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Abstract

The present study focuses on quantifying the impact of the choice of spatio-temporal resolution and hydrology models on

the projection of extreme flow and their link to the catchment size. We use two process-based distributed hydrology models

forced with a large-ensemble regional climate model (50-member ClimEx dataset) over the 1990-2100 period at different spatio-

temporal scales. The extreme summer-fall flow corresponding with each spatio-temporal resolution was extracted by pooling

the members together and computing the empirical cumulative distribution function. The results show that by refining the

time-step from daily to sub-daily, the summer-fall extreme flow projected over the future period exceeds that of the reference

period for the small but not large catchments. By increasing the catchment size, the hydrology model’s contribution to the

variability of extreme flow increases. Moreover, the choice of spatial resolution affects the extreme flow’s trend in terms of

magnitude, significance, and direction. But no pattern regarding the catchment size and spatial discretization variations exists.
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Key Points:6

• Refining the time-step of the modeling results in higher summer-fall flood mag-7

nitudes in the future for the small but not large catchments.8

• Variation of spatial resolution changes the trend’s magnitude, and/or direction and/or9

significance.10

• By increasing the catchment size, the contribution of the hydrology model in the11

variability of flood projection increases.12
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Abstract13

The present study focuses on quantifying the impact of the choice of spatio-temporal res-14

olution and hydrology models on the projection of extreme flow and their link to the catch-15

ment size. We use two process-based distributed hydrology models forced with a large-16

ensemble regional climate model (50-member ClimEx dataset) over the 1990-2100 pe-17

riod at different spatio-temporal scales. The extreme summer-fall flow corresponding with18

each spatio-temporal resolution was extracted by pooling the members together and com-19

puting the empirical cumulative distribution function. The results show that by refin-20

ing the time-step from daily to sub-daily, the summer-fall extreme flow projected over21

the future period exceeds that of the reference period for the small but not large catch-22

ments. By increasing the catchment size, the hydrology model’s contribution to the vari-23

ability of extreme flow increases. Moreover, the choice of spatial resolution affects the24

extreme flow’s trend in terms of magnitude, significance, and direction. But no pattern25

regarding the catchment size and spatial discretization variations exists.26

1 Introduction27

Flood hazard continues to threaten human life and inflict costs on infrastructures28

and urban areas, as multiple devastating events have been reported in recent years around29

the world (Merz et al., 2021). Accurate flood estimation remains a critical issue and the30

traditional stationary assumption employed by flood estimation methods, whether em-31

pirical or process-based, fails to account for changing climate signal, leading to inaccu-32

rate estimations of exceeding probability of peak flow (Blöschl et al., 2013; François et33

al., 2019; Montanari & Koutsoyiannis, 2014). Moreover, a lack of knowledge regarding34

flood-generating processes at different scales with complex and non-linear catchment re-35

sponses in space and time complicates the estimation of flood return period using process-36

based hydrology models (K. Beven, 2019; Blöschl, 2022b). The present research aims to37

investigate how the discrete representation of catchments in process-based distributed38

hydrology models can affect flood projection under climate change scenarios. The study39

is conducted for snow-dominated Nordic catchments located in Canada.40

Global warming is expected to increase the magnitude and frequency of extreme41

precipitation across different parts of the world (Min et al., 2011; Westra et al., 2013;42

Alexander et al., 2006; M. Donat et al., 2013; Field et al., 2012; Masson-Delmotte et al.,43

2021; Fowler et al., 2021; Martel et al., 2021). This projected increase can be attributed44

to the increase of water holding capacity of the atmosphere: Based on Clausius–Clapeyron45

rate, the water holding capacity of atmosphere increases by 7% per 1◦ increase of tem-46

perature (Molnar et al., 2015; Westra et al., 2014). This however cannot directly be trans-47

lated into precipitation, as the amount of available humidity required for precipitation48

complicates the relationship (Lochbihler et al., 2017; Yin et al., 2018). Depending on mois-49

ture availability, warming can cause intensification of convective storms with daily or sub-50

daily scales (Westra et al., 2014).51

Considering that precipitation is an essential driver of flood events, different reac-52

tions from small and large-scale catchments should be expected: for small catchments,53

the response time is short and the maximum flow peak can be deduced from a storm with54

a duration equal to the longest flow path in the catchment (Blöschl, 2022a). Given that55

the short period of convective rainfall matches the residence time of small catchments,56

these catchments are the most vulnerable to flooding from convective rainfall, which is57

expected to increase due to climate change (Viglione & Blöschl, 2009; Viglione et al., 2016;58

Breinl et al., 2021). Regarding large catchments of more than a thousand square kilo-59

meters, it is unlikely that a convective storm leads to a flooding event considering the60

larger storage capacity and longer travel time (Contractor et al., 2021). For Nordic snow-61

dominated catchments, since global warming will likely reduce the amount of snow that62

accumulates, the magnitude of the spring freshet is expected to diminish. However, even63
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for those catchments, it is anticipated that the frequency and magnitude of convection-64

driven summer-fall floods, to which small catchments are sensitive, will increase (M. G. Do-65

nat et al., 2016).66

High temporal resolution time series (hourly) of historical data to evaluate the trend67

of convective storms and consequent floods are difficult to find. A common practice is68

therefore to use a climate modeling chain and perform simulations at high spatio-temporal69

resolutions (e.g., Swain et al., 2020; Do et al., 2020). Regional Climate Models (RCMs)70

offer such high-resolution time series at a local scale (Mearns et al., 2017; Leduc et al.,71

2019). Moreover, the incorporation of convective parameterization has enhanced their72

capability to capture convective storms (Kendon et al., 2017; Prein et al., 2015; Mooney73

et al., 2017). More recently, large-ensemble RCM datasets have received attention (Martel,74

Mailhot, & Brissette, 2020; Sanderson et al., 2018; Aalbers et al., 2018). Large-ensembles75

are generated by running RCMs several times, each time with slightly different initial76

conditions (Deser, Knutti, et al., 2012; Deser, Phillips, et al., 2012). Multiple values are77

calculated per time-step, which eliminates the need to fit a parametric distribution on78

the dataset to compute extreme flows (Martel, Mailhot, & Brissette, 2020; Faghih et al.,79

2022).80

Hydrology models are the last component of a hydro-climate modeling chain (Sidle,81

2021). Proportional to the growth of computational power, process-based hydrology mod-82

els are increasingly used for impact studies (Zhang et al., 2018; Dembélé et al., 2020; Pandey83

et al., 2019; Duethmann et al., 2020; Zhong et al., 2018). These models solve the gov-84

erning equations of hydrological processes (with varying degrees of simplification) per85

grid cell. Distributed models further use routing algorithms to direct accumulated wa-86

ter towards neighboring cells until the basin outlet (Clark et al., 2015, 2017). The ad-87

vantage of using distributed physics-based hydrology models is to represent the topog-88

raphy, land use, and soil structure in the model, to obtain a detailed distribution of hy-89

drological variables inside the catchment (Refsgaard, 1995). Therefore, these models are90

useful to study the internal dynamics of state and flux variables (Golden & Knightes,91

2011; Gebremicael et al., 2019; Sidle et al., 2017).92

scale issue is the subject of a long ongoing debate in the scientific community (Blöschl93

& Sivapalan, 1995; Blöschl et al., 2019). Despite numerous types of research to under-94

stand runoff generation processes, there are still unknowns about upscaling from pro-95

file scale (1m) to catchment scale and beyond. For example, while the infiltration excess96

is the governing process at profile-scale (Horton, 1933), the spatial connectivity of hy-97

drological processes has a central contribution in runoff generation at the hillslope scale98

(Dunne & Black, 1970; Noguchi et al., 1999; Sidle, 2006). Moreover, the contribution of99

overland connectivity in flow generation and sediment transport and their feedback loop100

add to the non-linearity of runoff generation (Gomi et al., 2002; Jencso et al., 2010; López-101

Vicente et al., 2017; Koci et al., 2020). The non-linearity from hillslope- to catchment102

scale is also significant, as the traditional bottom-up Freeze and Harlan (1969) approach103

to linearly combine all hillslopes so as to compute catchment response has been challenged.104

Dooge (1986), for example, suggests that a catchment is an ”organized complex system”,105

in the sense that the development of co-evolutionary surface and subsurface patterns con-106

tributes to catchment drainage and runoff generation (Sivapalan & Blöschl, 2015; Savenije107

& Hrachowitz, 2017). Adapting the bottom-up approach to these criticisms, there were108

efforts to combine the hillslope’s responses by considering the spatio-temporal covari-109

ance of hydro-climate variables for flood simulations (Woods & Sivapalan, 1999; Viglione110

et al., 2010).111

The spatio-temporal discretization of distributed models can potentially modify land-112

use and soil structures and result in variations of hydraulic conductivity as well as sur-113

face and subsurface hydrological connectivity (K. J. Beven, 2000). This can potentially114

lead to variations in the peak flow or seasonal flow. Many studies have explored the ef-115

fect of land-use change on streamflow (Singh et al., 2015; Li et al., 2019; Yang et al., 2019;116
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Tavangar et al., 2019). Using more than one land use scenario is a common approach117

to studying land use change impacts (Breuer et al., 2009; Huisman et al., 2009; Viney118

et al., 2009; Bormann et al., 2009). The results show that land use change can increase/decrease119

the peak flow, depending on catchment size and/or soil structure. Conversely, paired catch-120

ment studies have demonstrated that land-use changes can modify mean seasonal stream-121

flow but has minor effects on the peak flow (Brown et al., 2005). The effects of spatio-122

temporal discretization using process-based models have rarely been investigated for nat-123

ural catchments. Most previous studies concentrated on urban catchments, with a high124

degree of impermeability and small size (e.g. Cao et al., 2020; Krebs et al., 2014; Zhou125

et al., 2017; Cao et al., 2020). In this context, multiple studies have shown that varia-126

tion of spatio-temporal resolution can reorient flow direction and significantly change the127

flow peak (Zhou et al., 2017; Ichiba et al., 2018; Warsta et al., 2017).128

Markhali et al. (2022) have shown that the spatio-temporal discretization of a catch-129

ment in a model can affect the representation of surface and subsurface hydrological pro-130

cesses in that model and generate a significant variation in the distribution of hydrolog-131

ical variables including streamflow. Such variations are most important in flat catchments132

or catchments with considerable human intervention (i.e., agricultural lands). The present133

study focuses on extreme summer-fall flow using a hydro-climate modeling chain. A range134

of catchments with different surface areas (from below 200 km2 to more than 1500 km2)135

are selected to facilitate the investigation of the combined impacts of climate change and136

the spatio-temporal discretization in the hydrological model. More specifically, we in-137

tend to verify the following hypotheses for the catchments at hand:138

• By refining the time step of projection, the small catchments see a larger increase139

in the magnitude of summer-fall floods than the large catchments.140

• The change in the spatio-temporal scale of modeling causes variability in the pro-141

jection of extreme flow. By increasing the catchment size, the contribution of hy-142

drology model and spatial scale in that variability increases, and that of the time-143

scale decreases.144

The hypotheses will be examined by forcing two process-based distributed models with145

large-ensemble simulated climate data. To examine the impact of spatio-temporal dis-146

cretization, the simulations will be performed at different spatial (100, 250, 500, 1000147

m) and temporal scales (3- and 24-hour time-steps). The structure of this research is as148

follows: Section 2 provides a detailed explanation of the study area, available data, bias149

correction method, hydrology models, and the experimental plan. Section 3 presents the150

results of the experiments, which are discussed in Section 4. Section 5 provides conclud-151

ing remarks and a suggestion for future works.152

2 Method and Data153

2.1 Study Area154

The study area includes four catchments located in southern Quebec, Canada (Fig-155

ure 1). These catchments range from less than 200 km2 to more than 1500 km2 and were156

selected from diverse land use and hydrological regions. This helps evaluate catchment157

responses under climate change based on their size and other characteristics, such as land-158

use and topography. Table 1 briefly describes catchments’ characteristics.159
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Figure 1. Location of the catchments used in this study

Table 1. Area and main hydro-climatic characteristics of the catchments used in this study

Number Name Area(km2) precipitation(mm/yr) streamflow (m3/s) temperature (◦C)

050135 Croche 1563 1139.36 30.70 2.74
023427 Chaudière 781 1208.65 16.47 3.72
030424 Aux Brochets 584 1329.34 10.52 6.23
023004 Boyer 191 1396.76 4.45 4.15

2.2 Datasets160

24- and 3-hour observed streamflow series were obtained from the Direction de l’Expertise161

Hydrique (DEH) of the Ministère de l’Environnement et de la Lutte contre les change-162

ments climatiques (MELCCC) for 2000-2017. Regarding meteorological data, we used163

the ERA5(ECMWF ReAnalysis5, Hersbach et al., 2020) gridded dataset to calibrate the164

hydrology models and simulate streamflow for the present-day climate. (Tarek et al., 2020)165

have shown that ERA5 provides an accurate representation of meteorological conditions166

for catchments located in North America. We also used the ClimEx large ensemble (Climate167

change and hydrological Extremes project, Leduc et al., 2019). ClimEx is a 50-member168

climate dataset, driven by dynamically downscaling the second version of the Canadian169

Earth System Model large ensemble (CanESM2-LE; Swart et al., 2019), using the 5th170

generation of the Canadian Regional Climate Model (CRCM5). The simulations are driven171

by the RCP 8.5 scenario for the period covering 1951-2100, with hourly time steps and172

an 11◦ spatial resolution.173
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2.3 Bias Correction174

The MBCn (N-dimension multivariate bias correction) (Cannon, 2018) method was175

selected to bias correct precipitation and temperature time-series extracted from ClimEx.176

MBCn is an advanced quantile-mapping technique (Meyer et al., 2019; Cannon et al.,177

2020). The method transfers all characteristics of the distribution of observations to their178

simulated values according to the climate model. It maintains the trends of projections179

per quantile, which is essential to accurately assess the impact of climate change (Faghih180

et al., 2022).181

2.4 Hydrological models182

The following section introduces the hydrology models that are used in this study.183

Both models are distributed, process-based, and computationally intensive. However, they184

each have their own methods of representing hydrological processes, and their approaches185

to aggregate the catchment response are also different.186

2.4.1 WaSiM187

WaSiM (Water balance Simulation Model) operates on a raster system (Schulla &188

Jasper, 2007). The model’s structure comprises multiple sub-models (e.g., infiltration,189

evapotranspiration, snow accumulation and melt, unsaturated zone, etc.) that run on190

each grid cell and time-step, providing the opportunity to use parallel computing. WaSiM191

offers two options for calculating the infiltration and percolation: the Topmodel approach,192

or Richard’s equation. The first approach is a modified version of the conceptual model193

Topmodel, following K. Beven (1997). The second approach is more physically-based and194

is the one used in this study. All the sub-models that are selected for WaSiM are named195

in Table 2.196

2.4.2 Hydrotel197

Hydrotel is widely used in Quebec for research and operations (e.g., Martel, Bris-198

sette, & Poulin, 2020; Turcotte et al., 2020; Lucas-Picher et al., 2020). In Hydrotel, the199

catchment is divided into HRUs (Hydrological Response Units) that have similar soil and200

land-use characteristics. Sub-catchments are formed by aggregating HRUs. Hydrotel is201

compatible with GIS and remotely-sensed data (Fortin et al., 2001a). A mixture of phys-202

ical, conceptual, and empirical relationships are used to represent the hydrological pro-203

cesses, which makes Hydrotel slightly less physics-based than WaSiM. For example, the204

vertical water balance and the representation of soil water content are computed through205

a sub-routine called BV3C (Bilan Vertical à 3 Couches), which divides the soil column206

into 3 layers and controls infiltration, interflow and baseflow, based on a semi-physical207

moisture accounting equation (Fortin et al., 2001a). Like WaSiM, Hydrotel provides mul-208

tiple options for representing the hydrological processes of a catchment. Table 2 lists the209

submodels that are used in this study.210

Table 2. The submodels used to represent the hydrological processes in Hydrotel and WaSiM.

Submodels Hydrotel Wasim

Interpolation Thiessen polygons Thiessen polygons
Snow melt/accumulation Degree-Day Method Degree-Day Method
Potential evapotranspiration Hydro-Quebec (Fortin et al., 2001b) Hamon (Hamon, 1961)
Real evapotranspiration BV3C Richards’ Eq.
Infiltration and percolation BV3C Richards’ Eq.
Channel routing Kinematic Wave Eq. Kinematic Wave Eq.
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Figure 2. Schematic explanation of the experimental plan and methods.

2.5 Experimental plan211

2.5.1 Climate Data Processing212

Figure 2 shows the experimental plan for this study. The first panel on the top left,213

bounded by the green dashed line, shows the details regarding climate data processing.214

The first step is the extraction of the simulated and observed meteorological data (tem-215

perature and precipitation) for the selected catchments. The reference period for the ob-216

served dataset (Ref−Obs) spans from 1991 to 2010. ClimEx simulations are also split217

into reference (Ref − Sim) and future (Fut − Sim, 2011-2099) periods. In the next218

step, the 50-member ClimEx (i.e., Ref−Sim and Fut−Sim) are pooled together into219

one long time series per period. This pooling helps to maintain the internal variability220

of the simulated climate data after bias correction. This is because individual bias cor-221

rection of each member eliminates the spread of simulations and creates rather similar222

time series. While addressing internal variability is not among the objectives of this re-223

search, maintaining that helps accurate calculation of extreme flows (Faghih et al., 2022).224

The Ref−Obs and Ref−Sim datasets, which include precipitation and temperature225

for both the reference and future periods, are further received by MBCn to obtain cor-226

rection factors based on multi-variate quantile mapping. A single set of correction fac-227

tors was computed per calendar month and applied to the simulated climate data. The228

pooled bias-corrected datasets are reversed back to the 50-member time series, ready to229

use as the inputs of the hydrology models.230

2.5.2 Hydrological Simulation231

The Hydrology models are calibrated with four spatial (100, 250, 500, 1000 m) and232

two temporal resolutions (3- and 24-hour). The datasets are split into calibration and233

validation periods with equal duration. The Dynamically Dimensioned Search (DDS; Tol-234

son & Shoemaker, 2007) with a 0.2 perturbation factor was employed to calibrate the235

models. The DDS technique scales the parameters search space according to a budget236

specified by the user. Given that both WaSiM and Hydrotel are computationally inten-237

sive, this is an advantage over other search methods. In addition, the efficiency of DDS238

with global parameter perturbations at the beginning and narrowing down the search239

space by the end of the process has been confirmed in the literature (e.g., Huot et al.,240

2019).241
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Based on the existing literature and following experts’ recommendations as well242

as the team who develops and maintains WaSiM, 12 parameters were calibrated, includ-243

ing seven parameters that are involved with the unsaturated zone subroutine, two pa-244

rameters linked to potential evapotranspiration, one parameter for snow accumulation245

and melt, and two parameters for spatial interpolation. The remaining parameters were246

left to their default values following the WaSiM documentation (Schulla & Jasper, 2007).247

Regarding Hydrotel, of 28 models’ parameters, 11 have been calibrated and the others248

were left to their default values according to Hydrotel’s user manual. Out of the 11 cal-249

ibration parameters, three belong to vertical water balance, six to the snow accumula-250

tion and melt routine, and one to the infiltration and interpolation components (see Huot251

et al. (2019) for more details about the parameters).252

The Kling-Gupta Efficiency criterion (KGE; Gupta et al., 2009) is the objective253

function for the calibration of both WaSim and Hydrotel. Compared to other criteria254

such as the Nash–Sutcliffe efficiency (NSE), the KGE is a better choice for snow-dominated255

catchments. This is because the observed mean is the baseline model for NSE and for256

the catchments with high seasonal variability, the measure tends to overestimate mod-257

eling skill (e.g., snowmelt streamflow)(Gupta et al., 2009). Equation 1 was used to cal-258

culate the KGE259

KGE =

√
(r − 1)2 + (

σsim

σobs
− 1)2 + (

µsim

µobs
− 1)2 (1)

where r is the linear correlation between observed and simulated streamflow values, σsim260

is the standard deviation of the observations, σobs is the standard deviation of the sim-261

ulation, µsim is the simulation mean, and µobs is the observation mean.262

After obtaining the parameters corresponding with the four spatial resolutions and263

two temporal resolutions mentioned above, climate simulations from ClimEX were used264

as inputs to the hydrology models for 1991 to 2100; as mentioned in the top right panel265

bounded with the red dashed border in Figure 2.266

2.5.3 Analyses267

The panel at the bottom of Figure 2, with a dashed orange border, shows the anal-268

yses and experiments that have been carried out to verify the two hypotheses which are269

the object of this research. To verify the first hypothesis, extreme summer-fall flows are270

calculated for different spatio-temporal simulations. The streamflow series were split into271

historical (1991-2010) and far-future periods (2081-2100) to estimate the change of ex-272

treme flow under climate change. A 50-member ensemble of simulated streamflows ob-273

tained from forcing hydrology models with CliMeX was pooled together to create a time274

series comprising 1000 years of data (20 years × 50 members). This very large ensem-275

ble was created to estimate projected yearly extreme flows without the need to fit a para-276

metric distribution. The annual maximum summer-fall flows (July-November) is extracted277

from the data and an empirical cumulative distribution function is created for both pe-278

riods (present-day and far future). This allows us to compare the distributions of pro-279

jected extreme flows in the historical and far-future periods for different combinations280

of spatio-temporal discretizations (we have four spatial and two temporal resolution that281

amounts to 8 different combinations). The studied extreme flow values are based on the282

following percentiles : 50, 90, 95 and 99 (representing 2-, 10-, 20- and 100-year retur pe-283

riods). The procedure regarding pooling and extracting the extreme values is the same284

as in Martel, Brissette, and Poulin (2020).285

In order to verify the second hypothesis, we use variance decomposition (Montgomery,286

2017) to find the contribution of different factors in the total variance of the projected287

extremes. Variance decomposition is a simple but robust and widely applied method (e.g.288

Addor et al., 2014; H. K. Meresa & Romanowicz, 2017; Wang et al., 2020; H. Meresa et289

al., 2022). Equation 2 shows the application of the method in this study,290

–8–



manuscript submitted to Water Resource Research

∆Ui,j,k = Hi + Sj + Tk +Hi ∗ Sj +Hi ∗ Tk + Si ∗ Tk + ϵ (2)

where ∆U is the total variance of projected extreme flow, Hi, Sj , and Tk are different291

choices of hydrology model, spatial resolution, and time-step, and ϵ represents a Gaus-292

sian white noise.293

To quantify the change in the streamflow when the hydrology model’s spatial res-294

olution varies, annual maximum summer-fall flows were extracted per grid and the lin-295

ear trends corresponding to those grids were computed for the entire 1991-2100 period.296

The linear trend analysis has frequently been used for quantifying the change in the cli-297

mate variables (Barnes & Barnes, 2015; Zhuan et al., 2018; Ding & Steig, 2013). Note298

that the non-linear quadratic and cubic polynomials produced poor results for this case299

study. The widely used non-parametric Mann-Kendall trend test (Ali et al., 2019) was300

also applied to identify the trend at a 0.05 significance level. In this test, the null hy-301

pothesis (H0) assumes no trend and the alternative hypothesis (H1) assumes the exis-302

tence of a trend at a 0.05 significance level.303

3 Results304

3.1 Annual Hydrographs305

Figures 3 and 4 show the annual simulated hydrographs for the reference and fu-306

ture periods at 3- and 24-hour time-steps using WaSiM and Hydrotel for the Boyer and307

Croche catchments. These catchments are the smallest and largest, respectively. In these308

figures, the ensemble of streamflow simulations is based on the ClimEx dataset, for the309

1990-2100 period with various spatial resolutions for both hydrology models (100, 250, 500,310

and 1000m). The median of each ensemble is displayed as a solid line and the observed311

data is the dashed black line.312

Figure 3, a) to d) show the WaSiM simulations with 3- and 24-hour time-steps for313

the Boyer catchment. The observed data is located inside the spread of simulations and314

the timing of the peaks is approximately the same for both the simulation and the ob-315

servations (panels a and c). However, the simulation underestimates the magnitude of316

the median peak flow. We also want to assess how changing the spatial resolution would317

affect the simulation of low and high flows. According to Figure 3, a) to d), the simu-318

lation of low flows is more sensitive to variations in spatial scale than that of high flow.319

Moreover, this sensitivity also increases by refining the time-step from 24- to 3-hour. Fig-320

ure 3 e) to f) shows Hydrotel simulations. As for WaSim, the observed value is located321

inside the ensemble’s spread (panels e and g). Moreover, the ensemble’s median is closer322

to the observation than that of WaSiM simulations. With Hydrotel, the simulation of323

high flows is more sensitive than the simulation of low flows to changes in spatial res-324

olution, which is the opposite behavior of WaSim. Again, this sensitivity to the change325

of spatial resolution is higher for the 3-hour time-step than for the 24-hour time-step.326

Comparing future ( panels a, c, e, g) and reference (panels b, d, f, h) periods, a back-327

ward shift of the spring freshet from mid-April to mid-May with significantly lower am-328

plitude can be seen, regardless of the time-step and spatial resolution, for both Hydro-329

tel and WaSim. Overall, WaSiM shows higher sensitivity to changes in spatial resolu-330

tion than Hydrotel, which is expected as the model is fully distributed and more phys-331

ically representative in terms of the vertical water budget in the soil.332

Figure 4 shows the result of the same exercise, but for the Croche catchment. Pan-333

els a) to d) show WaSiM simulations with 3- and 24-hour time steps. Compared to Fig-334

ure 3 for the Boyer catchment, WaSiM (panels a and c) shows more skill, as the medi-335

ans of all the simulations follow the observations closely. In general, varying the spatial336

resolution of the hydrology model has only minor effects on these simulations, except for337

the simulations with a 3-hour time-step. Hydrotel’s simulations (panels e to h) show an338
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Figure 3. Ensemble of annual hydrographs forced by ClimEx dataset per resolution and com-

pared with observed streamflow (dashed black line) for the Boyer catchment. R and the following

number represents the spatial resolution in m and MR with the following number represents the

median of the ensemble.
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underestimation of peak streamflow when the ensemble median is compared to the ob-339

servations. This underestimation is larger for the simulations with a 24-hour time-step340

than for the 3-hour time-step. In terms of spatial resolution, both WaSim and Hydro-341

tel are more sensitive to changing the spatial resolution when the time-step of the sim-342

ulations is finer. Comparing the future and reference periods, a significant attenuation343

in the magnitude of the spring freshet and a backward shift in the timing of the peak344

can be observed for both models. There is also a considerable increase in streamflow in345

the fall and winter months (November to March) when comparing the present and fu-346

ture periods.347

Figure 4. Ensemble of annual hydrographs forced by ClimEx dataset per resolution and

compared with observed streamflow (dashed black line) for the Croche catchment. R and the

following number represents the spatial resolution of simulations in m and MR with the following

number represents the median of that ensemble.

Overall, it is not clear from Figures 3 and 4, whether there exists a pattern regard-348

ing the interaction between catchment size and the choice of hydrology model and spatio-349

temporal resolution. However, each of these elements can distinctly alter the catchment350

responses.351

3.2 Spatial distribution of the hydrological variables352

Figure 5 shows the spatial distribution of actual evapotranspiration (AET) and snow353

depth (SD) for the Croche catchment. The figure shows that by the end of the century354

(period 2081-2100), AET will increase by 5 to 10 % according to Hydrotel simulations355

(panels a to d) and 15 to 30% according to WaSiM simulations (panels e to h). A sig-356

nificant negative change in snow depth is observable, as by the end of the century, the357
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Figure 5. Percentage change of actual evapotranspiration (AET) and snow depth (SD) from

reference (1991-2010) to far-future (2081-2100) periods for the Croche catchment. R and the

following number represent the spatial resolution of simulations in m.

average amount of snow on the ground decreases by around 40% to 50% according to358

WaSiM (panels m to p) and Hydrotel (panels i to l) simulations. The considerable re-359

duction of spring freshet between 2081-2100, as seen in Figure 4, is a result of that re-360

duction in snow depth. Since the amount of snow depth reduction in simulations with361

Hydrotel is higher than in WaSiM (comparing the third and fourth rows in Figure 5),362

the hydrographs produced by Hydrotlel (Figure 4: panels f and h) are more flattened363

than those produce by WaSiM (Figure 4: panels b and d).364

Changing spatial resolution affects the magnitude of change in the simulation of365

AET. According to panels a to d and e to f (Figure 5), decreasing spatial resolution cor-366

responds with around a 5 to 15% (depending on the hydrological model) increase of change367

in the AET. For snow depth, changing spatial resolution has no considerable effect on368
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Figure 6. Empirical cumulative distribution function (ECDF) of extreme summer-fall flow

for reference (ref-solid lines) and future (fut-dashed lines). R and the following number represent

the spatial resolution in m. W and H are simulations with WaSiM and Hydrotel respectively and

their following numbers represent the temporal resolution in an hour

the final results. No significant spatial pattern has been detected for the distribution of369

AET across the catchment. For snow depth, both models agree on projecting lower val-370

ues for the southern part with lower altitude illustrating that low-altitude regions are371

more sensitive to the effect of climate change than high-altitude regions.372

3.3 Summer-fall extreme flow373

Figure 6, shows the empirical cumulative distribution function of maximum summer-374

fall flow simulated by WaSiM and Hydrotel for the reference and future periods per catch-375

ment and resolution. The catchments are ordered in terms of size: the first row shows376

the results for the smallest catchment and the last row shows the results for the largest.377

Each spatial resolution is identified by a different color and the future and reference pe-378

riods are shown in dashed and solid lines respectively. The letters W and H represent379

WaSiM and Hydrotel respectively, with subscript numbers that indicate the time-step380

of the simulation (e.g., W24 is the WaSiM simulation with a 24-hour time-step.)381

A pattern regarding the effect of catchment size and the choice of temporal reso-382

lution on the change of extreme flow between the reference and future periods is observ-383

able. For small catchments (Boyer and Aux Brochets), by refining the time-step of sim-384

ulation, there are flow quantiles from which the future extreme flow exceeds that of the385

reference. This is more clear for WaSiM simulations in panels c) and g). For example,386
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in panel c), when the spatial resolution is 100 m, future flows larger than a flood with387

a 2-year return period (i.e. non-exceedance probability of 0.5) is larger than that of the388

reference. A similar pattern is also observable for Hydrotel simulations of those catch-389

ments (i.e. d and h), even though not as clear as WaSiM simulations. By increasing the390

catchment size (Chaudière and Croche), the graphs show decreasing magnitude of ex-391

treme summer-fall flow between the reference and future periods with the same return392

periods, regardless of temporal resolution. These observations are in accordance with the393

first hypothesis of this research. Note that the case of Boyer catchments is complicated394

for very large return periods (¿100-year), as even when the time-step of simulations is395

24 hours, the magnitude of a future flood with the same return period exceeds that of396

the reference period (panels a and b).397

For smaller catchments, by changing spatial resolution, the intersection point of398

future and reference graphs significantly varies. For example, in panel g), with 1000 m399

spatial resolution, the intersection point is equivalent to a flood with the magnitude of400

a 3-year return period, but when the spatial resolution is 100 m, the intersection point401

is equivalent to a flood with the magnitude of the 10-year return period. The difference402

between simulations caused by the change of spatial resolution can also be seen in pan-403

els c, k, and o even though the differences between those graphs are smaller. In all cases,404

whether the time-step of simulation is 3- or 24-hour, simulations by WaSiM have a higher405

sensitivity to the choice of spatial resolution compared to Hydrotel. These differences406

illustrate the importance of the choice of spatial resolution and hydrology model. How-407

ever, no pattern regarding the catchment size and those choices is observable (therefore408

the second hypothesis cannot be validated from these results).409

To further investigate the observations made regarding Figure 6, the relative change410

of extreme flow for specific quantiles (i.e. flood with 2, 10, 20, and 100-year return pe-411

riods) is driven and presented in Figure 7. The results are again ordered according to412

catchment size. As can be observed, the relative change increases when catchment size413

decreases. Comparing panels b) and d) with panels )a and c) shows that the magnitude414

of such increase is higher for the 3-hour time-step than for the 24-hour time-step (in ac-415

cordance with Hypothesis 1). Moreover, for simulations with a 3-hour time-step, the num-416

ber of pixels with a positive ratio is noticeably higher than with a 24-hour time-step. This417

demonstrates that the simulated magnitude of flood events with lower return periods in418

the future increase if a fine temporal resolution is used.419

There is no clear pattern regarding the role of spatial resolution in determining the420

magnitude and direction of change. However, the choice of resolution is not trivial: for421

example, QT95 in Boyer-R100 (panel a) and QT50 in Boyer-R100 (panel b) undergo a422

positive change for 100 m resolution but a negative change for all other resolutions. The423

choice of model has also important implications as the patterns for Hydrotel and WaSiM,424

particularly for 24-hour simulations, are different. Comparing panels a) and c), Hydro-425

tel produces more simulations with positive relative change than WaSiM. However, WaSiM426

simulations with positive relative change have a larger magnitude than for Hydrotel. Again427

these observations confirm the importance of the choice of spatial resolution and hydrol-428

ogy models, but cannot validate the second hypotheses.429

3.4 Spatial trend430

Figures 8 (Boyer) and 9 (Croche) show the spatial distribution of the trend for the431

maximum annual summer-fall flow simulated by WaSiM, calculated as explained in sec-432

tion 2.5.3, and presented as the percentage of mean annual summer-fall streamflow. This433

covers the entire simulation period (1991-2100). In this figure, R represents the spatial434

resolution in m, which is followed by the simulation time-step. The hatched area cov-435

ers the location where the trend is statistically significant at a 5% level ( p− value <436

5%).437
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Figure 7. Relative change of summer-fall extreme flows (QT50,QT95,. . . ) ordered according

to catchment size and spatial resolution.
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Figure 8. The projected change in the annual maximum summer-fall flows (SFF) for the

Boyer catchment from 1991 to 2100 (all simulated by WaSiM and expressed by percentage of

mean SFF in the reference period). R and the following number represent spatial resolution in m.

The hatched area covers the area for which the trend is significant at the 5% level according to

the Mann-Kendall test.
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Figure 9. The projected change in the annual maximum summer-fall flows (SFF) for the

Croche catchment from 1991 to 2100 (all simulated by WaSiM and expressed by percentage of

mean SFF in the reference period). R and the following number represent spatial resolution in m.

The hatched area covers the area for which the trend is significant at the 5% level according to

the Mann-Kendall test.

Figure 8 shows that a positive trend holds for all simulations with a 3-hour time-438

step (a to d), regardless of the spatial scale. Moreover, except for R250(3h) (panel a),439

the trend is significant across most of the catchments. A negative trend emerges across440

the catchment when the time-step increases (panels e to h), except for the highest (finer)441

spatial resolution (i.e. e: R250(24h)) (hypothesis 1). Changing the spatial resolution has442

important implications here: the average magnitude of the trend across the catchment443

varies from larger than +5 to more than +20 % for simulations with 3-hour time-step444

(panels a to d), and from around +3 to less than -10% of that for daily simulations (pan-445

els e to h), illustrating large uncertainties in the projection of high flow (hypothesis 2).446

There is no distinguishable pattern regarding the relationship between the magnitude447

and direction of the trend and the spatial resolution.448
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For the Croche catchment, the spatial distribution of the linear trend is negative449

regardless of the time step and the spatial resolution of the simulations (hypothesis 1).450

Similar to the Boyer catchment, changing the spatial resolution of the simulations causes451

large uncertainties: the magnitude of the trend varies from around -5 to -10 % of summer-452

fall streamflow for a 3-hour time-step (panels a to d), and from less than -5 to around453

-20 % for daily simulations (panels e to h). Note that like the Boyer catchment, no pat-454

tern regarding a relationship between the spatial resolution of simulation and the mag-455

nitude of the trend is distinguishable. It appears that by changing the time-step from456

3- to 24-hour, larger negative trend values (in terms of magnitude) emerge, showing that457

the subdaily simulations even influence the trend for the large catchment. The influence,458

however, is not large enough to change the direction of the trend (hypothesis 1). Note459

that, unlike the Boyer catchment, the trends calculated for the 3-hour time-step are not460

significant here.461

Observations made in this section are in line with the first hypothesis, as refining462

the time-step of simulation has mostly influenced the small catchment (i.e., Boyer: Fig-463

ure 8) rather than the large catchment (i.e., Croche: Figure 9). The second hypothesis464

cannot be confirmed or rejected with the information provided here.465

3.5 Variance decomposition466

Figure 10 shows the variance decomposition of the relative change in the extreme467

summer-fall flow into the contribution of spatial resolution, time-step, hydrology model,468

and their combinations. Results for smaller catchments are shown on the top side and469

larger catchments are on the bottom side. The spatial resolution has only a minor con-470

tribution to the changes for the Boyer catchment. However, this contribution becomes471

significant when changing the resolution is combined with other factors ( 19% of the vari-472

ance results from changing the spatial resolution and the hydrology model). For the Aux473

Brochets catchment, the spatial resolution has a larger contribution to the total variance474

(15%). This is in line with the results from Figure 6, where the change of spatial reso-475

lution created a large difference between simulations. Interestingly, by increasing the catch-476

ment size from 584 km2 (Aux Brochets) to 781 km2 (Chaudière) and 1563 km2 (Croche),477

the contribution of spatial scale in variability, first significantly drops (< 1%) and then478

increases back to 14%. This clearly suggests a lack of a clear pattern between catchment479

size and spatial scale (hypothesis 2 regarding spatial scale cannot be verified). The vari-480

ance obtained from changing the time step is important for all catchments. But simi-481

lar to spatial scale, a clear relationship between catchment size and time-step cannot be482

found in this context (hypothesis 2 regarding temporal scale cannot be verified). Chang-483

ing the hydrology model impacts the variance for the largest catchment (Croche) the most,484

and loses its contribution by decreasing catchment size (Hypothesis 2 regarding the hy-485

drology model can be verified). Note that the combined effect of simultaneously chang-486

ing the hydrology model and the temporal or spatial resolution can be an important source487

of variability, but the combined effect of spatial and temporal scale is not as important.488

4 Discussion489

This study continues our previous research (i.e., Markhali et al., 2022) in quanti-490

fying the uncertainty linked to the spatio-temporal representation of catchments in hy-491

drology models. In this research, we did not implement the ensemble method by mix-492

ing and matching the parameters and catchment descriptors with different resolutions,493

due to the computational costs of simulating a large-ensemble of long-duration time se-494

ries. In the previous study, we learned that the uncertainty linked to the catchment het-495

erogeneity is mostly sensitive to the choice of hydrology model, in the sense that the more496

sophisticated model in terms of representation of hydrology processes (i.e. WaSiM) cre-497
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Figure 10. Variance decomposition for the relative change in summer-fall extreme flows (aver-

age of 2, 10, 20, and 100 yr return periods).
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ates larger uncertainties linked to the catchment heterogeneity compared to less sophis-498

ticated model (i.e. Hydrotel).499

We focused on quantifying that uncertainty in the projection of extreme summer-500

fall streamflow. We separated catchments based on their surface area. This was neces-501

sary because the flood generation mechanism for small and large catchments are differ-502

ent (Blöschl, 2022b). Small catchments are more sensitive to the infiltration excess runoff,503

while large catchments are sensitive to the saturation excess runoff (Blöschl, 2022a). The504

results showed that in fact there are relations between the surface area and the choice505

of time-step and hydrology model in the final response of the catchments: First, using506

a finer time-step in simulations resulting a statically significant increase in the projec-507

tion of summer-fall flood hazard in the future for the small but not for the large catch-508

ment (Figures 8 and 9). Second, by increasing the catchment area, the contribution of509

the choice of hydrology model in the uncertainty increased (Figure 10).510

The individual contribution of spatial scale is smaller than the other two factors511

(it is between 1 to 15 % of the total uncertainty according to Figure 10). The question512

is, whether or not variations of spatial scale should be considered in the simulation for513

flood projection. To answer this question we investigate the response of the Boyer and514

Aux Brochets catchments to variation of spatial resolution:515

Regarding the Boyer catchment, Figure 10 shows that the joint contribution of spa-516

tial resolution and hydrology model in the variation of extreme summer-fall flow reaches517

up to 19%, which is the highest among all catchments. Also, in Figure 8 e) for WaSim518

simulations, when the spatial resolution is 100 m, the trend is zero or positive across the519

catchment. However, by lowering the resolution (panels g, h, i), the trend becomes neg-520

ative. According to Markhali et al. (2022), increasing the spatial resolution causes a non-521

linear decrease in the coefficient of interflow storage in WaSim for this catchment. This522

means that the saturation level of the soil is significantly higher for simulation with a523

100 m resolution compared to other choices of spatial resolutions. Because of the high524

value of soil moisture for the simulations with a 100 m resolution and increasing con-525

vective rainfall in the future, there is a positive trend in the simulation of high flow even526

if with a daily simulation time-step. By decreasing the resolution, the interflow storage527

increases, leading to lower antecedent soil moisture and consequently a negative trend528

for high flow in the 24-hour time step.529

The Aux Brochets catchment shows the largest sensitivity to the spatio-temporal530

resolution in flood projection (Figure 6). Coarsening the spatial resolution in WaSiM in-531

duces modifications to the slopes of this catchment in the model, which in turn causes532

a reorientation of surface and subsurface flows. This results in soil saturation in a por-533

tion of the catchment leading to the outlet (Markhali et al., 2022). High antecedent soil534

moisture combined with convective storms results in a rapid response of the catchment535

for simulations with low spatial but high temporal resolutions. The significantly larger536

magnitude of flood for the simulations with a 3-hour time-step and a spatial resolution537

of 500 to 1000 m (the red and black lines in Figure 6 b) could be attributed to the mech-538

anism explained above. The decomposition of the variance for this catchment in Figure539

10 confirms that the contribution of the spatial scale individually or together with the540

other factors explains 23% of the total variance, which is higher than two other larger541

catchments.542

Among all the catchments studied here, the Boyer catchment has the maximum543

human intervention in terms of deforestation and agriculture (Markhali et al., 2022). Also,544

Aux Brochets is a flat catchment with uneven areas (hills and valleys). This type of to-545

pography is more difficult to represent in hydrology models. Therefore, the hydrology546

model’s structure and the degree to which that model reflects the details of topographic547

and land-use characteristics are important factors to consider. This study suggests ac-548

counting for the variation of spatial resolution for flat catchments or catchments with549
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high agricultural lands if a distributed hydrology model with a high level of sophistica-550

tion in representing hydrological processes should be used.551

The intensive computational demand of the two distributed process-based hydrol-552

ogy models used in this research limits the number of catchments that could be included.553

There is an opportunity to work towards generalizing the conclusions of this research by554

involving a higher number of catchments, with different sizes and land uses. Moreover,555

adding more hydrology models with various structures seems necessary to gain more in-556

depth knowledge about the effect of the choice of process-based hydrology models in flood557

projection. Furthermore, the recent advances in increasing the spatial and temporal res-558

olution of RCMs are appealing to further investigate the impact of spatio-temporal res-559

olution in climate impact studies. Recent models with a high spatial resolution (¡4km)560

have shown promise in the simulation of convective-driven rainfall (Lucas-Picher et al.,561

2021). The problem with using these models is the large capacity required for their data562

(Gutowski et al., 2020). Also, coupling them with distributed hydrology models adds to563

the computational costs of the modeling. Further advancement in computational power564

and data storage is required for the application of these models in impact studies (Schär565

et al., 2020).566

5 Conclusion567

This study investigated the role of spatio-temporal resolution of simulations, the568

choice of hydrology model, and the catchment size in determining the change of extreme569

summer-fall flow in the future under climate change. A large-ensemble regional climate570

model simulation (ClimEx) was bias corrected by multi-variate bias correction (MBCn)571

and coupled with two distributed hydrology models (WaSiM and Hydrotel) to simulate572

streamflow over four catchments with different sizes across Quebec. Simulations have been573

conducted for different spatial (100, 250, 500, 1000 m) and temporal (24- and 3-hour time-574

steps) resolutions. Multiple experiments have been conducted to reject/validate two main575

hypotheses: 1) For small catchments, by increasing temporal resolution, the simulated576

extreme summer-fall flow in the future period becomes larger than that of the reference577

period. 2) The change in the spatio-temporal scale of modeling causes variability in the578

projection of extreme flow. By increasing the catchment size, the contribution of the choice579

of hydrology model and spatial scale in that variability increases, and that of the time-580

scale decreases.581

The experiments show that:582

• A pattern regarding catchment size and temporal resolution exists: simulations583

with 3-hour time-steps (Figures 6, 7, 8) predict that extreme summer-fall flow will584

increase in the far-future for small catchments, regardless of model and spatial res-585

olution. Therefore, the first hypothesis is verified for this case study. Moreover,586

the choice of a simulation time step is a major determinant in the variability of587

flood projection for small catchments and by increasing catchment size, its influ-588

ence decreases (Figure 10). As a result, part of the second hypothesis concerning589

the relationship between temporal resolution and small catchments is also veri-590

fied for this case study.591

• For large catchments, the choice of spatial resolution has a larger contribution in592

the simulation of extreme summer-fall flood (Figures 6 and 10). This however does593

not exceed the contribution of the choice of time-step (Figure 10). Moreover, if594

the time-step is 24-hour, it is likely that the spatial resolution changes the direc-595

tion of the trend for small catchments (Figures 8 and 9 and section 4). Therefore,596

part of the second hypothesis concerning the impact of spatial resolution on large597

catchments cannot be verified here.598

• The choice of a hydrology model can be important for both small and large catch-599

ments. It appears that by increasing the catchment’s size this choice becomes more600
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important (e.g., Figure 8 and 10). Therefore, part of the second hypothesis regard-601

ing the impact of the choice of a hydrology model on large catchments can be ver-602

ified here. In all cases, WaSiM shows a higher variance than Hydrotel for stream-603

flow projections (Figure 6).604
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Duethmann, D., Blöschl, G., & Parajka, J. (2020). Why does a conceptual hydro-707

logical model fail to correctly predict discharge changes in response to climate708

–23–



manuscript submitted to Water Resource Research

change? Hydrology and Earth System Sciences, 24 (7), 3493–3511.709

Dunne, T., & Black, R. D. (1970). Partial area contributions to storm runoff in a710

small new england watershed. Water resources research, 6 (5), 1296–1311.711

Faghih, M., Brissette, F., & Sabeti, P. (2022). Impact of correcting sub-daily cli-712

mate model biases for hydrological studies. Hydrology and Earth System Sci-713

ences, 26 (6), 1545–1563.714

Field, C. B., Barros, V., Stocker, T. F., & Dahe, Q. (2012). Managing the risks715

of extreme events and disasters to advance climate change adaptation: special716

report of the intergovernmental panel on climate change. Cambridge University717

Press.718

Fortin, J.-P., Turcotte, R., Massicotte, S., Moussa, R., Fitzback, J., & Villeneuve,719

J.-P. (2001a). Distributed watershed model compatible with remote sensing720

and gis data. ii: Application to chaudière watershed. Journal of Hydrologic721

Engineering , 6 (2), 100–108. Retrieved from https://doi.org/10.1061/722

(ASCE)1084-0699(2001)6:2(91)723

Fortin, J.-P., Turcotte, R., Massicotte, S., Moussa, R., Fitzback, J., & Villeneuve,724

J.-P. (2001b). Distributed watershed model compatible with remote sensing725

and gis data. ii: Application to chaudière watershed. Journal of Hydrologic726

Engineering , 6 (2), 100–108. Retrieved from https://doi.org/10.1061/727

(ASCE)1084-0699(2001)6:2(100)728

Fowler, H. J., Ali, H., Allan, R. P., Ban, N., Barbero, R., Berg, P., . . . others (2021).729

Towards advancing scientific knowledge of climate change impacts on short-730

duration rainfall extremes. Philosophical Transactions of the Royal Society A,731

379 (2195), 20190542.732

François, B., Schlef, K., Wi, S., & Brown, C. (2019). Design considerations for733

riverine floods in a changing climate–a review. Journal of Hydrology , 574 , 557–734

573.735

Freeze, R. A., & Harlan, R. (1969). Blueprint for a physically-based, digitally-736

simulated hydrologic response model. Journal of hydrology , 9 (3), 237–258.737

Gebremicael, T., Mohamed, Y., & Van der Zaag, P. (2019). Attributing the hy-738

drological impact of different land use types and their long-term dynamics739

through combining parsimonious hydrological modelling, alteration analysis740

and plsr analysis. Science of the Total Environment , 660 , 1155–1167.741

Golden, H. E., & Knightes, C. D. (2011). Simulated watershed mercury and nitrate742

flux responses to multiple land cover conversion scenarios. Environmental Toxi-743

cology and Chemistry , 30 (4), 773–786.744

Gomi, T., Sidle, R. C., & Richardson, J. S. (2002). Understanding processes and745

downstream linkages of headwater systems: headwaters differ from downstream746

reaches by their close coupling to hillslope processes, more temporal and spa-747

tial variation, and their need for different means of protection from land use.748

BioScience, 52 (10), 905–916.749

Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of750

the mean squared error and nse performance criteria: Implications for improv-751

ing hydrological modelling. Journal of hydrology , 377 (1-2), 80–91. Retrieved752

from https://doi.org/10.1016/j.jhydrol.2009.08.003753

Gutowski, W. J., Ullrich, P. A., Hall, A., Leung, L. R., O’Brien, T. A., Patricola,754

C. M., . . . others (2020). The ongoing need for high-resolution regional climate755

models: Process understanding and stakeholder information. Bulletin of the756

American Meteorological Society , 101 (5), E664–E683.757

Hamon, W. R. (1961). Estimating potential evapotranspiration. Journal of the Hy-758

draulics Division, 87 (3), 107–120. Retrieved from https://doi.org/10.1061/759

JYCEAJ.0000599760

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J.,761
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Lucas-Picher, P., Argüeso, D., Brisson, E., Tramblay, Y., Berg, P., Lemonsu, A., . . .810

Caillaud, C. (2021). Convection-permitting modeling with regional climate811

models: Latest developments and next steps. Wiley Interdisciplinary Reviews:812

Climate Change, 12 (6), e731.813

Lucas-Picher, P., Lachance-Cloutier, S., Arsenault, R., Poulin, A., Ricard, S., Tur-814

cotte, R., & Brissette, F. (2020). Will evolving climate conditions increase815

the risk of floods of the large us-canada transboundary richelieu river basin?816

JAWRA Journal of the American Water Resources Association. Retrieved817

from https://doi.org/10.1111/1752-1688.12891818

–25–



manuscript submitted to Water Resource Research

Markhali, S. P., Poulin, A., & Boucher, M.-A. (2022). Spatio-temporal discretization819

uncertainty of distributed hydrological models. Hydrological Processes, e14635.820

Martel, J.-L., Brissette, F., & Poulin, A. (2020). Impact of the spatial density821

of weather stations on the performance of distributed and lumped hydro-822

logical models. Canadian Water Resources Journal/Revue canadienne des823

ressources hydriques, 1–14. Retrieved from https://doi.org/10.5194/824

gmd-12-2501-2019825

Martel, J.-L., Brissette, F. P., Lucas-Picher, P., Troin, M., & Arsenault, R. (2021).826

Climate change and rainfall intensity-duration-frequency curves: Overview827

of science and guidelines for adaptation. Journal of Hydrologic Engineering ,828

26 (10).829

Martel, J.-L., Mailhot, A., & Brissette, F. (2020). Global and regional projected830

changes in 100-yr subdaily, daily, and multiday precipitation extremes esti-831

mated from three large ensembles of climate simulations. Journal of Climate,832

33 (3), 1089–1103.833

Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., . . .834
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a) WaSiM simulations-24h
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