating SGS421
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Figure 4. Zonal-mean, time-mean zonal SGS GWD (shading) due to the un-/under-resolved

(SGS) vertical fluxes derived using three methods for both representative cases (upper row: Case

1 , lower row: Case 2). Left column, a & d: Helmholtz decomposition method (HELM D). Middle

column, b & e: Reynolds stress method (REYN D). Right column, c & f: UUGS method (UUGS -

D). As in Fig. 3, lines show the mean zonal winds, but with a contour interval of 20 m/s.

GWs help maintain and drive the zonal wind there (Alexander et al., 2010). Moreover, for422

the QBO region, the maximum drag is below the wind maximum (e.g., Case 1 in Fig. 4),423

implying the role of SGS GWs in the downward propagation of the zonal winds.424

While the mean zonal SGS GWD is the most important factor for maintaining the time-425

mean, zonal-mean momentum budget (hence the QBO and SAO), we need instantaneous426

snapshots of SGS GWD over the whole domain for developing data-driven GWP schemes.427

However, the picture is very different if we examine the zonal SGS GWD for each GCM428

column calculated based on different methods at a randomly chosen time. Figure 5 shows429

two horizontal snapshots in Case 1 and Case 2 for the SGS vertical fluxes of zonal momentum430

at 30 km (QBO region) with the same methods used in Fig. 4. While the SGS vertical431

fluxes of zonal momentum estimated using HELM D and the REYN D methods might show432

some similarities, they significantly differ from what we find using the UUGS method. The433

UUGS method in general gives stronger amplitude for the GWD. Also, additional spatial434

variability not seen by the HELM D and REYN D methods can be found in the SGS GWD435

extracted using the UUGS method.436

Figure 6 shows the probability density functions (PDFs) for the zonal SGS GWD as-437

sociated with vertical fluxes using these three methods, as another way of presenting the438
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Figure 5. Snapshots of zonal SGS GWD due to vertical fluxes at 30 km height calculated

using three methods. Upper row: Case 1. Lower row: Case 2. Left column, a & d: Helmholtz

decomposition method
1

ρ̃

∂ρ̃ũ′
Hw′

∂z
. Middle column, b & e: Reynolds stress method

1

ρ̃

∂ρ̃ũ′w′

∂z
.

Right column, c & f: UUGS method − 1

ρ̃

∂

∂z

[
ρ̃(ũw − ũ w̃)

]
.

differences among them. While the PDFs we obtain using the HELM D and REYN D439

methods are fairly similar, the PDFs from the UUGS method often have a clearly wider440

distribution. For both cases studied here, we find that the GWD from the UUGS method441

in general has higher variability, both temporal and spatial, compared with the other meth-442

ods, that are based on the Reynolds stress term alone (e.g., Eq. (14)), which is one of the443

three components of the total stress estimated in the UUGS method (see Appendix A). The444

degree of differences in PDFs depend on the case and height. For example, the differences445

are smaller at 40-50 km for Case 1, possibly due to the weak zonal winds there (Fig. 4).446

So far, we have discussed the two representative cases. The same conclusions are reached447

if we examine the other cases, or all cases together. Figure S3 is the same as Fig. 6, but448

with data from all 20 cases combined.449

To sum up, for the zonal SGS GWD due to vertical fluxes, the 3 methods studied450

here provide fairly consistent time-mean, zonal-mean results. However, to develop data-451

driven GWP schemes, we need snapshots of GWD at specific time and locations. For452

such snapshots, the GWD extracted using the UUGS D method has additional spatial and453

temporal variability, compared to the GWD from the other two methods that are based454

on the Reynolds stress alone. One reason for this difference is that the UUGS D method455

accounts for more components of the stress that represent the interactions between the456

missing GWs and large-scale background, which are mostly ignored in the HELM D and457

REYN D methods. Whether this additional variability would be efficiently learned using the458

ML algorithm and help improve the performance of the targeted GCM should be carefully459

investigated in future studies (see Section 4 for further discussions).460
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Figure 6. Probability density function (PDF) of zonal SGS GWD due to vertical fluxes cal-

culated using three methods at different heights. Upper row: Case 1. Lower row: Case 2. Left

column, a & d: 20-30 km. Middle column, b & e: 30-40 km. Right column, c & f: 40-50 km. Note

the differences in the x-axes. See Fig. S2 for PDFs of the meridional SGS GWD due to vertical

fluxes. See Fig. S3 for the PDFs of data from all 20 cases combined.

3.3 Horizontal flux of zonal momentum due to SGS GWs461

In addition to the SGS vertical fluxes, the SGS horizontal momentum fluxes associated462

with GWs could also lead to zonal SGS GWD (see Eqs. (11)-(13)). However, these horizontal463

fluxes have received much less attention in previous studies and are totally neglected in most464

GCMs’ GWP schemes with the single-column approximation. In recent years, ignoring the465

lateral propagation of GWs has been recognized as a key weakness of state-of-the-art GWP466

schemes. Yet, quantitative studies on the importance of SGS horizontal fluxes have been467

limited to a few case studies (e.g., G. J. Shutts & Vosper, 2011; Kruse et al., 2022). With468

all 3 methods introduced in Section 2, we can also calculate the SGS horizontal fluxes of469

zonal momentum to quantify and gain insight into the role of lateral propagation of SGS470

GWs in these high-resolution simulations.471

To illustrate the importance of SGS lateral fluxes, we first examine the time-mean,472

zonal-mean effects of adding divergence of the horizontal fluxes of zonal momentum in the473

calculation of zonal SGS GWD. Figure 7 shows GWD calculated using only SGS vertical474

fluxes (last term of Eq. (11)) vs. the total GWD calculated using the entire Eq. (11) and475

their differences, i.e., the contribution from the horizontal fluxes. We see that the zonal476

SGS GWD associated with the vertical flux, which is largely due to vertical propagation of477

GWs, dominates the results. This is consistent with the previous understanding that most478

of the GWs propagate upward, which is also the basis for the single-column approximation.479

However, in some critical regions, the role of lateral fluxes is more evident. For example,480

the amplitude of the GWD due to lateral momentum fluxes is comparable to the GWD due481

to vertical fluxes near the QBO region (e.g., at 30 km level in Case 1, 35 km in Case 2). As482
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Figure 7. Zonal-mean, time-mean zonal SGS GWD due to only the vertical fluxes, total fluxes,

and the lateral fluxes calculated using the UUGS D method (Eq. (11)). Left column: Only the

vertical component − 1

ρ̃

∂

∂z

[
ρ̃(ũw − ũ w̃)

]
. Middle column: All terms − 1

ρ̃

∂

∂x

[
ρ̃(ũu− ũ ũ)

]
−

1

ρ̃

∂

∂y

[
ρ̃(ũv − ũ ṽ)

]
− 1

ρ̃

∂

∂z

[
ρ̃(ũw − ũ w̃)

]
. Right column: Only the first two terms, i.e., only the

horizontal fluxes. As in Fig. 3, lines show the mean zonal winds, but with a contour interval of 20

m/s.

another example, in Case 2, at levels below the SAO (∼ 50 km), it is clear that the lateral483

momentum fluxes dominate the GWD there, even leading to a change of direction of the484

total zonal SGS GWD.485

Examining the PDFs of zonal SGS GWD, which highlights its variability, further shows486

the importance of the SGS horizontal fluxes. Similar to Fig. 6, Fig. 8 shows, separately,487

the PDFs of the GWD associated with SGS zonal fluxes, SGS meridional fluxes, and SGS488

vertical fluxes. We find that the amplitudes of GWD from these 3 components are fairly489

close, and there is no evidence of one component dominating over the other two everywhere.490

To reconcile this with the zonal-mean, time-mean results (Fig. 7), we point out that the491

mean GWD associated SGS horizontal fluxes suffers more from cancellations due to opposite492

lateral propagation directions of GWs, whereas most vertically propagating GWs go upward.493

However, we emphasize again that any GWP scheme would need to feed instantaneous GWD494

to the GCMs; therefore, to develop a data-driven GWP scheme, the instantaneous patterns495

of GWD have to be derived from the high-resolution data.496
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Figure 8. Probability density function (PDF) of zonal SGS GWD due to SGS zonal (blue),

meridional (red), and vertical (black) momentum fluxes for both cases. Upper row: Case 1; Lower

panel: Case 2. Left column, a & d: 20-30 km. Middle column, b & e: 30-40 km. Right column, c

& f: 40-50 km. Note the difference in the x-axes.

So far, we have used the UUGS D method to calculate the GWD due to SGS horizontal497

fluxes (Figs. 7-8). Compared to the vertical fluxes shown earlier, calculations of SGS GWD498

due to horizontal momentum fluxes have a much stronger sensitivity to the choice of the499

method. Figure 9 shows the time-mean, zonal mean SGS GWD associated with the merid-500

ional fluxes of the zonal momentum, calculated using HELM D, REYN D, and UUGS D501

(the second term in Eq. (11)), respectively. Different from Fig. 4, the results here strongly502

depend on the method, even after averaging over time (simulation period) and space (zonal503

direction). This suggests that if we want to include the lateral propagation of GWs in the504

data-driven GWP schemes, then we must carefully examine the GWD extraction methodol-505

ogy. The PDFs in Fig. 10 show the same story. The SGS GWD induced by the lateral fluxes506

are much larger if calculated using the UUGS method compared to the other two (note the507

logarithmic color bar). It is clear that drag due to Reynolds stress is not the dominant term508

anymore when we consider GWD due to the SGS lateral fluxes. One explanation for this is509

that there are fundamental differences between the scales and amplitudes of the horizontal510

winds (u, v) and the vertical winds (w), as already shown in Fig. 2. The vertical velocity511

is dominated by small-scale features with negligible signal at the resolved scales in GCMs,512

which results in weak interactions between the resolved scales and the small scales. On the513

contrary, the horizontal winds are dominated by winds at the resolved scales, which means514

much stronger interactions between the resolved scales and the unresolved scales, and hence515

the large differences between UUGS D and REYN D.516

Moreover, while Figs. 9 and 10 suggest similarities between the SGS GWD associated517

with the SGS horizontal fluxes calculated using the HELM D and the REYN D methods518

(Fig. 9a and 9b), substantial differences can exist even between the SGS GWD patterns519

extracted using these two methods. Figure 11 shows the correlation between instantaneous520
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Figure 9. Zonal-mean, time-mean zonal SGS GWD, similar to Fig. 4, but for the GWD due

to the un-/under-resolved (SGS) horizontal fluxes. Only the meridional direction is shown here;

examining the zonal direction shows a similar story.

GWD calculated using the HELM D and REYN D method. For the SGS GWD due to521

vertical fluxes, as already discussed, there is a good match between these two methods.522

However, for SGS GWD due to the horizontal fluxes, the correlation is fairly weak, even523

though mathematically similar expressions are used for GWD in both methods. These524

results, again, show the high sensitivity of the lateral momentum fluxes and the resulting525

GWD to the details of the extraction method.526

So far, we have discussed SGS horizontal fluxes in the two representative cases. Again,527

we reach the same conclusions if other cases, or all cases together, are examined. Figure S5528

is the same as Fig. 10, but with data from all 20 cases combined.529

3.4 Sensitivity to the filter type/size and the GCM resolution530

Until now, we have presented all the analyses using the Gaussian filter and ∆ = 700 km.531

Here, we explore the effects of using a smaller filter size (∆ = 200 km) and two other filter532

types: top-hat (box) and the sharp-spectral. The kernels and transfer functions of these 3533

low-pass filters are listed in table 1). It should be noted that a few novel filters have been534

recently developed (e.g., Aluie et al., 2018; Grooms et al., 2021) to handle complex model535

grids such as the non-uniform ones (see the footnote in Appendix A). However, with the536

uniform 3 km grid spacing in our WRF simulations, these 3 commonly used filters serve the537

purpose of this study.538
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Figure 10. Same as Fig. 6, but for the un- and under-resolved zonal GWD due to SGS meridional

momentum fluxes. Note the difference in the x-axes. See Fig. S4 for the PDFs of zonal GWD due

to the SGS zonal momentum fluxes. See Fig. S5 for the PDFs of data from all 20 cases combined.

As mentioned earlier, Fig. B1 shows the power spectrum of the zonal winds before539

and after these low-pass filters are applied. This figure demonstrates the overall similarities540

between the outcome of the Gaussian and top-hat filters, at least up to the filtering scale, and541

major differences with the outcome of the sharp-spectral filter. Figure B2 shows snapshots542

of the SGS vertical momentum flux (Reynolds stress and total stress) extracted using these543

3 filters and ∆ = 700 km. Again, we see that the Gaussian and top-hat filters overall544

yield fairly similar results. The outcomes of the sharp-spectral filter on the other hand,545

show differences in both amplitude and pattern, though the degree of difference is more546

pronounced for the Reynolds stress.547

All the results shown so far are with filter size ∆ = 700 km, coarse-grained to the GCM548

resolution of 100 km. However, this choice of 700 km is rather subjective, as there is no well-549

defined physical scale separation for GWs. Moreover, the appropriate filtering scale depends550

on the capability of a given GCM to resolve the GWs larger than the GCM’s grid spacing,551

i.e., it depends on “effective resolution” of the GCM, which in turn depends on the GCM’s552

numerical schemes and choices of grid-scale filters, like hyperdiffusion (e.g., Klaver et al.,553

2020). The ∆ = 700 km used here is based on studies showing that the effective resolution554

of WRF for GWs is 7 times the grid spacing (Skamarock, 2004). Admittedly, ∆ should be555

chosen based on the effective resolution of the target GCM, not that of the GW-resolving556

model. To examine the sensitivity of the results to this choice, below we also present analysis557

with filtering scale that is twice the GCM grid spacing (i.e., ∆ = 200 km), which is based558

on the LES literature (Pope, 2000; Sagaut, 2006; Guan et al., 2022). Furthermore, with the559

increase in computing power, some GCMs now have grid spacing of 0.5◦ or even smaller.560

Therefore, below, we also show results with for a GCM with the grid spacing of 30 km.561
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Figure 11. Joint PDFs between the SGS GWD calculated using the HELM D and REYN D

methods for Case 1. a) GWD due to SGS vertical fluxes and b) GWD due to SGS meridional

fluxes. The R-squared value is shown to measure the correlation between these two methods.

Figure 12 shows PDFs of the GWD from the SGS zonal, meridional, and vertical562

fluxes for 3 sets of choices: GCM grid spacing of 100 km and ∆ = 700 km (left column)563

and ∆ = 200 km (middle column), and GCM grid spacing of 30 km and ∆ = 200 km564

(right column). The second choice is meant to show the influences of effective resolution565

change while the third choice is meant to show what happens with higher-resolution GCMs.566

Although one might expect smaller SGS GW wind perturbations with reduced ∆, the zonal567

SGS GWD may not be necessarily reduced, as less averaging of the momentum flux is also568

applied with a smaller ∆. As a result, in both cases, for the zonal SGS GWD associated569

with vertical fluxes (solid lines), we find larger values when the filter length scale is reduced570

(compare the tails of the PDFs in the left and middle columns). The zonal SGS GWD571

associated with horizontal fluxes may become larger or smaller depending on the case.572

Moreover, Fig. 12 also shows that the SGS GWD is not reduced with a smaller GCM573

grid spacing, and in fact, might become even larger in some cases due to the effects of574

increased gradient(see panel f), which suggest the need of 3D GWP even in a high-resolution575

GCM.576
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4 Summary and Discussion577

The use of ML algorithms for developing data-driven SGS parameterization of GWs has578

gained attention in recent years, given the increasing availability of data from observations579

and high-resolution GW-resolving simulations, and a few successful case study and emulation580

attempts (e.g., Matsuoka et al., 2020; Chantry et al., 2021; Espinosa et al., 2022; Amiramjadi581

et al., 2022). Powerful ML techniques have recently emerged for data-driven weather/climate582

modeling, suggesting that concerns such as stability, lack of physical constraints, learning in583

the small-data regime, and interpretability could be addressed, at least to some degree, in584

the near future (e.g., Beucler et al., 2021; Dunbar et al., 2021; Guan et al., 2023; Mamalakis585

et al., 2022; Subel et al., 2022; Pathak et al., 2022). However, the best ML algorithm is586

just as good as the data used in the training. As a result, a major remaining challenge in587

developing data-driven GWP schemes (and in general, any data-driven parameterizations)588

that has not received much attention is extracting the SGS GWD from high-resolution589

simulations. This GWD is what needs to be learned in terms of the resolved flow during590

training.591

As the first step in addressing this challenge, in this study, we have generated a library592

of 20 tropical convection-permitting WRF simulations and systematically compared the593

sensitivity of the extracted under- and un-resolved (SGS) 3D GWD to the choices of methods594

and parameters. Three methods from the GW and LES literature have been examined595

(HELM D, UUGS D, and REYN D). The key conclusions obtained from these comparisons596

are :597

1. For GWD due to SGS vertical momentum fluxes, all three methods give consistent598

time-mean, zonal-mean results. Yet, if we consider snapshots at different times and599

locations, the GWD from the UUGS D method has additional spatial and tempo-600

ral variability compared to the GWD in other methods . This additional variability601

is partially due to the fact that the UUGS D method includes cross-scale interac-602

tions between the SGS GWs and the large-scale background flow resolved by a GCM.603

Given that a GWP needs to provide patterns of GWD at each time step of the GCM,604

correctly representing the variability of the GWD in the training dataset could be605

essential. It is unknown yet whether this will improve the performance of the tar-606

geted GCMs in terms of conventional metrics (e.g., QBO statistics). It is possible607

that additional variability may provide some of the same benefits as stochastic pa-608

rameterization in ensemble weather and climate prediction (G. Shutts, 2005; Palmer609

et al., 2005; Lott et al., 2012).610

2. There are a growing number of studies showing that the lateral propagation of GWs611

plays a significant role in the resolved flow’s momentum budget, and could even re-612

verse the direction of GWD for certain regions and cases (e.g., Kruse et al., 2022).613

Our comprehensive analysis of these lateral effects support this conclusion. The SGS614

GWD associated with lateral momentum fluxes has comparable amplitudes to the615

SGS GWD associated with vertical momentum fluxes. This is true not only when the616

spatiotemporal variability is considered, but also in the time-mean, zonal-mean GWD.617

Our findings strongly suggest the need for including the effects of SGS horizontal fluxes618

in the GWP schemes. However, there are practical implementation challenges for a619

truly 3D scheme in GCMs (Y. H. Kim et al., 2021). Therefore, further tests, both620

offline and online (coupled), are needed to see if 3D GWP schemes improve the cir-621

culation variability in GCMs. That said, there is existing evidence for SGS modeling622

of other physical processes that would benefit from including neighboring columns,623

providing further incentive for considering horizontally non-local parameterizations624

(e.g., Wang et al., 2022).625

3. Adding to the compelxity, we have found that the GWD due to SGS lateral mo-626

mentum fluxes could be sensitive to the methods used to extract them. Even the627

time-mean, zonal-mean GWD could be very different when different methods are628

used. The instantaneous GWD amplitudes from the UUGS D method could be much629
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larger than those from the REYN D method due to the strong cross-scale interactions630

between SGS GWs and the horizontal background flow that could be resolved by the631

GCMs. This suggests that to include the SGS GWD due to the horizontal fluxes in632

the data-driven GWP schemes, further research needs to be done on the extraction633

methodology.634

4. The sensitivity of extracted SGS GWD to the length scale (∆) of the filtering opera-635

tion and the horizontal resolution of the GCM are also studied. Our results suggest636

that both the effective resolution of a GCM and its grid spacing have significant in-637

fluences on the calculated SGS GWD (Fig. 12). Interestingly, within the explored638

GCM grid spacing (30 km − 100 km), the amplitude of extracted SGS GWD does639

not decrease as the GCM’s horizontal grid spacing is reduced, suggesting the need for640

GWP schemes in the foreseeable future even as the GCM resolutions are increased.641

Given the sensitivity of the results to the filter size, the grid spacing of the GCM and642

its “effective” resolution might be used as inputs to design scale-aware data-driven643

GWPs schemes.Also note that here we have only examined the effects of the GCMs’644

horizontal resolution. The vertical resolution of GCMs has a major impact on how645

well the GWs are resolved and the resulting GWD (Skamarock et al., 2019). This646

issue needs to be fully investigated in future work.647

All these findings point to the next two steps needed in developing data-driven GWP648

schemes. One step is to further work on developing theoretical and mathematical frameworks649

to separate the GWs from the background flows, and quantifying the under- and un-resolved650

fluxes for a given GCM. The others step is to use the extracted GWD from this library using651

different methods and choices, train ML algorithms such as deep neural networks, couple652

them to GCMs such as WACCM, and investigate the large-scale circulation variability, e.g.,653

of the QBO. With proper metrics of the large-scale variability (e.g., period and amplitude of654

QBO), we could potentially gain insight into which method and choice of filter type/size lead655

to a GWP scheme that produces the most realistic circulation, compared to observations.656

However, there could be several practical challenges in doing this. First, it may not be657

easy to isolate the performance of the GWP scheme from biases in the GCMs’ large-scale658

circulation and other parameterizations, e.g., that of moist convection, which is the source659

of convective generated GWs. That said, some of these biases, such as the latter one, could660

be corrected for the purpose of this analysis.661

Second, the traditional single-column approach uses inputs (resolved flow) and outputs662

(GWD) only from the same GCM column and does not require any cross-column commu-663

nication, which works well with the GCMs’ parallelization. However, accounting for the664

non-local effects, i.e., inputs from neighboring columns and possibly memory (history), can665

require cross-processor communications, which come with a large computational overhead.666

Recently, there has been observational evidence showing that the majority of GW momen-667

tum fluxes are typically found to be at distances closer than 400 km from convection sources668

(Corcos et al., 2021). This is encouraging as it suggests that a small stencil of neighboring669

columns (which could be computationally affordable) might be enough to account for the670

non-local effects and lateral SGS momentum fluxes. It should be noted that the outputs671

of the WRF simulations are saved such that information about convection and history is672

available for such future investigations.673

We also highlight that given the sensitivity of the SGS GWD to the filter size (∆), the674

scale-awareness of the data-driven GWP scheme is critical. One potential approach is to675

create SGS GWD datasets for different filter sizes and GCM grid spacing and combine them676

all together in a training set, with the filter length scale and the GCM grid spacing serving677

as the inputs to the ML algorithm too.678

Finally, we aim to further validate and expand the library. All WRF simulations used679

in this study have a grid spacing of 3 km. While 3 km is enough to resolve most of the680

GW spectra, it is not adequate to entirely resolve convection, which is the key source of681
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the GWs in the tropics (Jeevanjee, 2017; Bramberger et al., 2020). We have conducted682

limited simulations with 1 km and 3 km grid spacing at periods when observations from683

super-pressure balloons are available. We will use these simulations to examine the effect of684

resolution and validate the GW fluxes in the library. Also, currently our WRF simulations685

are limited to the tropics. In the future, we aim to extend the library to the mid-latitude686

and even polar regions. We also plan to conduct pseudo-global warming experiments to687

examine the response of the GWD to climate change and to expand the library to include688

training sets for transfer learning, such that generalizable data-driven GWP schemes could689

be developed (Guan et al., 2022; Subel et al., 2022).690

Appendix A UUGS Drag Extraction691

To better illustrate the GWD paramterization problem, here we use the zonal mo-692

mentum equation as an example. The flux form of the zonal momentum equation in the693

atmosphere, without any approximation, can be written as follows in Cartesian coordinates:694

∂(ρu)

∂t
+

∂(ρuu)

∂x
+

∂(ρuv)

∂y
+

∂(ρuw)

∂z
= −∂p

∂x
+ ρfv + ρFx, (A1)

where (u, v, w) is the 3D wind fields; p is pressure; ρ is density; f is the Coriolis parameter;695

Fx is the friction and/or numerical diffusion term.696

The problem of the parameterization of GWs and/or other sub-grid scale physical
processes arises because GCMs have only a limited horizontal resolution (typically with a
grid spacing on the order of 100 km). Therefore, they can only resolve the large-scale part
of each physical variable. Let’s use ϕG to denote the variable ϕ in the GCM, then the zonal
momentum equation in the GCM would be:

∂(ρGuG)

∂t
+
∂(ρGuGuG)

∂x
+
∂(ρGuGvG)

∂y
+
∂(ρGuGwG)

∂z
= −∂pG

∂x
+ρGfvG+ρGFG

x +XG
x (A2)

where XG
x is SGS zonal drag in the GCM due to its limited resolution. The problem is then697

to find XG
x from high-resolution simulation data generated, for example, by WRF.698

As introduced in the main text, We use (̃.) to represent the spatial filtering process,
which largely removes/reduces signals that have horizontal scales smaller than some specific
value (∆ in Eq. (1)) . With this definition, all variables can be partitioned into the large-scale
background and the perturbation parts:

ϕ = ϕ̃+ ϕ′. (A3)

Note that ϕ, ϕ̃, and ϕ′ have the same resolution. In a GCM, only the large-scale part ϕ̃ can
be captured. An additional coarse-graining process, denoted as (), is required to transfer
this large-scale part to the GCM grid, so that,

ϕG ≈ ϕ̃ (A4)

Applying Eq. (A4) to Eq. (A2) yields

∂(sρ̃ sũ)

∂t
+

∂(sρ̃ sũsũ)

∂x
+

∂(sρ̃ sũ sṽ)

∂y
+

∂(sρ̃ sũ sw̃)

∂z
= −∂sp̃

∂x
+ sρ̃fsṽ + sρ̃ĎF̃x +XG

x . (A5)

To get an expression for XG
x , we can apply both spatial filtering and coarse-graining

operators to each term in the original Eq. (A1), and assume that the operations are com-
mutative 1, which means, e.g.,

∂̃ϕ

∂x
=

∂
s

ϕ̃

∂x
. (A6)

1 This assumptions is valid in our study. The three filters used here commute with spatial derivatives if

applied on a uniform grid, which is the case for the WRF’s horizontal grid. No filtering or coarse-graining
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Then we get

∂(ρ̃u)

∂t
+

∂(ρ̃uu)

∂x
+

∂(ρ̃uv)

∂y
+

∂(ρ̃uw)

∂z
= −∂sp̃

∂x
+ ρ̃fv + ρ̃Fx. (A7)

Next, we assume that density perturbations are negligible, ρ̃ >> ρ′, and that only the
vertical gradient of ρ̃ is non-negligible, so that ρ is a function of height only:

ρ(x, y, z, t) ≈ ρ̃(z). (A8)

Then, for any variable ϕ, given that both spatial filtering and coarse-graining operate only
on the horizontal levels, we obtain

ρ̃ϕ ≈ ˜̃ρϕ = sρ̃
s

ϕ̃ (A9)

Subtracting Eq. (A7) from Eq. (A5), and applying Eq. (A9), we finally get:699

XG
x =

∂(sρ̃sũsũ)

∂x
+

∂(sρ̃sũ sṽ)

∂y
+

∂(sρ̃sũ sw̃)

∂z
−
[
∂(ρ̃uu)

∂x
+

∂(ρ̃uv)

∂y
+

∂(ρ̃uw)

∂z

]
= − ∂

∂x

[
sρ̃(ũu− sũsũ)

]
− ∂

∂y

[
sρ̃(ũv − sũ sṽ)

]
− ∂

∂z

[
sρ̃(ũw − sũ sw̃)

]
.

(A10)

Similarly, for the meridional momentum equation, we obtain

XG
y = − ∂

∂x

[
sρ̃(ṽu− sṽsũ)

]
− ∂

∂y

[
sρ̃(ṽv − sṽ sṽ)

]
− ∂

∂z

[
sρ̃(ṽw − sṽ sw̃)

]
(A11)

Note Eq. (A10) is in the density-weighted form as in Eq. (A2). If we were to consider
the drag forces terms directly, then the density factor shall be removed, leading to

GWDx = − 1

ρ̃

∂

∂x

[
ρ̃(ũu− ũ ũ)

]
− 1

ρ̃

∂

∂y

[
ρ̃(ũv − ũ ṽ)

]
− 1

ρ̃

∂

∂z

[
ρ̃(ũw − ũ w̃)

]
, (A12)

which is the equation used in the main text.700

The terms in brackets on the right-hand side of Eq. (A10) are differences between the
filtered and coarse-grained flux and the flux calculated based on the filtered, coarse-grained
prognostic variables. We will refer to these terms as the total SGS fluxes. They can be
further decomposed (Leonard, 1975; Germano, 1986; Sagaut, 2006), e.g.,

ũw − sũ sw̃

= ˜(ũ+ u′)(w̃ + w′)− ˜(ũ+ u′) ˜(w̃ + w′)

=
(˜̃uw̃ − ˜̃u ˜̃w)︸ ︷︷ ︸
Leonard stress

+
(˜̃uw′ + ũ′w̃ − w̃′ ˜̃u− ũ′ ˜̃w)︸ ︷︷ ︸

cross stress

+
(
ũ′w′ − ũ′ w̃′

)
︸ ︷︷ ︸
Reynolds stress

(A13)

We see that the Reynolds stress is one of the three components of the total SGS flux. The701

total SGS flux accounts for interactions among all scales, including scales resolved by the702

GCMs with the un- and under-resolved scales. The importance of Leonard term and cross703

term has long been shown in studies of turbulent flows (e.g., Leonard, 1975; Galmarini et al.,704

2000). We also note that the Reynolds term here based on spatial filtering is different with705

the traditionally temporal-based Reynolds average in which the flow is decomposed into a706

mean and fluctuating components. As pointed in Aluie et al. (2018), the time-mean flow is707

not synonymous with large-scale flow, nor does a temporal fluctuation directly correspond708

to a characteristic length scale.709

is done in the vertical direction (where WRF’s grid is non-uniform). Note that on non-uniform grids, such

as GCMs’ grids, special treatments are needed; see, e.g., Grooms et al. (2021).
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Appendix B The effects of filter type710

Figures B1 and B2 show the spectra and snapshots of zonal wind and SGS vertical flux711

when the 3 different filters are applied with the same ∆. Note that because our WRF regional712

domain is not periodic, we have used mirrored tiles to reduce the boundary effects. Still,713

Fourier-based filters such as the sharp-spectral filter might suffer from Gibbs oscillations714

and give non-physical results.715
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Figure B1. Example of the power spectrum of the zonal wind from the 3-km WRF simulations

before and after the low-pass filtering using different kernels (with length scale ∆ = 200 km). The

black line shows the spectrum before filtering, while the blue, red, and green lines show the the

spectrum after applying the Gaussian, top-hat (box), and sharp-spectral filters. Note that the

dashed green line coincides with the black line for scales smaller than 200 km. The oscillations in

the red line are the well-known ringing effects of the top-hat filter (e.g., Pope, 1975; Zhou et al.,

2019).
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Figure B2. Snapshots of the SGS vertical momentum fluxes, calculated using the 3 different

filters for Case 1 (at 40 km height). Top row: the Reynolds stress, ũ′w′. Bottom: the total SGS

stress, ũw − ũ w̃). The filter size is ∆ = 700 km.
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Open Research Section716

The ERA5 data can be downloaded from https://cds.climate.copernicus.eu/.717

The WRF model is available here https://www2.mmm.ucar.edu/wrf/users/download/718

get source.html. The data and code for all the analysis in the main text is available719

at https://doi.org/10.5281/zenodo.7439397720
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Abstract15

Atmospheric gravity waves (GWs) span a broad range of length scales. As a result, the16

un-resolved and under-resolved GWs have to be represented using a sub-grid scale (SGS)17

parameterization in general circulation models (GCMs). In recent years, machine learning18

(ML) techniques have emerged as novel methods for SGS modeling of climate processes.19

In the widely-used approach of supervised (offline) learning, the true representation of the20

SGS terms have to be properly extracted from high-fidelity data (e.g., GW-resolving simula-21

tions). However, this is a non-trivial task, and the quality of the ML-based parameterization22

significantly hinges on the quality of these SGS terms. Here, we compare three methods23

to extract 3D GW fluxes and the resulting drag (GWD) from high-resolution simulations:24

Helmholtz decomposition, and spatial filtering to compute the Reynolds stress and the full25

SGS stress. In addition to previous studies that focused only on vertical fluxes by GWs, we26

also quantify the SGS GWD due to lateral momentum fluxes. We build and utilize a library27

of tropical high-resolution (∆x = 3 km) simulations using weather research and forecasting28

model (WRF). Results show that the SGS lateral momentum fluxes could have a significant29

contribution to the total GWD. Moreover, when estimating GWD due to lateral effects,30

interactions between the SGS and the resolved large-scale flow need to be considered. The31

sensitivity of the results to different filter type and length scale (dependent on GCM res-32

olution) is also explored to inform the scale-awareness in the development of data-driven33

parameterizations.34

Plain Language Summary35

Gravity waves (GWs) present a challenge to climate prediction: waves on scales of36

O(1 km) to O(100 km) can neither be systematically measured with conventional obser-37

vational systems, nor properly represented (resolved) in operational climate models, which38

have a typical grid spacing on the order of 100 km. Therefore, in these climate models,39

small-scale GWs must be parameterized, or estimated, based on the resolved (large-scale)40

flow. The primary effects of these small-scale waves on the resolved flow is the so-called41

sub-grid scale (SGS) drag (GWD), resulting from the propagation and breaking of these42

waves. Existing SGS parameterizations for GWD in general circulation models (GCMs)43

are all highly simplified; e.g., they only account for vertical propagation of GWs. With44

growing computing power, a promising alternative approach is to use machine learning to45

develop data-driven parameterizations. However, this requires to first generate reliable high-46

resolution computer simulations and then extract GWD from these simulations. This study47

follows these steps, compares different extraction methods, and describes some challenges48

and pathways to make advances. Furthermore, our results suggest that the horizontal prop-49

agation of GWs should be included in parameterizations too, however, extra care is needed50

in order to extract the resulting GWD from high-resolution data.51

1 Introduction52

Atmospheric gravity waves (GWs), with horizontal scales from ∼ 1 km to 1000 km, play53

an important role in the transport of momentum from the surface and lower troposphere54

to the upper troposphere and middle atmosphere (Fritts & Alexander, 2003, and references55

therein). Once excited by various sources (e.g., convective systems, fronts, flow over topog-56

raphy), GWs propagate both vertically and laterally, transporting momentum and energy57

away from their sources (Bretherton, 1969; Palmer et al., 1986; Fritts & Alexander, 2003;58

Plougonven & Zhang, 2014). One challenge for climate and weather prediction is that the59

entire spectrum of GWs cannot be adequately resolved in current general circulation mod-60

els (GCMs), which have a typical horizontal grid spacing of around 20 to 100 km (Fritts61

& Nastrom, 1992; Eyring et al., 2016; Gettelman et al., 2019). The effects of small-scale62

GWs are therefore parameterized based on the large-scale state of the atmosphere resolved63

by the GCM and other information of the sub-grid scale sources. After decades of devel-64
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opment, gravity wave parameterization (GWP) is now a critical component of GCMs to65

enable them to reproduce realistic atmospheric circulation mean, variability, and response66

to climate change (e.g., McFarlane, 1987; Scinocca & McFarlane, 2000; Y. Kim et al., 2003;67

Beres, 2004; Alexander et al., 2010; Richter et al., 2010; Lott et al., 2012; Plougonven &68

Zhang, 2014). For example, generating quasi-biennial oscillation (QBO) in GCMs requires69

skillful GWPs (e.g., Richter et al., 2020).70

Numerous assumptions are used in the current physics-based GWP schemes. For exam-71

ple, one typically used simplification is the “single-column approximation”, where the hori-72

zontal propagation of GWs is neglected so that all GWs stay in the same GCM column and73

will not directly affect neighboring columns. Other simplifications are also widely adopted,74

including but not limited to, steady-state approximation (neglecting of transient effects such75

as non-dissipative GW–mean-flow interactions), often monochromatic and linear (ignoring76

potential triad wave-wave interactions), saturation assumption of GWs (limits the source77

and dissipation amplitudes), and assumptions of balanced (hydrostatic and geostrophic) re-78

solved flows (Bölöni et al., 2016; Achatz et al., 2017; Wei et al., 2019). In addition to these79

assumptions, the representation of GW sources (e.g., small-scale convection) in GCMs is80

also challenging. Many efforts have been made in addressing these drawbacks of GWPs in81

state-of-the-art GCMs, e.g., by relaxing some simplifications in more complex frameworks82

(Bölöni et al., 2021; Y. H. Kim et al., 2021). While adding realistic complexity to current83

physics-based GWPs improves their performances, more parameters are involved in gen-84

eral, which means additional tuning (Gettelman et al., 2019). The shortcomings of current85

GWPs is a major cause of uncertainties in future changes in stratospheric variability, most86

notably, the QBO, and the resulting surface impacts. (Sigmond & Scinocca, 2010; Richter87

et al., 2020, 2022).88

Recently, Machine Learning (ML) techniques have emerged as alternative tools for89

developing parameterizations for climate models. They have been used in parameterizing a90

variety of SGS processes with promising results (e.g., Schneider et al., 2017; Rasp et al., 2018;91

Bolton & Zanna, 2019; Maulik et al., 2019; Chattopadhyay et al., 2020; Yuval & O’Gorman,92

2020; Kashinath et al., 2021; Gentine et al., 2021; Guan et al., 2022). Matsuoka et al.93

(2020) were among the first to apply ML to GWs. Focused on the orographic GWs over the94

Hokkaido region of Japan, they trained a convolutional neural network to connect the large-95

scale tropospheric state and the small-scale GW wind fluctuations in the lower stratosphere.96

Recently, Amiramjadi et al. (2022) also found success in reconstructing the non-orographic97

GWs in the ERA5 dataset with a random forest regressor. Both of these studies identified98

fluctuations associated with GWs using a simple moving-box average and demonstrated the99

feasibility of using ML to represent GWs. However, these studies only focused on learning100

GWs or momentum fluxes at one level (100 hPa), without further calculating the GWD,101

which is required to develop GWPs for GCMs. A number of other studies have also shown102

the power of ML for GWP through emulating current GWP schemes (Chantry et al., 2021;103

Espinosa et al., 2022). These emulation efforts provide valuable insight on various promises104

and challenges of using ML for GWPs, though a number of key challenges, e.g., related to105

GWD extraction and lateral GW propagation, cannot be investigated through emulation(see106

below).107

One key challenge for the data-driven approach is the availability of sufficient obser-108

vationally constrained data of GW momentum transport for training the ML algorithms.109

With limited availability of observations of GWs and the challenges associated with sparsity110

and noise, high-resolution GW-resolving model simulations must play a critical role in gen-111

erating the training data. A number of case studies have verified that high-resolution models112

are able to capture the key characteristics of observed GWs (Bramberger et al., 2020; Kruse113

et al., 2022). The second key challenge in the most common data-driven approach (the114

so-called “supervised” or “offline” learning) is the need to extract, from the high-resolution115

simulations, the true GWD due to the un- and under-resolved GWs; hereafter, we refer116

to this collectively as the SGS drag. This SGS GWD is what has to be added to a low-117
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resolution GCM to properly account for the un- and under-resolved GWs (note that this118

depends on the GCM’s effective resolution; more discussions to follow later). In the GW119

modeling community, a number of methods have been used in the past to separate GWs120

from the large-scale flow and quantify the SGS fluxes or GWD (e.g., G. J. Shutts & Vosper,121

2011; Kruse & Smith, 2015; Žagar et al., 2015; Stephan et al., 2019; Matsuoka et al., 2020;122

Amiramjadi et al., 2022; Polichtchouk et al., 2022). Some studies pursued a simple box-123

averaging method (e.g., Matsuoka et al., 2020) or a cut-off low-pass filter (e.g., Polichtchouk124

et al., 2022). There are also more rigorous methods to separate the balanced large-scale125

components and the unbalanced GWs based on linear wave theory and Helmholtz decom-126

position (e.g., Callies et al., 2014; Žagar et al., 2015). Stephan et al. (2019) computed the127

resolved GW pseudo-momentum fluxes in month-long global convection-permitting simula-128

tions with two other methods. These methods showed overall good agreement on the general129

shape of the longitudinal profiles of GW fluxes, but systematic differences were found for130

the amplitudes of the pseudo-momentum fluxes even after averaging over the 30-day period,131

implying the importance of the extraction method if we were to use these high-resolution132

data for training the ML algorithms.133

The third key challenge is related to the 3D propagation of GWs and the resulting134

3D SGS GWD. The aforementioned studies focused only on the vertical momentum fluxes135

of GWs, as the current operational GWP schemes ignore lateral propagation of the waves136

and the resulting lateral fluxes and their contribution to the total GWD. However, there137

is growing evidence that horizontal propagation of GWs has to be considered in GWP138

to produce a realistic atmospheric circulation (e.g., Sato et al., 2009; Muraschko et al.,139

2015; Ehard et al., 2017). Only few studies have discussed the lateral momentum fluxes140

in high-resolution simulations (Eckermann et al., 2015; Jiang et al., 2019). More recently,141

through analyzing the lateral momentum flux in the high-resolution simulations over the142

Drake Passage, Kruse et al. (2022) showed that the meridionally propagating mountain143

waves significantly enhanced the zonal drag. Additionally, their work suggested that not144

accounting for these meridional fluxes would result in GWD in the wrong direction at and145

below the polar night jet.146

In this paper, we use data from a library of 20 convection-permitting (3 km) tropical147

WRF simulations to148

1. Compare 3 methods that are commonly used in the GW and large-eddy simula-149

tion (LES) literature to quantify the SGS fluxes and drags. These methods are i)150

Helmholtz decomposition, ii) Spatial filtering to compute the full SGS stress and the151

resulting GWD, and iii) Same as (ii) but only for the Reynolds stress.152

2. Quantify the contribution of both vertical and horizontal fluxes of horizontal mo-153

mentum to the total GWD to investigate if the latter should be included in SGS154

parameterizations too.155

Item 1 is crucial because any data-driven method, ML or otherwise, is as good as the data156

used for the training. Note that the challenges associated with extracting the SGS terms157

for ML training are not limited to the GW applications, and are in fact relevant to many158

climate/turbulence processes and currently an active area of research (e.g., Zhou et al., 2019;159

Zanna & Bolton, 2021; Grooms et al., 2021; Beck & Kurz, 2021; Guan et al., 2022).160

Before moving to the next section, we highlight that a successful data-driven GWP161

for a typical low-resolution GCM is expected to represent the GWD missing in such a162

GCM compared to a GW-resolving model. This missing drag is a result of un-resolved and163

under-resolved GWs, which as mentioned earlier, we collectively refer to their drag as SGS164

GWD.165

In the rest of the paper, we will first introduce the high-resolution data and the 3 meth-166

ods used for SGS GWD extraction. We will then compare the results for the SGS vertical167
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momentum flux and GWD, followed by similar analyses for the SGS GWD associated with168

lateral momentum fluxes. Concluding remarks and discussions are in the last section.169

2 Data and methods170

2.1 WRF setup and data171

All data used in this study are generated using WRF, with initial conditions from re-172

analysis data and boundaries nudged towards reanalysis data. For the purpose of this work,173

the WRF model is modified according to Kruse et al. (2022) to support a deep configura-174

tion that runs up to 1 Pa (∼ 80 km). Two key modifications of the released WRF version175

4.1 model are made to achieve the high model-top here. First, low-order interpolators are176

used to prevent the over-/under-shooting of default higher-order interpolators, preventing177

the intersection of analysis levels near complex topography after horizontal interpolation.178

Second, the default lateral relaxation is replaced with grid-point nudging confined to the179

lateral boundaries for the model to run stably.180

For now, the library only includes the tropical regions (see the domains in Fig. 1). We181

have conducted a total of 20 simulations in 6 domains, where the dates of the week-long182

runs are chosen to sample the seasonal cycle, QBO phases, and precipitation distribution183

(Fig. 1c). Two of these simulations, one from the 2016 summertime all-ocean West Pacific184

(WP), which is in the westerly phase of QBO, and one from the 2020 wintertime land-ocean185

Indian Ocean (IO), which is in the easterly phase of QBO, are chosen as representative cases 1186

and 2, respectively. The first day of all simulations is treated as spin-up periods and not used187

in analyses. The horizontal domain size is 3600 km× 3600 km. The simulations are done at188

3 km grid spacing. There are 180 vertical model levels in total. The vertical grid spacing is189

close to 200 m near the lower boundary and gradually increases to a maximum of 600 m near190

the model top. For these tropical simulations, we largely use the “Tropical” WRF physics191

suite (e.g., Qiao et al., 2019), but with a different surface layer scheme. The parameterization192

set includes the WRF Single-Moment 6-class (WSM6) microphysics scheme (Hong & Lim,193

2006), the Yonsei University planetary boundary layer scheme (Hong et al., 2006), the194

RRTM (Rapid Radiative Transfer Model) for longwave and shortwave radiation (Iacono et195

al., 2008; Pincus et al., 2003), and the revised surface layer scheme developed in Jiménez196

et al. (2012). Note that no cumulus scheme is used given the 3 km grid spacing and, most197

importantly, no GWP is used.198

Both the initial condition and the boundary condition come from the fifth-generation199

European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data (ERA5).200

As we are using the same method as in Kruse et al. (2022) to nudge the simulation boundaries201

towards the ERA5 data (hence limiting the GW signals there), the model output data near202

the domain boundary (< 300 km) are neglected when conducting analysis for the GWs.203

The analysis domains are hence 3000 km× 3000 km.204

In addition to traditional prognostic variables (e.g., u, v, w, T , p, q), we also modified205

the WRF model to add diagnostic variables like 3D reflectivity and 3D diabatic heating,206

which are the key sources for the GWs in the tropics. The output frequency is every 15207

minutes in order to capture the life cycle of the convective cells.208

2.2 Filtering and coarse-graining209

Before introducing the 3 GWD extraction methods, we first discuss two operations that
are essential for almost any data-driven SGS modeling method: a) spatial filtering, denoted
with (̃·), and b) coarse-graining, denoted with (·). For any variable ϕ(x, t), spatial filtering
is defined as (e.g., Sagaut, 2006; Grooms et al., 2021; Guan et al., 2022)

ϕ̃(x, t) = G ∗ ϕ =

∫ ∞

−∞
G(r,∆)ϕ(x− r, t)dr, (1)
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𝑚𝑜𝑑𝑒𝑙	𝑡𝑜𝑝	~	80	𝑘𝑚
𝑹𝒆𝒈𝒊𝒐𝒏	 	𝑺𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏	𝑻𝒊𝒎𝒆 𝑹𝒆𝒈𝒊𝒐𝒏	 	𝑺𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏	𝑻𝒊𝒎𝒆

IO

2016/01
2017/05
2018/09
2020/01

MC

2017/05
2018/01
2020/01
2020/11
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2019/08
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2016/04
2017/05
2020/01

SA 2017/05
2020/01

a) c)

b)

Figure 1. a) A snapshot of vertical velocity in a WRF simulation. b) Tropical regional domains

where the WRF simulations are conducted. c) The list of 20 week-long WRF simulations conducted

in this regional tropical channel setup, among which two representative cases are chosen (blue color

represents Case 1, and magenta color represents Case 2).

where G is the filter’s kernel, ∆ is the filter’s length scale, ∗ is the convolution operator, and
the integration is performed over the entire domain. Table 1 presents a list of commonly used
2D low-pass spatial filters. Then, any variable ϕ(x, t) can be separated into two components

ϕ = ϕ̃+ ϕ′ (2)

where ϕ̃ contains the large scales (larger than ∆) and ϕ′ containts the small scales (smaller210

than ∆).211

Two key points need to be clarified here. One is that following the convention used212

in recent literature (e.g., Sagaut, 2006; Grooms et al., 2021; Guan et al., 2022), we define213

“filtering” as an operation that only separates the scales but does not change the grid214

resolution (e.g., all 3 terms in Eq. (2) remain on the high-resolution grid). “Coarse-graining”,215

defined later in this section, is the operation that changes resolution, e.g., from the WRF’s216

high-resolution to a GCM’s low-resolution grid.217

Second, it should be highlighted that Eq. (2), while it appears analogous, is not the same218

as Reynolds decomposition in this application. This is because spatial filtering (Eq. (1)) is219

different from Reynolds averaging; unlike the latter, here, ϕ̃′ ̸= 0 and
˜̃
ϕ ̸= ϕ̃ depending on220

the choice of the filter function (Leonard, 1975; Clark et al., 1979; Sagaut, 2006; Alfonsi,221

2009). The importance of this distinction will become clear later in the Results section,222

and has been already pointed out in a number of other studies, e.g., on quantifying (and223

even determining the sign of) momentum exchange between atmosphere and ocean at small224

scales (e.g., Aluie et al., 2018; Rai et al., 2021).225

A major question in using Eq. (2) is the choice of filter type and size (length scale, ∆226

in Eq. (1)). As described below, in the 3 methods used here (and generally, in many other227

methods), Eq. (2) might be used to separate GWs from the large-scale flow, or to separate228
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Table 1. The 2D low-pass spatial filters used in this study (Eq. (1)). All filters are implemented

in spectral space using their transfer function (e.g., Guan et al., 2022). Here, r and k are coordinates

in physical space and spectral space, respectively, with r = (rx, ry), and k = (kx, ky). (̂.) is the

Fourier transform, and ∆ is the filter size as in Eq. (1).

Filter Kernel (physical space) Transfer function (spectral space) Length-scale (km)

G (r,∆) Ĝ (k,∆) =

∫ ∞

−∞
ei2πk·rG (r,∆) dr ∆

Gaussian
6

π∆2
exp

(
−6 |r|2

∆2

)
exp

(
−|k|2 ∆2

24

)
700 or 200

Top-hat (Box)


1

∆2
, if (rx, ry) ≤

∆

2
0, otherwise

sin( 12kx∆) sin
(
1
2ky∆

)(
1
2kx∆

) (
1
2ky∆

) 700 or 200

Sharp-spectral
sin
(
πr
∆

)
πr

{
1, if

(
kc − |k| ≥ 0

)
, kc =

π

∆
0, otherwise

700 or 200

the un-resolved and under-resolved GWs from the resolved GWs, or both. The choice of229

filter type (e.g., Gaussian, top-hat or box, sharp-spectral) can affect the extracted SGS230

terms, as already shown in a number of past studies including in the context of geophysical231

turbulence (e.g., Leonard, 1975; Zanna & Bolton, 2021; Beck & Kurz, 2021). Figure B1232

shows an example of the effect of filter type on the spectrum of zonal wind from our WRF233

simulations. Different low-pass filters (e.g., top-hat and sharp-spectral) have been used in234

previous studies to separate the GWs from the large-scale background (Kruse & Smith,235

2015; Matsuoka et al., 2020; Polichtchouk et al., 2022), though a systematic study on the236

effect of filter type and the potential implications for the extracted SGS terms is lacking.237

The question about filter size ∆ is even more challenging when it comes to systems238

without clear scale separation. While the (low) resolution of the GCMs provides a clear239

length scale, the issue of “effective resolution” makes this even further complicated. Even in a240

GCM with grid spacing dx, GWs with wavelength larger than 2dx may not be fully resolved,241

depending on the specifics of the numerical schemes used in the dynamical core of the242

targeted GCM. Skamarock (2004), through computing kinetic energy spectra, demonstrated243

that in WRF, GWs with scales up to 7dx remain under-resolved. There are also additional244

complications. For example, Stephan et al. (2022) argued that the separation scale ∆ for245

balanced and unbalanced motions, based on partitioning of total wave energies, varies with246

height. Finally, more complications arise on non-uniform grids (e.g., Aluie et al., 2018;247

Grooms et al., 2021), though this is not a problem in the current study as WRF’s grid is248

uniform.249

To systematically quantify the effects of filter type and sizes, here, we use 3 filter250

types and two length scales ∆ = 200 km and 700 km to help with understanding the scale-251

awareness when building a data-driven GWP in the future (Table 1). Note that these choices252

of ∆ are motivated by assuming that the low-resolution GCM has grid spacing of 100 km253

(∼ 1◦ resolution). ∆ = 200 km is based on the common choice for ∆ in the LES literature,254

i.e., twice the low-resolution model’s grid spacing (Pope, 2000; Sagaut, 2006; Guan et al.,255

2022). ∆ = 700 km is based on the effective-resolution study of Skamarock (2004); this is256

the filter size used for the presented results, unless indicated otherwise.257

Once resolved fluxes are quantified point-wise on the original grid, the effective fluxes258

within a hypothetical GCM grid cell must be computed on a coarse GCM grid. As mentioned259

before, we refer to this operation as coarse-graining. Admittedly, this terminology has260

not been uniformly adopted in the literature, though it has been recommended by several261
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recent studies (Grooms et al., 2021; Guan et al., 2022). Also, note that in some studies262

filtering and coarse-graining are done via just one operation, rather than two separate ones263

(e.g., Brenowitz & Bretherton, 2018; Yuval & O’Gorman, 2020). With all these issues in264

mind, here, we use one commonly used coarse-graining strategy: we simply truncate the265

wavenumbers greater than the cut-off wavenumber corresponding to the GCM grid spacing266

(100 km in this case). Note that in this study, for computational efficiency, both filtering and267

coarse-graining are done in the spectral (Fourier) space, and mirrored tiles are added around268

the original domain following Sun & Zhang (2016) to reduce problems with non-periodic269

boundaries.270

To better illustrate the effects of these filtering and coarse-graining operations, Fig. 2271

shows examples of the high-resolution WRF snapshots, and filtered (Gaussian with ∆ =272

700 km) and coarse-grained 3D velocity fields at 30 km height. The full u, v, w in the273

3000 km × 3000 km domain are shown in the left column. After the filtering operation,274

the velocity fields are separated into the large-scale (second column) and the perturbation275

(third column) components. We also apply coarse-graining operators to these fields (fourth276

and fifth columns) to transfer them to a 30 × 30 grid, similar to that of a GCM with a277

grid spacing of 100 km. From this plot, we notice systematic differences between horizontal278

winds and vertical winds. For the horizontal winds u and v, the large-scale background (ũ279

and ṽ) are much larger in amplitudes than the small-scale perturbations u′ and v′, whereas280

for the vertical velocity, the large-scale background is almost negligible, with all the signal281

at small scales w′. Moreover, notice that there can be significant differences between ϕ̃ and282

ϕ, which implies that ϕ̃′ ̸= 0 with the Gaussian filtering applied here.283
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2.3 Gravity wave drag (GWD) extraction284

The three methods used for SGS GWD extraction are:285

1. Helmholtz decomposition method : This is a common practice in the GW literature for286

separating GWs from the background flow (e.g., Callies et al., 2014; Wei et al., 2022).287

The key idea is to divide the full flow into divergent and rotational components using288

Helmholtz decomposition, and then assume that the divergent component entirely289

consist of GWs. The drag derived using this method will be referred to as HELM D.290

291

2. Un- and under-resolved sub-grid scale (UUGS) method : This is the common practice292

in the LES community for computing the fluxes or drags that need to be parameter-293

ized (e.g., Leonard, 1975; Germano, 1992; Sagaut, 2006), and has been successfully294

used to provide training data for ML techniques for SGS modeling of a variety of geo-295

physical flows (e.g., Maulik et al., 2019; Zanna & Bolton, 2020; Yuval & O’Gorman,296

2020; Guan et al., 2022; Subel et al., 2022). The key idea here is to use spatial filtering297

and a rigorous mathematical derivation of the SGS terms. The drag derived using298

this method will be referred to as UUGS D.299

300

3. Reynolds stress method : This is an approach that has been used in both GW and LES301

communities (e.g., Clark et al., 1979; Kruse & Smith, 2015; Polichtchouk et al., 2022;302

Amiramjadi et al., 2022), and bears similarities to both Helmholtz decomposition and303

UUGS methods. The drag derived using this method will be referred to as REYN D.304

Next, we introduce these three methods in more details.305

2.3.1 Method 1: Helmholtz decomposition method306

Using Helmholtz decomposition to compute the divergent and rotational components307

of a global wind field has been well studied for decades (e.g., Chen & Wiin-Nielsen, 1976).308

However, for regional domains such as those of our WRF simulations, the Helmholtz de-309

composition is not uniquely defined, and boundary conditions must be imposed to obtain a310

unique solution (e.g., Lynch, 1988; Skamarock & Klemp, 2008). Therefore, how we provide311

the boundary conditions for the Helmholtz decomposition solver could affect the results312

(e.g., Cao et al., 2014). As we are nudging our WRF simulations towards ERA5 reanalysis313

data, the following novel procedure is proposed to avoid the boundary-condition dependency314

for the decomposition of our WRF simulations:315

a) First, the high-resolution WRF data are regridded to the 0.25◦ ERA5 grid within the316

WRF domain using conservative interpolation.317

b) Outside the WRF domain, we fill the global 0.25◦ grid with ERA5 reanalysis data at318

the same time as WRF outputs to construct a “synthetic” global field. Linear inter-319

polation of ERA5 reanalysis data is used if WRF outputs are at different times/levels320

compared to the reanalysis.321

c) Helmholtz decomposition using a widely employed public function (https://www.ncl322

.ucar.edu/Applications/wind.shtml) is applied to the newly constructed “global323

fields” to get the global rotational and divergent wind components. No boundary324

condition is needed in this approach. See Fig. S1 for an example of the global field325

and its rotational and divergence components.326

d) The derived global rotational wind components are then linearly interpolated back to327

the high-resolution WRF grid. This now serves as the large-scale background for the328

simulated flow.329

e) The divergent winds, mostly GWs, are then defined as deviations of the full flow330

in WRF simulations from the large-scale background we get in (d). Given that the331

divergent winds could contain large-scale Kelvin waves in the tropics, and that these332
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waves and large-scale GWs could be resolved by the GCM, an additional high-pass333

spatial filter is applied to remove the signals that could be fully resolved by the low-334

resolution GCM grid. Here, we use a Gaussian high-pass filter with filter size of335

700 km.336

The outcome of step (e) is the GW perturbations for the horizontal winds (u′
H and337

v′H). The subscript H here denotes the use of Helmholtz decomposition in the process. The338

vertical winds w are not involved here in the Helmholtz decomposition of horizontal winds.339

Given that vertical wind w is dominated by small scales and has negligible large-scale signals340

(Fig. 2), we simply apply a high-pass filter as in (e) to the full fields to get w′.341

The 3D zonal momentum flux due to SGS GWs is then defined as:

MF x = [MFxx MFyx MFzx ] (3)

where
MFxx = ρ̃ ˜u′

Hu′
H (4)

MFyx = ρ̃ ˜u′
Hv′H (5)

MFzx = ρ̃ũ′
Hw′. (6)

Note that while the Helmholtz decomposition separate the GWs and their fluxes, for the342

purpose of data-driven SGS modeling, we still need to further separate the SGS (un- and343

under-resolved) component. Here, in step (e), this is done using spatial filtering, which is344

also the approach used by Kruse & Smith (2015) in their analyses of GWs.345

The first two components in Eq. (3) are the zonal and meridional flux of zonal mo-346

mentum due to SGS GWs, respectively. They will also be referred to as lateral momentum347

fluxes. The last component in Eq. (3) is the vertical flux of zonal momentum due to SGS348

GWs.349

As mentioned earlier, for the purpose of training a data-driven parameterization that
could be coupled to a low-resolution GCM, momentum fluxes derived in Eq. (3) need to
be further coarse-grained to the targeted GCM grid. We note here again that the filtering
of MF components with ∆ = 700 km, then coarsening to the 100 km GCM grid, is a way
to include phase-averaged fluxes from GWs with horizontal scales that is under-resolved by
the 100 km GCM. The 3D SGS zonal momentum fluxes then become MF x,

MF x = [MF xx MF yx MF zx ]. (7)

Based on Eq. (7), the zonal SGS GWD after coarse-graining (GWDx = GWDxx+GWDyx+
GWDzx), which is what needed to train a data-driven GWP, can be calculated as the
divergence of MF x:

GWDxx = − 1

ρ̃

∂MF xx

∂x
(8)

GWDyx = − 1

ρ̃

∂MF yx

∂y
(9)

GWDzx = − 1

ρ̃

∂MF zx

∂z
. (10)

Note that Eq. (10), the vertical divergence of the vertical flux of zonal momentum due to350

SGS GWs, is often considered to be the dominant component in previous studies, and the351

only term that is conventionally represented in existing SGS parameterizations. This has352

been the case in the development of physics-based GWP, and in the past efforts focused353

on extracting SGS GWD from high-resolution simulations (e.g., Alexander et al., 2010;354

Matsuoka et al., 2020; Polichtchouk et al., 2022). Yet, as shown in Kruse et al. (2022), this355

is not always the case, and the lateral divergence of lateral momentum fluxes (Eqs. (8) and356

(9)) could also play a substantial role, as will be also shown here later in the Results section.357

–11–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

2.3.2 Method 2: UUGS method (UUGS_D)358

One can quantify the missing drag in a low-resolution GCM compared to a high-359

resolution GCM by filtering and coarse-graining of the governing equations of the latter,360

following the common practice in LES (e.g., Pope, 1975; Sagaut, 2006). Details of such361

derivation for zonal momentum are presented in Appendix A. This analysis shows that for362

example the zonal SGS GWD is363

GWDx = GWDxx +GWDxy +GWDxz

= − 1

ρ̃

∂

∂x

[
ρ̃(ũu− ũ ũ)

]
− 1

ρ̃

∂

∂y

[
ρ̃(ũv − ũ ṽ)

]
− 1

ρ̃

∂

∂z

[
ρ̃(ũw − ũ w̃)

]
.(11)

Note that the SGS GW momentum fluxes here can be interpreted as the difference between364

the filtered and coarse-grained flux in high-resolution simulations and the flux a coarse-365

resolution GCM would give based on the filtered and coarse-grained prognostic variables366

(see Appendix A).367

Similar to Eqs. (8)-(10), the zonal SGS GWD in Eq. (11) also has three components368

that are associated with SGS zonal, meridional, and vertical fluxes of zonal momentum,369

respectively, though here these components involve full fields rather than perturbations.370

However, using Eq. (2) for each component of the velocity vector, we can see that a Reynolds371

stress is one of the three components of each term in Eq. (11). For example, as shown in372

Eq. (A13), the Reynolds stress ũ′w′ is a part of the (but not the entire) total SGS vertical373

flux, ũw − ũ w̃. The other two components (e.g., ˜̃uw′) arise because as mentioned before,374

in spatial filtering and coarse-graining, terms like w̃′ are not necessarily zero (e.g., Pope,375

2000; Sagaut, 2006). Similar analysis can be done for GWDxx and GWDxy, showing the376

appearance of Reynolds stresses ũ′u′ and ũ′v′ as well as other stresses, including ˜̃uu′ and ˜̃vu′.377

Different from the HELM D method that only considers direct contributions of SGS GW378

perturbations to the GWD, the UUGS D method (Eq. (11)) also includes the cross-scale379

interactions between the SGS GWs and the resolved large-scale flow, which is also missing380

in the low-resolution GCMs (see the derivation in Appendix A).381

2.3.3 Method 3: Reynolds stress method382

In this approach, the three components of MF x are computed similar to a number of383

past studies (Kruse et al., 2016; Matsuoka et al., 2020; Amiramjadi et al., 2022); hence, the384

components of GWDx can be written as385

GWDxx = − 1

ρ̃

∂(ρ̃ ũ′u′)

∂x
(12)

GWDyx = − 1

ρ̃

∂(ρ̃ ũ′v′)

∂y
(13)

GWDzx = − 1

ρ̃

∂(ρ̃ ũ′w′)

∂z
, (14)

though often only GWDzx is considered. There are two ways to interpret these equations.386

First, one can obtain Eqs. (12)-(14) if only the Reynolds stresses in Eq. (11) are accounted387

for, and the other stresses, including cross-scale interactions are ignored. Second, Eqs. (12)-388

(14) are the same as Eqs. (8)-(10) if the GW perturbations are identified using filtering (e.g.,389

as u′ = u− ũ) rather than as the divergent component of the wind field.390
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Figure 3. Zonal-mean, time-mean zonal wind u for two representative WRF simulation cases.

The contour interval is 10 m, with dash lines implying zero and negative values. a) Case 1 with

westerly QBO winds; b) Case 2 with easterly QBO winds .

3 Results391

3.1 Zonal-mean, time-mean zonal wind in the WRF simulations392

Figure 3 shows the zonal-mean zonal wind averaged over the 5-day simulation period393

in the two representative cases (see Table 1). The QBO winds are clear in both plots394

(different phases), with a maximum of ∼ 20 m/s in the tropical stratosphere (∼ 25 km).395

The semiannual oscillation (SAO) can also be seen near the stratopause (∼ 60 km), with396

a much stronger wind amplitude than the QBO. The existence of westerly winds in the397

QBO and SAO at the Equator means they have greater angular momentum than that of398

the rotating Earth. This ‘superrotation’ cannot be explained by direct thermal forcing or399

symmetric circulations, but must arise from the effects of wave forcing. In our following400

analysis, we will mainly examine the zonal SGS GWD, as both QBO and SAO are mostly401

zonal circulations.402

3.2 Vertical flux of zonal momentum due to SGS GWs403

While GWs propagate both vertically and horizontally once excited, it is believed that404

the GWD due to the vertical fluxes are dominant and hence the single-column approximation405

is used in most GCMs. Here, we first examine the GWD due to SGS vertical fluxes of zonal406

momentum. For the representative cases, the zonal-mean, time-mean zonal SGS GWD407

associated with vertical fluxes is shown in Fig. 4. The left column shows zonal SGS GWD408

calculated using Eq. (10) with the HELM D method. The zonal SGS GWD in the middle409

column is based on the REYN D method (Eq. (14)), where the GW perturbations are410

derived with a low-pass Gaussian filter (∆ = 700 km) in Table 1. The right column is the411

zonal SGS GWD calculated using the UUGS D method (last term of Eq. (11)) with the412

same low-pass Gaussian filter.413

We can see that for these zonally averaged time-mean GWD patterns, all methods give414

fairly consistent results. This supports the simplifications made in many previous studies415

that only consider the Reynolds stress term as in Eq. (14) when they estimated the GWD.416

The agreement between HELM D and the two Gaussian filter-based methods also shows that417

the mean zonal SGS GWD associated with vertical fluxes is not very sensitive to the methods418

used for separating the GWs and the large-scale background flow. We also notice that at419

the upper stratosphere, close to the SAO region, the GWD is mostly positive (negative)420

when the zonal wind shear is positive (negative), showing that vertically propagating SGS421

–13–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

10

20

30

40

50

60
CA

SE
1 

 h
ei

gh
t (

km
)

a) HELM_D b) REYN_D c) UUGS_D 

-1000 0 1000
y (km)

10

20

30

40

50

60

CA
SE

2 
 h

ei
gh

t (
km

)

d) HELM_D 

-1000 0 1000
y (km)

e) REYN_D 

-1000 0 1000
y (km)

f) UUGS_D 

101

100

10 1

0
10 1

100

101

m
 / 

s /
 d

ay

101

100

10 1

0
10 1

100

101

m
 / 

s /
 d

ay

Figure 4. Zonal-mean, time-mean zonal SGS GWD (shading) due to the un-/under-resolved

(SGS) vertical fluxes derived using three methods for both representative cases (upper row: Case

1 , lower row: Case 2). Left column, a & d: Helmholtz decomposition method (HELM D). Middle

column, b & e: Reynolds stress method (REYN D). Right column, c & f: UUGS method (UUGS -

D). As in Fig. 3, lines show the mean zonal winds, but with a contour interval of 20 m/s.

GWs help maintain and drive the zonal wind there (Alexander et al., 2010). Moreover, for422

the QBO region, the maximum drag is below the wind maximum (e.g., Case 1 in Fig. 4),423

implying the role of SGS GWs in the downward propagation of the zonal winds.424

While the mean zonal SGS GWD is the most important factor for maintaining the time-425

mean, zonal-mean momentum budget (hence the QBO and SAO), we need instantaneous426

snapshots of SGS GWD over the whole domain for developing data-driven GWP schemes.427

However, the picture is very different if we examine the zonal SGS GWD for each GCM428

column calculated based on different methods at a randomly chosen time. Figure 5 shows429

two horizontal snapshots in Case 1 and Case 2 for the SGS vertical fluxes of zonal momentum430

at 30 km (QBO region) with the same methods used in Fig. 4. While the SGS vertical431

fluxes of zonal momentum estimated using HELM D and the REYN D methods might show432

some similarities, they significantly differ from what we find using the UUGS method. The433

UUGS method in general gives stronger amplitude for the GWD. Also, additional spatial434

variability not seen by the HELM D and REYN D methods can be found in the SGS GWD435

extracted using the UUGS method.436

Figure 6 shows the probability density functions (PDFs) for the zonal SGS GWD as-437

sociated with vertical fluxes using these three methods, as another way of presenting the438
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Figure 5. Snapshots of zonal SGS GWD due to vertical fluxes at 30 km height calculated

using three methods. Upper row: Case 1. Lower row: Case 2. Left column, a & d: Helmholtz

decomposition method
1
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∂ρ̃ũ′
Hw′
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]
.

differences among them. While the PDFs we obtain using the HELM D and REYN D439

methods are fairly similar, the PDFs from the UUGS method often have a clearly wider440

distribution. For both cases studied here, we find that the GWD from the UUGS method441

in general has higher variability, both temporal and spatial, compared with the other meth-442

ods, that are based on the Reynolds stress term alone (e.g., Eq. (14)), which is one of the443

three components of the total stress estimated in the UUGS method (see Appendix A). The444

degree of differences in PDFs depend on the case and height. For example, the differences445

are smaller at 40-50 km for Case 1, possibly due to the weak zonal winds there (Fig. 4).446

So far, we have discussed the two representative cases. The same conclusions are reached447

if we examine the other cases, or all cases together. Figure S3 is the same as Fig. 6, but448

with data from all 20 cases combined.449

To sum up, for the zonal SGS GWD due to vertical fluxes, the 3 methods studied450

here provide fairly consistent time-mean, zonal-mean results. However, to develop data-451

driven GWP schemes, we need snapshots of GWD at specific time and locations. For452

such snapshots, the GWD extracted using the UUGS D method has additional spatial and453

temporal variability, compared to the GWD from the other two methods that are based454

on the Reynolds stress alone. One reason for this difference is that the UUGS D method455

accounts for more components of the stress that represent the interactions between the456

missing GWs and large-scale background, which are mostly ignored in the HELM D and457

REYN D methods. Whether this additional variability would be efficiently learned using the458

ML algorithm and help improve the performance of the targeted GCM should be carefully459

investigated in future studies (see Section 4 for further discussions).460
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Figure 6. Probability density function (PDF) of zonal SGS GWD due to vertical fluxes cal-

culated using three methods at different heights. Upper row: Case 1. Lower row: Case 2. Left

column, a & d: 20-30 km. Middle column, b & e: 30-40 km. Right column, c & f: 40-50 km. Note

the differences in the x-axes. See Fig. S2 for PDFs of the meridional SGS GWD due to vertical

fluxes. See Fig. S3 for the PDFs of data from all 20 cases combined.

3.3 Horizontal flux of zonal momentum due to SGS GWs461

In addition to the SGS vertical fluxes, the SGS horizontal momentum fluxes associated462

with GWs could also lead to zonal SGS GWD (see Eqs. (11)-(13)). However, these horizontal463

fluxes have received much less attention in previous studies and are totally neglected in most464

GCMs’ GWP schemes with the single-column approximation. In recent years, ignoring the465

lateral propagation of GWs has been recognized as a key weakness of state-of-the-art GWP466

schemes. Yet, quantitative studies on the importance of SGS horizontal fluxes have been467

limited to a few case studies (e.g., G. J. Shutts & Vosper, 2011; Kruse et al., 2022). With468

all 3 methods introduced in Section 2, we can also calculate the SGS horizontal fluxes of469

zonal momentum to quantify and gain insight into the role of lateral propagation of SGS470

GWs in these high-resolution simulations.471

To illustrate the importance of SGS lateral fluxes, we first examine the time-mean,472

zonal-mean effects of adding divergence of the horizontal fluxes of zonal momentum in the473

calculation of zonal SGS GWD. Figure 7 shows GWD calculated using only SGS vertical474

fluxes (last term of Eq. (11)) vs. the total GWD calculated using the entire Eq. (11) and475

their differences, i.e., the contribution from the horizontal fluxes. We see that the zonal476

SGS GWD associated with the vertical flux, which is largely due to vertical propagation of477

GWs, dominates the results. This is consistent with the previous understanding that most478

of the GWs propagate upward, which is also the basis for the single-column approximation.479

However, in some critical regions, the role of lateral fluxes is more evident. For example,480

the amplitude of the GWD due to lateral momentum fluxes is comparable to the GWD due481

to vertical fluxes near the QBO region (e.g., at 30 km level in Case 1, 35 km in Case 2). As482
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Figure 7. Zonal-mean, time-mean zonal SGS GWD due to only the vertical fluxes, total fluxes,

and the lateral fluxes calculated using the UUGS D method (Eq. (11)). Left column: Only the

vertical component − 1

ρ̃

∂

∂z

[
ρ̃(ũw − ũ w̃)

]
. Middle column: All terms − 1

ρ̃

∂

∂x

[
ρ̃(ũu− ũ ũ)

]
−

1

ρ̃

∂

∂y

[
ρ̃(ũv − ũ ṽ)

]
− 1

ρ̃

∂

∂z

[
ρ̃(ũw − ũ w̃)

]
. Right column: Only the first two terms, i.e., only the

horizontal fluxes. As in Fig. 3, lines show the mean zonal winds, but with a contour interval of 20

m/s.

another example, in Case 2, at levels below the SAO (∼ 50 km), it is clear that the lateral483

momentum fluxes dominate the GWD there, even leading to a change of direction of the484

total zonal SGS GWD.485

Examining the PDFs of zonal SGS GWD, which highlights its variability, further shows486

the importance of the SGS horizontal fluxes. Similar to Fig. 6, Fig. 8 shows, separately,487

the PDFs of the GWD associated with SGS zonal fluxes, SGS meridional fluxes, and SGS488

vertical fluxes. We find that the amplitudes of GWD from these 3 components are fairly489

close, and there is no evidence of one component dominating over the other two everywhere.490

To reconcile this with the zonal-mean, time-mean results (Fig. 7), we point out that the491

mean GWD associated SGS horizontal fluxes suffers more from cancellations due to opposite492

lateral propagation directions of GWs, whereas most vertically propagating GWs go upward.493

However, we emphasize again that any GWP scheme would need to feed instantaneous GWD494

to the GCMs; therefore, to develop a data-driven GWP scheme, the instantaneous patterns495

of GWD have to be derived from the high-resolution data.496
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Figure 8. Probability density function (PDF) of zonal SGS GWD due to SGS zonal (blue),
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panel: Case 2. Left column, a & d: 20-30 km. Middle column, b & e: 30-40 km. Right column, c

& f: 40-50 km. Note the difference in the x-axes.

So far, we have used the UUGS D method to calculate the GWD due to SGS horizontal497

fluxes (Figs. 7-8). Compared to the vertical fluxes shown earlier, calculations of SGS GWD498

due to horizontal momentum fluxes have a much stronger sensitivity to the choice of the499

method. Figure 9 shows the time-mean, zonal mean SGS GWD associated with the merid-500

ional fluxes of the zonal momentum, calculated using HELM D, REYN D, and UUGS D501

(the second term in Eq. (11)), respectively. Different from Fig. 4, the results here strongly502

depend on the method, even after averaging over time (simulation period) and space (zonal503

direction). This suggests that if we want to include the lateral propagation of GWs in the504

data-driven GWP schemes, then we must carefully examine the GWD extraction methodol-505

ogy. The PDFs in Fig. 10 show the same story. The SGS GWD induced by the lateral fluxes506

are much larger if calculated using the UUGS method compared to the other two (note the507

logarithmic color bar). It is clear that drag due to Reynolds stress is not the dominant term508

anymore when we consider GWD due to the SGS lateral fluxes. One explanation for this is509

that there are fundamental differences between the scales and amplitudes of the horizontal510

winds (u, v) and the vertical winds (w), as already shown in Fig. 2. The vertical velocity511

is dominated by small-scale features with negligible signal at the resolved scales in GCMs,512

which results in weak interactions between the resolved scales and the small scales. On the513

contrary, the horizontal winds are dominated by winds at the resolved scales, which means514

much stronger interactions between the resolved scales and the unresolved scales, and hence515

the large differences between UUGS D and REYN D.516

Moreover, while Figs. 9 and 10 suggest similarities between the SGS GWD associated517

with the SGS horizontal fluxes calculated using the HELM D and the REYN D methods518

(Fig. 9a and 9b), substantial differences can exist even between the SGS GWD patterns519

extracted using these two methods. Figure 11 shows the correlation between instantaneous520
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Figure 9. Zonal-mean, time-mean zonal SGS GWD, similar to Fig. 4, but for the GWD due

to the un-/under-resolved (SGS) horizontal fluxes. Only the meridional direction is shown here;

examining the zonal direction shows a similar story.

GWD calculated using the HELM D and REYN D method. For the SGS GWD due to521

vertical fluxes, as already discussed, there is a good match between these two methods.522

However, for SGS GWD due to the horizontal fluxes, the correlation is fairly weak, even523

though mathematically similar expressions are used for GWD in both methods. These524

results, again, show the high sensitivity of the lateral momentum fluxes and the resulting525

GWD to the details of the extraction method.526

So far, we have discussed SGS horizontal fluxes in the two representative cases. Again,527

we reach the same conclusions if other cases, or all cases together, are examined. Figure S5528

is the same as Fig. 10, but with data from all 20 cases combined.529

3.4 Sensitivity to the filter type/size and the GCM resolution530

Until now, we have presented all the analyses using the Gaussian filter and ∆ = 700 km.531

Here, we explore the effects of using a smaller filter size (∆ = 200 km) and two other filter532

types: top-hat (box) and the sharp-spectral. The kernels and transfer functions of these 3533

low-pass filters are listed in table 1). It should be noted that a few novel filters have been534

recently developed (e.g., Aluie et al., 2018; Grooms et al., 2021) to handle complex model535

grids such as the non-uniform ones (see the footnote in Appendix A). However, with the536

uniform 3 km grid spacing in our WRF simulations, these 3 commonly used filters serve the537

purpose of this study.538
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Figure 10. Same as Fig. 6, but for the un- and under-resolved zonal GWD due to SGS meridional

momentum fluxes. Note the difference in the x-axes. See Fig. S4 for the PDFs of zonal GWD due

to the SGS zonal momentum fluxes. See Fig. S5 for the PDFs of data from all 20 cases combined.

As mentioned earlier, Fig. B1 shows the power spectrum of the zonal winds before539

and after these low-pass filters are applied. This figure demonstrates the overall similarities540

between the outcome of the Gaussian and top-hat filters, at least up to the filtering scale, and541

major differences with the outcome of the sharp-spectral filter. Figure B2 shows snapshots542

of the SGS vertical momentum flux (Reynolds stress and total stress) extracted using these543

3 filters and ∆ = 700 km. Again, we see that the Gaussian and top-hat filters overall544

yield fairly similar results. The outcomes of the sharp-spectral filter on the other hand,545

show differences in both amplitude and pattern, though the degree of difference is more546

pronounced for the Reynolds stress.547

All the results shown so far are with filter size ∆ = 700 km, coarse-grained to the GCM548

resolution of 100 km. However, this choice of 700 km is rather subjective, as there is no well-549

defined physical scale separation for GWs. Moreover, the appropriate filtering scale depends550

on the capability of a given GCM to resolve the GWs larger than the GCM’s grid spacing,551

i.e., it depends on “effective resolution” of the GCM, which in turn depends on the GCM’s552

numerical schemes and choices of grid-scale filters, like hyperdiffusion (e.g., Klaver et al.,553

2020). The ∆ = 700 km used here is based on studies showing that the effective resolution554

of WRF for GWs is 7 times the grid spacing (Skamarock, 2004). Admittedly, ∆ should be555

chosen based on the effective resolution of the target GCM, not that of the GW-resolving556

model. To examine the sensitivity of the results to this choice, below we also present analysis557

with filtering scale that is twice the GCM grid spacing (i.e., ∆ = 200 km), which is based558

on the LES literature (Pope, 2000; Sagaut, 2006; Guan et al., 2022). Furthermore, with the559

increase in computing power, some GCMs now have grid spacing of 0.5◦ or even smaller.560

Therefore, below, we also show results with for a GCM with the grid spacing of 30 km.561
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Figure 11. Joint PDFs between the SGS GWD calculated using the HELM D and REYN D

methods for Case 1. a) GWD due to SGS vertical fluxes and b) GWD due to SGS meridional

fluxes. The R-squared value is shown to measure the correlation between these two methods.

Figure 12 shows PDFs of the GWD from the SGS zonal, meridional, and vertical562

fluxes for 3 sets of choices: GCM grid spacing of 100 km and ∆ = 700 km (left column)563

and ∆ = 200 km (middle column), and GCM grid spacing of 30 km and ∆ = 200 km564

(right column). The second choice is meant to show the influences of effective resolution565

change while the third choice is meant to show what happens with higher-resolution GCMs.566

Although one might expect smaller SGS GW wind perturbations with reduced ∆, the zonal567

SGS GWD may not be necessarily reduced, as less averaging of the momentum flux is also568

applied with a smaller ∆. As a result, in both cases, for the zonal SGS GWD associated569

with vertical fluxes (solid lines), we find larger values when the filter length scale is reduced570

(compare the tails of the PDFs in the left and middle columns). The zonal SGS GWD571

associated with horizontal fluxes may become larger or smaller depending on the case.572

Moreover, Fig. 12 also shows that the SGS GWD is not reduced with a smaller GCM573

grid spacing, and in fact, might become even larger in some cases due to the effects of574

increased gradient(see panel f), which suggest the need of 3D GWP even in a high-resolution575

GCM.576
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4 Summary and Discussion577

The use of ML algorithms for developing data-driven SGS parameterization of GWs has578

gained attention in recent years, given the increasing availability of data from observations579

and high-resolution GW-resolving simulations, and a few successful case study and emulation580

attempts (e.g., Matsuoka et al., 2020; Chantry et al., 2021; Espinosa et al., 2022; Amiramjadi581

et al., 2022). Powerful ML techniques have recently emerged for data-driven weather/climate582

modeling, suggesting that concerns such as stability, lack of physical constraints, learning in583

the small-data regime, and interpretability could be addressed, at least to some degree, in584

the near future (e.g., Beucler et al., 2021; Dunbar et al., 2021; Guan et al., 2023; Mamalakis585

et al., 2022; Subel et al., 2022; Pathak et al., 2022). However, the best ML algorithm is586

just as good as the data used in the training. As a result, a major remaining challenge in587

developing data-driven GWP schemes (and in general, any data-driven parameterizations)588

that has not received much attention is extracting the SGS GWD from high-resolution589

simulations. This GWD is what needs to be learned in terms of the resolved flow during590

training.591

As the first step in addressing this challenge, in this study, we have generated a library592

of 20 tropical convection-permitting WRF simulations and systematically compared the593

sensitivity of the extracted under- and un-resolved (SGS) 3D GWD to the choices of methods594

and parameters. Three methods from the GW and LES literature have been examined595

(HELM D, UUGS D, and REYN D). The key conclusions obtained from these comparisons596

are :597

1. For GWD due to SGS vertical momentum fluxes, all three methods give consistent598

time-mean, zonal-mean results. Yet, if we consider snapshots at different times and599

locations, the GWD from the UUGS D method has additional spatial and tempo-600

ral variability compared to the GWD in other methods . This additional variability601

is partially due to the fact that the UUGS D method includes cross-scale interac-602

tions between the SGS GWs and the large-scale background flow resolved by a GCM.603

Given that a GWP needs to provide patterns of GWD at each time step of the GCM,604

correctly representing the variability of the GWD in the training dataset could be605

essential. It is unknown yet whether this will improve the performance of the tar-606

geted GCMs in terms of conventional metrics (e.g., QBO statistics). It is possible607

that additional variability may provide some of the same benefits as stochastic pa-608

rameterization in ensemble weather and climate prediction (G. Shutts, 2005; Palmer609

et al., 2005; Lott et al., 2012).610

2. There are a growing number of studies showing that the lateral propagation of GWs611

plays a significant role in the resolved flow’s momentum budget, and could even re-612

verse the direction of GWD for certain regions and cases (e.g., Kruse et al., 2022).613

Our comprehensive analysis of these lateral effects support this conclusion. The SGS614

GWD associated with lateral momentum fluxes has comparable amplitudes to the615

SGS GWD associated with vertical momentum fluxes. This is true not only when the616

spatiotemporal variability is considered, but also in the time-mean, zonal-mean GWD.617

Our findings strongly suggest the need for including the effects of SGS horizontal fluxes618

in the GWP schemes. However, there are practical implementation challenges for a619

truly 3D scheme in GCMs (Y. H. Kim et al., 2021). Therefore, further tests, both620

offline and online (coupled), are needed to see if 3D GWP schemes improve the cir-621

culation variability in GCMs. That said, there is existing evidence for SGS modeling622

of other physical processes that would benefit from including neighboring columns,623

providing further incentive for considering horizontally non-local parameterizations624

(e.g., Wang et al., 2022).625

3. Adding to the compelxity, we have found that the GWD due to SGS lateral mo-626

mentum fluxes could be sensitive to the methods used to extract them. Even the627

time-mean, zonal-mean GWD could be very different when different methods are628

used. The instantaneous GWD amplitudes from the UUGS D method could be much629
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larger than those from the REYN D method due to the strong cross-scale interactions630

between SGS GWs and the horizontal background flow that could be resolved by the631

GCMs. This suggests that to include the SGS GWD due to the horizontal fluxes in632

the data-driven GWP schemes, further research needs to be done on the extraction633

methodology.634

4. The sensitivity of extracted SGS GWD to the length scale (∆) of the filtering opera-635

tion and the horizontal resolution of the GCM are also studied. Our results suggest636

that both the effective resolution of a GCM and its grid spacing have significant in-637

fluences on the calculated SGS GWD (Fig. 12). Interestingly, within the explored638

GCM grid spacing (30 km − 100 km), the amplitude of extracted SGS GWD does639

not decrease as the GCM’s horizontal grid spacing is reduced, suggesting the need for640

GWP schemes in the foreseeable future even as the GCM resolutions are increased.641

Given the sensitivity of the results to the filter size, the grid spacing of the GCM and642

its “effective” resolution might be used as inputs to design scale-aware data-driven643

GWPs schemes.Also note that here we have only examined the effects of the GCMs’644

horizontal resolution. The vertical resolution of GCMs has a major impact on how645

well the GWs are resolved and the resulting GWD (Skamarock et al., 2019). This646

issue needs to be fully investigated in future work.647

All these findings point to the next two steps needed in developing data-driven GWP648

schemes. One step is to further work on developing theoretical and mathematical frameworks649

to separate the GWs from the background flows, and quantifying the under- and un-resolved650

fluxes for a given GCM. The others step is to use the extracted GWD from this library using651

different methods and choices, train ML algorithms such as deep neural networks, couple652

them to GCMs such as WACCM, and investigate the large-scale circulation variability, e.g.,653

of the QBO. With proper metrics of the large-scale variability (e.g., period and amplitude of654

QBO), we could potentially gain insight into which method and choice of filter type/size lead655

to a GWP scheme that produces the most realistic circulation, compared to observations.656

However, there could be several practical challenges in doing this. First, it may not be657

easy to isolate the performance of the GWP scheme from biases in the GCMs’ large-scale658

circulation and other parameterizations, e.g., that of moist convection, which is the source659

of convective generated GWs. That said, some of these biases, such as the latter one, could660

be corrected for the purpose of this analysis.661

Second, the traditional single-column approach uses inputs (resolved flow) and outputs662

(GWD) only from the same GCM column and does not require any cross-column commu-663

nication, which works well with the GCMs’ parallelization. However, accounting for the664

non-local effects, i.e., inputs from neighboring columns and possibly memory (history), can665

require cross-processor communications, which come with a large computational overhead.666

Recently, there has been observational evidence showing that the majority of GW momen-667

tum fluxes are typically found to be at distances closer than 400 km from convection sources668

(Corcos et al., 2021). This is encouraging as it suggests that a small stencil of neighboring669

columns (which could be computationally affordable) might be enough to account for the670

non-local effects and lateral SGS momentum fluxes. It should be noted that the outputs671

of the WRF simulations are saved such that information about convection and history is672

available for such future investigations.673

We also highlight that given the sensitivity of the SGS GWD to the filter size (∆), the674

scale-awareness of the data-driven GWP scheme is critical. One potential approach is to675

create SGS GWD datasets for different filter sizes and GCM grid spacing and combine them676

all together in a training set, with the filter length scale and the GCM grid spacing serving677

as the inputs to the ML algorithm too.678

Finally, we aim to further validate and expand the library. All WRF simulations used679

in this study have a grid spacing of 3 km. While 3 km is enough to resolve most of the680

GW spectra, it is not adequate to entirely resolve convection, which is the key source of681
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the GWs in the tropics (Jeevanjee, 2017; Bramberger et al., 2020). We have conducted682

limited simulations with 1 km and 3 km grid spacing at periods when observations from683

super-pressure balloons are available. We will use these simulations to examine the effect of684

resolution and validate the GW fluxes in the library. Also, currently our WRF simulations685

are limited to the tropics. In the future, we aim to extend the library to the mid-latitude686

and even polar regions. We also plan to conduct pseudo-global warming experiments to687

examine the response of the GWD to climate change and to expand the library to include688

training sets for transfer learning, such that generalizable data-driven GWP schemes could689

be developed (Guan et al., 2022; Subel et al., 2022).690

Appendix A UUGS Drag Extraction691

To better illustrate the GWD paramterization problem, here we use the zonal mo-692

mentum equation as an example. The flux form of the zonal momentum equation in the693

atmosphere, without any approximation, can be written as follows in Cartesian coordinates:694

∂(ρu)

∂t
+

∂(ρuu)

∂x
+

∂(ρuv)

∂y
+

∂(ρuw)

∂z
= −∂p

∂x
+ ρfv + ρFx, (A1)

where (u, v, w) is the 3D wind fields; p is pressure; ρ is density; f is the Coriolis parameter;695

Fx is the friction and/or numerical diffusion term.696

The problem of the parameterization of GWs and/or other sub-grid scale physical
processes arises because GCMs have only a limited horizontal resolution (typically with a
grid spacing on the order of 100 km). Therefore, they can only resolve the large-scale part
of each physical variable. Let’s use ϕG to denote the variable ϕ in the GCM, then the zonal
momentum equation in the GCM would be:

∂(ρGuG)

∂t
+
∂(ρGuGuG)

∂x
+
∂(ρGuGvG)

∂y
+
∂(ρGuGwG)

∂z
= −∂pG

∂x
+ρGfvG+ρGFG

x +XG
x (A2)

where XG
x is SGS zonal drag in the GCM due to its limited resolution. The problem is then697

to find XG
x from high-resolution simulation data generated, for example, by WRF.698

As introduced in the main text, We use (̃.) to represent the spatial filtering process,
which largely removes/reduces signals that have horizontal scales smaller than some specific
value (∆ in Eq. (1)) . With this definition, all variables can be partitioned into the large-scale
background and the perturbation parts:

ϕ = ϕ̃+ ϕ′. (A3)

Note that ϕ, ϕ̃, and ϕ′ have the same resolution. In a GCM, only the large-scale part ϕ̃ can
be captured. An additional coarse-graining process, denoted as (), is required to transfer
this large-scale part to the GCM grid, so that,

ϕG ≈ ϕ̃ (A4)

Applying Eq. (A4) to Eq. (A2) yields

∂(sρ̃ sũ)

∂t
+

∂(sρ̃ sũsũ)

∂x
+

∂(sρ̃ sũ sṽ)

∂y
+

∂(sρ̃ sũ sw̃)

∂z
= −∂sp̃

∂x
+ sρ̃fsṽ + sρ̃ĎF̃x +XG

x . (A5)

To get an expression for XG
x , we can apply both spatial filtering and coarse-graining

operators to each term in the original Eq. (A1), and assume that the operations are com-
mutative 1, which means, e.g.,

∂̃ϕ

∂x
=

∂
s

ϕ̃

∂x
. (A6)

1 This assumptions is valid in our study. The three filters used here commute with spatial derivatives if

applied on a uniform grid, which is the case for the WRF’s horizontal grid. No filtering or coarse-graining

–25–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Then we get

∂(ρ̃u)

∂t
+

∂(ρ̃uu)

∂x
+

∂(ρ̃uv)

∂y
+

∂(ρ̃uw)

∂z
= −∂sp̃

∂x
+ ρ̃fv + ρ̃Fx. (A7)

Next, we assume that density perturbations are negligible, ρ̃ >> ρ′, and that only the
vertical gradient of ρ̃ is non-negligible, so that ρ is a function of height only:

ρ(x, y, z, t) ≈ ρ̃(z). (A8)

Then, for any variable ϕ, given that both spatial filtering and coarse-graining operate only
on the horizontal levels, we obtain

ρ̃ϕ ≈ ˜̃ρϕ = sρ̃
s

ϕ̃ (A9)

Subtracting Eq. (A7) from Eq. (A5), and applying Eq. (A9), we finally get:699

XG
x =

∂(sρ̃sũsũ)

∂x
+

∂(sρ̃sũ sṽ)

∂y
+

∂(sρ̃sũ sw̃)

∂z
−
[
∂(ρ̃uu)

∂x
+

∂(ρ̃uv)

∂y
+

∂(ρ̃uw)

∂z

]
= − ∂

∂x

[
sρ̃(ũu− sũsũ)

]
− ∂

∂y

[
sρ̃(ũv − sũ sṽ)

]
− ∂

∂z

[
sρ̃(ũw − sũ sw̃)

]
.

(A10)

Similarly, for the meridional momentum equation, we obtain

XG
y = − ∂

∂x

[
sρ̃(ṽu− sṽsũ)

]
− ∂

∂y

[
sρ̃(ṽv − sṽ sṽ)

]
− ∂

∂z

[
sρ̃(ṽw − sṽ sw̃)

]
(A11)

Note Eq. (A10) is in the density-weighted form as in Eq. (A2). If we were to consider
the drag forces terms directly, then the density factor shall be removed, leading to

GWDx = − 1

ρ̃

∂

∂x

[
ρ̃(ũu− ũ ũ)

]
− 1

ρ̃

∂

∂y

[
ρ̃(ũv − ũ ṽ)

]
− 1

ρ̃

∂

∂z

[
ρ̃(ũw − ũ w̃)

]
, (A12)

which is the equation used in the main text.700

The terms in brackets on the right-hand side of Eq. (A10) are differences between the
filtered and coarse-grained flux and the flux calculated based on the filtered, coarse-grained
prognostic variables. We will refer to these terms as the total SGS fluxes. They can be
further decomposed (Leonard, 1975; Germano, 1986; Sagaut, 2006), e.g.,

ũw − sũ sw̃

= ˜(ũ+ u′)(w̃ + w′)− ˜(ũ+ u′) ˜(w̃ + w′)

=
(˜̃uw̃ − ˜̃u ˜̃w)︸ ︷︷ ︸
Leonard stress

+
(˜̃uw′ + ũ′w̃ − w̃′ ˜̃u− ũ′ ˜̃w)︸ ︷︷ ︸

cross stress

+
(
ũ′w′ − ũ′ w̃′

)
︸ ︷︷ ︸
Reynolds stress

(A13)

We see that the Reynolds stress is one of the three components of the total SGS flux. The701

total SGS flux accounts for interactions among all scales, including scales resolved by the702

GCMs with the un- and under-resolved scales. The importance of Leonard term and cross703

term has long been shown in studies of turbulent flows (e.g., Leonard, 1975; Galmarini et al.,704

2000). We also note that the Reynolds term here based on spatial filtering is different with705

the traditionally temporal-based Reynolds average in which the flow is decomposed into a706

mean and fluctuating components. As pointed in Aluie et al. (2018), the time-mean flow is707

not synonymous with large-scale flow, nor does a temporal fluctuation directly correspond708

to a characteristic length scale.709

is done in the vertical direction (where WRF’s grid is non-uniform). Note that on non-uniform grids, such

as GCMs’ grids, special treatments are needed; see, e.g., Grooms et al. (2021).
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Appendix B The effects of filter type710

Figures B1 and B2 show the spectra and snapshots of zonal wind and SGS vertical flux711

when the 3 different filters are applied with the same ∆. Note that because our WRF regional712

domain is not periodic, we have used mirrored tiles to reduce the boundary effects. Still,713

Fourier-based filters such as the sharp-spectral filter might suffer from Gibbs oscillations714

and give non-physical results.715
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Figure B1. Example of the power spectrum of the zonal wind from the 3-km WRF simulations

before and after the low-pass filtering using different kernels (with length scale ∆ = 200 km). The

black line shows the spectrum before filtering, while the blue, red, and green lines show the the

spectrum after applying the Gaussian, top-hat (box), and sharp-spectral filters. Note that the

dashed green line coincides with the black line for scales smaller than 200 km. The oscillations in

the red line are the well-known ringing effects of the top-hat filter (e.g., Pope, 1975; Zhou et al.,

2019).
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Figure B2. Snapshots of the SGS vertical momentum fluxes, calculated using the 3 different

filters for Case 1 (at 40 km height). Top row: the Reynolds stress, ũ′w′. Bottom: the total SGS

stress, ũw − ũ w̃). The filter size is ∆ = 700 km.
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Open Research Section716

The ERA5 data can be downloaded from https://cds.climate.copernicus.eu/.717

The WRF model is available here https://www2.mmm.ucar.edu/wrf/users/download/718

get source.html. The data and code for all the analysis in the main text is available719

at https://doi.org/10.5281/zenodo.7439397720
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1. Figures S1 to S5

Additional Supporting Information (Files uploaded separately)

1. Captions for Movies S1

Introduction

Additional analysis with more cases are added here in the supporting information. In

the main text, the results are focused on the zonal GWD for brevity. Results for the

meridional GWD is provided here. Also, when discussing the lateral fluxes in the main

paper, SGS meridional fluxes are shown; here, we also show the SGS zonal fluxes.

Movie S1. At 3km, WRF is capable of resolving most of the GWs spectrum. Here we

provide a movie showing w of the WRF-simulated GWs and the coarse-grained results.

The movie will be uploaded separately according to AGU’s submission system.

December 15, 2022, 1:06am



X - 2 :

F
ig
u
re

S
1
.

S
n
ap

sh
ot
s
fr
om

th
e
H
el
m
h
ol
tz

d
ec
om

p
os
it
io
n

ap
p
ro
ac
h

u
se
d

in
th
is

st
u
d
y.

T
h
e
m
ag
en
ta

b
ox
es

sh
ow

th
e
W

R
F

d
om

ai
n
.

In
th
e
le
ft

co
lu
m
n
,
d
at
a
w
it
h
in

th
is

m
ag
en
ta

b
ox

is
p
ro
v
id
ed

b
y
th
e
W

R
F

si
m
u
la
ti
on

;
ou

ts
id
e
th
is

b
ox
,
th
e
in
te
rp
ol
at
ed

E
R
A
5
d
at
a
ar
e

u
se
d
.

T
h
e
re
su
lt
s
of

th
e
H
el
m
h
ol
tz

d
ec
om

p
os
it
io
n

ar
e
sh
ow

n
in

th
e
m
id
d
le

co
lu
m
n

(r
ot
a-

ti
on

al
co
m
p
on

en
t)

an
d

th
e
ri
gh

t
co
lu
m
n

(d
iv
er
ge
n
t
co
m
p
on

en
t)
.

N
ot
e
th
e
d
iff
er
en
t
co
lo
r

sc
al
es

in
th
e
p
an

el
s
(t
h
e
u
n
it
s
ar
e
m
/s
).

T
h
e
co
d
e
fo
r
th
is

d
ec
om

p
os
it
io
n

ca
n

b
e
fo
u
n
d

in

h
tt
p
s:
//
w
w
w
.n
cl
.u
ca
r.
ed
u
/A

p
p
li
ca
ti
on

s/
w
in
d
.s
h
tm

l

December 15, 2022, 1:06am



: X - 3

-5 0 5
10 4

10 3

10 2

10 1

100

M
er

id
io

na
l G

W
D 

du
e 

to
 v

er
tic

al
 fl

ux
es

 
 p

ro
ba

bi
lit

y 
de

ns
ity

a) 20-30 km
UUGS_D
REYN_D
HELM_D

-10 0 10
meridional GWD due to vertical fluxes (unit: m/s/day)

b) 30-40 km
UUGS_D
REYN_D
HELM_D

-20 0 20

c) 40-50 km
UUGS_D
REYN_D
HELM_D

Figure S2. Sames as Fig. 6, but for the meridional GWD due to vertical fluxes (last term of

Eq. (A11)). Data from Cases 1 and 2 have been combined in making these PDFs.
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Figure S3. Same as Fig. 6, but for more cases. The UUGS D and REYN D results are based

on data from all 20 cases combined. For HELM D, data from only 4 cases have been due to the

high computinonal cost of the algorithm.
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Figure S4. Same as Fig. 10, but for the zonal fluxes.
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Figure S5. Same as Fig. 10 but for more cases. The UUGS D and REYN D results are based

on data from all 20 cases combined. For HELM D, data from only 4 cases have been due to the

high computinonal cost of the algorithm.
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