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Abstract

Species abundance distributions, meaning counts of individuals apportioned among species, are fundamental patterns in ecology.

Numerous distribution models have been proposed, and most suffer from poor fit to data, complex formulation, excessive

parameterisation, or unrealistic modelling of processes. I discuss three that meet all the basic criteria, are easily distinguished,

and stem from simple and distinct population dynamics. The log series can be produced by assuming taxonomically and

temporally fixed turnover rates. A model derived from scaled odds ratios assumes highly variable dynamics, and one derived

from exponential variates assumes taxonomically variable but temporally fixed rates. Mathematical derivations are elementary.

Maximum likelihood fits to published empirical data suggest that the two new distributions are more common in nature.

Saturated models are rarely better. Ecological communities may be assembled by processes that are easily discerned, instead

of being as mysterious as many have thought.
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Abstract

Species abundance distributions, meaning counts of individuals apportioned among species, are fundamental
patterns in ecology. Numerous distribution models have been proposed, and most suffer from poor fit to
data, complex formulation, excessive parameterisation, or unrealistic modelling of processes. I discuss three
that meet all the basic criteria, are easily distinguished, and stem from simple and distinct population
dynamics. The log series can be produced by assuming taxonomically and temporally fixed turnover rates.
A model derived from scaled odds ratios assumes highly variable dynamics, and one derived from exponential
variates assumes taxonomically variable but temporally fixed rates. Mathematical derivations are elementary.
Maximum likelihood fits to published empirical data suggest that the two new distributions are more common
in nature. Saturated models are rarely better. Ecological communities may be assembled by processes that
are easily discerned, instead of being as mysterious as many have thought.

INTRODUCTION

Species inventories are the universal currency of community ecology: counting individuals that belong to
each of the species in a place is a routine and fundamental practice. These counts are the basis of key
community assembly theories (Fisher et al., 1943; MacArthur, 1957; Bulmer, 1974; Caswell, 1976; Hubbell,
2001). It is thought that count distributions usually tail off with an array of rare species (McGill et al.,
2007). When this is true, estimating species richness is difficult and dangerous because inventories are likely
to be quite incomplete (Colwell & Coddington, 1994). Biodiversity is of deep concern throughout science
and society, making it imperative to solve this problem. I focus here on the richness estimation strategy of
fitting inventories to mathematical distributions that imply fixed numbers of missing species. In the course
of doing so, I show not only that this idea is feasible but that fundamental processes of community assembly
can be distinguished using basic inventory data.

Population dynamical models going back to Kendall (1948) have been used before to predict shapes of species
abundance distributions (SADs), but the SADs have generally involved multi-parameter equations (Volkov
et al., 2005; Jabot & Chave, 2011). The three models considered here all require a single parameter. I
put aside other single-parameter models such as the broken stick (MacArthur, 1957), the geometric series
as applied to rank-abundance distributions (Motomura, 1932), the logistic-J (Dewdney, 2000), and the Zipf
(see Newman, 2005) because they have received little support in comprehensive assessments of distributions
(Alroy, 2015; Baldridge et al., 2016) and have not been considered in many studies that have treated two or
three distributions at a time (Hughes, 1986; Dewdney, 2000; Connolly et al., 2005; Ulrich et al., 2010; Antão
et al., 2021). I do not consider the gambin model (Ugland et al., 2007; Matthews et al., 2014) because it
appears only to describe distributions of counts binned into octaves on a log scale (Preston, 1948). Gray et
al. (2006) are among several to have pointed out problems with this approach. So like others including Antão
et al. (2021), this study is concerned with models such as the log series (Fisher et al., 1943) that predict
counts of singletons, doubletons, and so on – i.e., SADs in a restricted sense.

I also do not consider two-parameter distributions such as the classic Poisson log normal (PLN: Bulmer,
1974) and the truncated negative binomial (Connolly et al., 2009; Connolly & Thibaut, 2012). These models
have much traction: for example, the PLN has been argued to fit extensive datasets of trees, birds, fishes, and
benthic organisms (Antão et al., 2021), not to mention all GBIF occurrence records in the world combined
(Callaghan et al., 2023). Meanwhile, the negative binomial has been fit to a vast data set for Amazonian trees
(ter Steege et al., 2020). There are two major reasons not to consider these models for the moment. First,
they overfit the data, reducing chances of predicting related patterns. Second, one-parameter distributions
are often so good that they cannot be rejected by a saturated model. The latter is a highly resolved function
that closely mirrors the raw counts instead of following a proper parameterised distribution. This paper
shows how to construct a saturated model and how to assess its fit to the data. The upshot is that the three
substantive models under consideration perform so well there is little left to explain.

MATERIAL AND METHODS

Data
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The empirical data consist of 3095 published species inventories from around the world representing terrestrial
organisms: trees, arthropods, and tetrapods. They were downloaded from the Ecological Register website
(http://ecoregister.org) on 13 November 2022. The 82,870 identifications stem from 2019 publications. A
total of 27,045 formal Linnean species are represented by 73,133 of these records, and the rest are specifically
indeterminate. Every record is associated with a count of individuals encountered. Major animal groups
include ants, butterflies, bats, birds, dung beetles, frogs, large mammals, lizards, mosquitoes, odonates,
orthopterans, and small mammals. Earlier versions of the database have featured in several publications
(e.g., Alroy 2015, 2017, 2018).

Distribution fitting

Methods of fitting data to abundance models are contentious, with many protocols having been advocated
(Matthews & Whittaker, 2014). As mentioned, all of the models considered here seek to explain SADs sensu
stricto, which are vectors that record the number of species each sharing a given count of individuals (Fisher
et al., 1943).

It is very important to stress that SADs are not equivalent to rank abundance distributions (RADs). These
are useful for depicting counts (e.g., Motomura, 1932, MacArthur, 1957) and are commonly used even by some
contemporary workers to fit distribution models (e.g., Nekola et al., 2008; Ulrich et al., 2010, 2015). There are
at least four major reasons not to fit data to RADs: (1) key theoretical models directly predict SAD shapes,
not RADs; (2) most models that do directly predict RADs, such as the geometric series (Motomura, 1932),
are no longer considered to be viable descriptors of real-world ecological communities (Alroy, 2015; Baldridge
et al., 2016); (3) maximum likelihood methods have been developed to fit models to SADs (e.g., Connolly
et al., 2005; Connolly & Thibaut, 2012) and are generally advocated over the many alternatives (Gray et
al. 2006; Whittaker & Matthews, 2014; Antão et al., 2021), but RADs are generally fit using frequentist
methods; and (4) it is difficult to model the error in species ranks because any variation in the count of a
species could also change its rank, so the x- and y-axes in an RAD are not statistically independent.

A third approach is also worth mentioning: to bin the counts into classes on a log scale, equivalent to a
histogram where the boxes show the number of species in classes 1, 2, 3 – 4, 5 – 8, 9 – 16, etc. (Preston,
1948). This strategy is still used (e.g., Matthews et al., 2014), but it has rightly been rejected because it
loses too much information and can introduce artefacts (Gray et al., 2006; Nekola et al., 2008).

Here I use a fast and reliable maximum likelihood computation for fitting. It is the most obvious approach:
define the likelihood by multiplying the probabilities of the individual counts based on the SAD. Specifically,
if there are s 1 singletons ands 2 doubletons out of S species and if the hypothesised PMF is p 1,p 2, p 3. . . ,
then the joint likelihood is p 1

s 1 xp 2
s 2. . . .

This calculation works as well in practice as any other I have investigated, surpassing rivals in a suite of
tests that I do not have space to detail. It has a very interesting property: exactly the same solution is
always found by fitting a given set of counts to a multinomial model. The reason is that the combinatorial
terms distinguishing multinomial distributions from simple products of probabilities are constant across all
possible parameter values, so they wash out of any optimisation.

All models considered here use just one free parameter. However, many of the remaining models in the
literature assume two parameters (such as the PLN). For comparison across models in general, the corrected
Akaike information criterion (Hurvich and Tsai, 1993) is recommended. It has been used previously in this
context (Antão et al., 2021).

In practice, analysing a large data set requires examining a limited set of classes. Here, the computational
limit is treated as 214 = 16,384. Imposing this cutoff makes hardly any difference because just 45 out of
82,870 species counts in the database (0.05%) exceed it.

The log series

Also called the logarithmic series, the log series is the oldest description of SADs sensu stricto in the eco-

3
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logical literature (Fisher et al., 1943). The log series has been flagged as fitting tropical tree inventory data
sets particularly well (Ulrich et al., 2015) – but see below. The neutral model of biodiversity (Hubbell, 2001)
was developed in part to justify this belief, and it predicts the log series as a result of steady immigration,
continuous point speciation, and exactly balanced birth and death: each individual lost is replaced immedia-
tely. The assumption of constant turnover was used in earlier population dynamical models that predicted
the log series (e.g., Kendall, 1948; Caswell, 1976).

A particular algorithm that produces the series (Figs. 1A, B) is as follows: (1) the total population size
for a community of 10,000 species is fixed at some value N (here, 100 x 10,000); (2) at each time step, all
N individuals are removed; (3) and the N replacements are drawn from a probability distribution that is a
linear function of the preceding population sizes of individual species, so the relative probability of drawing
an individual of a species with nindividuals (i.e., its weight) is just n . The prevent permanent loss of species,
at the beginning of each step immigration is simulated. Whenever z species have zero counts, z individuals
are randomly assigned to increase the values for those species. So ifz is two, a missing species could end up
with 0, 1, or 2 individuals.

The basic form of the log series, meaning the probability mass function (PMF), is a proportion p between 0
and 1 raised to an integer series k and then divided by the same series:

P(X = x ) = –1/ln(1 – p )pk /k (1)

where the left-hand term is a scaling constant that causes the sum of probabilities to be 1 and p is a
constant fitted by a standard recursive equation (Chatfield, 1969; May, 1975). This form is a special case of
the negative binomial, but otherwise unique. It implies semi-log plotted RADs that each start with a rapid
drop in the counts of common species and then asymptote quickly on a straight falling line (Figs. 1A, B).

The scaled odds distribution

The second model assumes high variance across species and through time in counts (Figs. 1C, D). In this
case, not all individuals are replaced at each time step, so there is a non-trivial death process. Both births and
deaths depend on a random uniform variate τ that is reset at each time step. The number of deaths per time
step is a random binomial draw from the n individuals of each species based on its own τ probability of death.
The birth process is independent of population size, and random draws for each species are geometrically
distributed with a success probability of exactly τ. Thus, birth and death rates are positively correlated,
and an equilibrium is maintained because birth rates are steady and not per-capita.

The key biological assumption is that replacement probabilities at a given time are fixed for each given
species but highly variable across species. Because the probabilities change completely at each time step,
species have no innate properties and the model is neutral.

The PMF is derived as follows. First, relative abundances on a continuous scale are defined as tracking
an odds distribution. The odds are multiplied by a constant μ and specifically taken to predict abundance
values x on a continuous scale:

x = μ (1 – U )/U (2)

U is solved for by rearranging the odds:

x = μ/U – μ (3)

U = μ/(x + μ) (4)

Note that μ/U – μ still an odds ratio, just a scaled one.

Equation 4 defines 1 minus the cumulative distribution function (CDF) of the scaled odds distribution. Any
CDF starts at zero and reaches 1 asymptotically, and eqn. 4 does in fact start with a value of 1 wherex is
0 and decline to zero where x reaches infinity. A monotonically trending function that has limits of 1 and 0
also has an integral of 1, as in this case. Any PMF can be derived from a monotonic CDF by taking first

4
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differences and rounding down to integer values. This is the exact procedure used to derive the PMF of
the geometric series from the CDF of the exponential distribution (see Cohen, 1968 for an early example of
using the exponential in the context of constructing SADs). Thus, the scaled odds PMF is:

P(X = x ) = μ/(xi + μ) – μ/(xi + 1 + μ) (5)

which can be rearranged algebraically as:

P(X = x ) = μ/[(ξι + μ) (xi + 1 + μ)] (6)

The PMF’s value for the zero class is just:

P(X = 0) = μ/[μ (1 + μ)] = 1/(1 + μ) (7)

The sum of the values for the non-zero classes is therefore:

1 – 1/(1 + μ) = μ/(1 + μ) (8)

The PMF discounting the zero class is then easily defined by dividing eqn. 6 by eqn. 8:

P(X = x , X > 0) = (1 + μ)/[(xi + μ) (xi+ 1 + μ)] (9)

A valid estimator of the total species richness of the communityR is then trivially derived by dividing
observed richnessS by eqn. 8:

R = S (1 + μ)/μ (10)

The exponential-to-e distribution

This quite different but equally simple distribution can be motivated by a very similar population dynamics
model (Figs. 1E, F). Here, the turnover of each species is fixed and intrinsic, not changing through time. It
is based on a random number ε with an exponential distribution. In the illustrated trial, the distribution’s
rate λ is 0.5. Variable ε is converted to a proportion π using the ratio 1/(ε + 1), which scales π between 0
and 1. The binomial death probability is π

2and the geometric success probability is π.

A similar set of manipulations can be used to derive the PMF and richness estimator of this exponential-to-
e(expe ) distribution. The x values on a continuous scale are assumed to come not from an odds ratio but
from an exponential random variate with a rate of λ that is raised to the power of e , keeping in mind that
the negative logarithm of a uniform variate is exponentially distributed:

x = [–log(U )/λ]ε (11)

Τηε ΠΜΦ φολλοως χυιςκλψ:

Υ = εξπ(–λ x 1/e ) (12)

P(X = x ) = exp(–λxi
1/e ) – exp(–λxi + 1

1/e ) (13)

which does not reduce algebraically into anything more simple. However, the size of the zero class, size of
the non-zero class, and richness estimator are all trivial:

P(X = 0) = exp(–λ 01/e ) – exp(–λ 11/e ) = 1 – exp(–λ) (14)

P(X = x , X > 0) = exp(–λ) (15)

R = S /exp(–λ) (16)

The expe distribution is deeply related to the Weibull distribution, which has been of interest to ecologists
seeking to model SADs (Ulrich et al., 2018). Specifically, the e power term in eqn. 11 is a direct function
of the k variable in the Weibull probability density function. As a result, eqn. 13 is a special case of the
discrete Weibull distribution (Nakagawa & Osaki, 1975). The fact that eqn. 13 exactly follows from a basic
population dynamics model (Figs. 1E, F) justifies the choice of k used here.

5
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As noted, the odds and expe population models differ only in how year-to-year variation works. This fact
raises the question of whether the two might be unified by adding a single parameter to express the rate at
which relative abundances are scrambled through time: rapidly in an odds world, and not at all in an expe

world. The answer is no. In a potential unified model, a scaling variable κ could be introduced. Variable
μ in the odds eqn. 3 is then multiplied by κ, and U is raised to the power 1/κ. As κ increases, simple
calculations show that eqn. 3 rapidly converges on a scaled exponential function:

κ μ/U 1/κ
– κ μ ˜ –ln(U )/μ (17)

The right-hand side is just a root of the function defining expe . Therefore, bridging the gap between the
distributions would require defining a model with at least three parameters: the equivalents of κ and μ plus
a power term.

Saturated models

Intuitively, certain SAD shapes might be so unusual that shoehorning them into any of the models under
consideration would be uninformative. A good test is to show whether a distribution generated directly
from the raw data fits better. By this I mean what might be expected to be found in a new data set highly
resembling the one under consideration.

Specifically, I assume that the individual counts are random outcomes of a geometric sampling process. The
maximum likelihood estimate of the governing parameter of the geometric series p is just 1/(n+ 1) where n
is an individual count. I propose finding pfor each n , computing the PMF of the geometric series based on
each p , and averaging the PMFs that result. A smooth PMF lacking gaps results. It is necessary to assume
there are no zero counts for the calculation to replicate observed richness. Thus, each geometric series PMF
needs to be rescaled before summation, specifically by multipling the entire range of probabilities by n /(n
+ 1).

The alternative would be to assume a Poisson process (Bulmer, 1974). But Poisson variation around high
integers is small, making it difficult to fill the gaps at the high end of a predicted SAD shape. Furthermore,
a direct comparison of the two possible saturated models, which I lack space to illustrate, shows that the
one based on the geometric series yields better log likelihoods (LLs) for the current empirical data set.

Assessing LLs here is non-trivial because any saturated model overfits the data by preserving too much
fine-scale detail. A good solution is to randomly vary the species list across many trials. During each one,
the counts are sampled with replacement (i.e., bootstrapped), the averaged PMF is recomputed, and the LL
is found. The LLs are then averaged across trials. Consistent with the logic of all bootstrapping methods,
this procedure renders the PMF more of a prediction of future data then a description of existing data, which
is appropriate.

Empirical test of relative support

A ternary diagram is used to illustrate which distributions are most consistent with the tree and animal
species inventories. The saturated model is used as a baseline. For each inventory, the LL of each distribution
is subtracted from the LL for the saturated model and the difference is exponentiated to produce a relative
weight. For example, if the saturated model LL is 10 and the log series LL is 8, the weight is exp(2) = 7.39.
The weights are used to generate x -ycoordinates in a ternary diagram with the standard equation: x =
0.5 (2 wo + wl)/(wo + wl + we) where wo, wl, and we are the weights for the odds, log series, and expe

distributions; andy = 30.5/2 wl/(wo + wl + we).

Empirical test of sampling bias

Unlike conventional lower-bound richness extrapolators such as Chao 1 (Chao, 1984), the species richness
estimators proposed here (eqns. 10 and 16) are free of substantial sample size bias. This fact is demonstrated
with a subsample-and-extrapolate protocol. First, richness estimates are obtained for each of the species
inventories. Second, each one is randomly degraded by removing half of the individuals, and the estimates

6
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are recomputed. Consistency is assessed by computing the median offset on a log scale between the two sets
of estimates.

RESULTS

Relative to a saturated model, the terrestrial species inventory data show split support for the three distri-
butions (Fig. 2A). However, there is an interesting trend as more and more non-singleton species are picked
up by the sampling process. When samples are poor (blue points in Fig. 2A), support is ambiguous but
slightly shifted toward the axis connecting the log series and odds models. The reason is that small samples
are often either flat at random (resembling the log series) or heavily dominated by a single species at random
(resembling the odds distribution). The more heavily sampled and rich an inventory, the closer it moves
toward the expe corner of the graph (red points in Fig. 2A). There are exceptions: some of these points are
on edges of the triangle leading to the other distributions.

However, it seems fair to argue that although different communities follow different rules, a plurality of
diverse ones most closely adhere to the expe population dynamics system. Thus, it may be common for
turnover rates to vary among species but not through time. This fact is striking because the log series has
been heralded as a key feature of tropical tree communities (Ulrich et al., 2015), but it makes little sense
unless species instead behave almost identically.

There is clear variation in support across ecological groups (Figs. 2B – D). Tree inventories occupy much of
the expecorner and the edge of the central arch on that side (Fig. 2B). Bird inventories also take up the outer
edge of this arch, but mammal inventories cluster on the inner edge. Insect samples are widely scattered,
but ant, butterfly, dung beetle, and mosquito communities are all routinely found in the expe area. Finally,
frog and lizard samples are concentrated in the main arch. They tend to approach the odds corner when
sampling is strong.

In principle, saturated models might be hard to beat because any extreme outlier count or suggestion of
bimodality could challenge the one-parameter models. This is rarely true in practice: the saturated model
is best in only 859 cases (27.8%). It is notable that expe cannot be rejected most of the time: it fits 1749 of
3095 SADs (56.6%) better than the saturated model, as opposed to 1231 cases and coincidentally also 1749
cases (39.8 and 56.6%) for the odds and log series. Regardless, support for saturated models should never
be mistaken as potential support for multi-parameter distributions like the PLN because outliers, bimodal
patterns, and the like aren’t naturally predicted by those distributions either.

The SADs best fitting the four models are all diverse (Fig. 3). Of particular note, the Barro Colorado Island
tree counts (Fig. 2C: Condit et al., 1996) have been the subject of a high-profile dispute: Hubbell (2001)
argued that they follow the zero-sum multinomial distribution generated by his neutral theory, McGill
(2003b) that they are closer to the log normal, and Gray et al. (2006) that nothing could be concluded
because of difficulties with the octave plotting method of Preston (1948) used by the other authors. So what
may well be the most famous SAD in ecology is very closely matched by one of two models presented here
(expe ).

The scaled odds and expe species richness estimators are highly consistent (Figs. 4B, C). The median
estimates for half-samples are respectively 0.093 and 0.020 log units below the values for full samples.
Fisher’s α is equally consistent (Fig. 4A: median 0.055), but Chao 1 is greatly biased (Fig. 4D: 0.204).
It is meaningful that when assumptions are met, the estimates are almost exactly right: the median offset
is 0.012 for samples best matching expe and 0.003 in the other direction for those best matching the odds
distribution.

DISCUSSION

It is extremely important to emphasise that the two new distribution models disagree with the log series
because they explicitly assume a hard limit to species richness. No conflict among theories could be more
basic. Indeed, each novel distribution comes with an elementary species richness estimator that follows
directly from its single governing parameter (eqns. 10 and 16).
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Therefore, we now have within reach a real solution to the problem of estimating diversity that plagues the
ecological literature (Colwell & Coddington, 1994; Bunge et al., 2014). One could argue nonetheless that
a distribution-free approach to estimating richness is preferable. This is beside the point because fitting
distributions is a straightforward process, so identifying the right one is often easy.

Regardless, the most common so-called non-parametric richness estimators are all designed to produce lower
bounds instead of accurate, unbiased values. Examples include the jackknife estimators (Burnham & Over-
ton, 1978), the bootstrap estimator (Smith & van Belle, 1984), Chao 1 (Chao, 1984), the abundance coverage
estimator (Chao & Lee, 1992), and interpolation and extrapolation based on sample coverage (iNEXT: Hsieh
et al., 2016).

The reason for their systematic error is that they implicitly assume uniform abundance distributions, as I
have briefly noted before (Alroy, 2017). Otherwise, for example, the Poisson sampling theory that can be
used to easily derive Chao 1 (Alroy, 2017) would make no sense. The fact that real-world distributions are
virtually never uniform renders all of the many lower-bound estimators non-starters.

Computing joint evenness-richness measures such as Hill numbers (Hill, 1973; Chao et al., 2014) is a
widespread alternative approach to the diversity problem, and it is motivated by the difficulty of extrapo-
lating richness from incomplete survey data (Chao et al., 2014). After all, the key Hill number called the
Simpson index (Simpson, 1949) has no sampling bias if properly formulated (Hurlbert, 1971), and the classic
Shannon index (Shannon, 1948) is also robust. However, the odds and expe models produce no sample size
bias – even when their assumptions aren’t met (Figs. 4B, C). Thus, the undersampling problem that drives
the Hill number and extrapolation literature is now moot.

As for evenness, it does not exist as a separate concept in cases where any of the three one-parameter models
hold: there is no role for distribution ”shape” in these scenarios, so evenness is always fixed. Specifically,
the x parameter of the log series, the μ parameter of the odds distribution, and the λ parameter of expe are
all instead sampling intensity measures. The evenness concept is fundamental to ecology (Pielou, 1966; Hill,
1973; Tuomisto, 2012) and is routinely taught to undergraduate students as a core part of the discipline’s
theory. Ironically, the existence of ”evenness” as an attribute of real-world communities can now be called
into question. In cases where evenness is a non-concept, the Hill number approach is even less relevant:
differences amongst Hill numbers reduce to differences in how richness and evenness are balanced (Hill,
1973). The only Hill number entirely representing richness is richness itself.

The simulation models undergirding the three models make completely conflicting assumptions about birth
and death processes: they are either entirely invariant (log series), variable both taxonomically and tempo-
rally (odds), or variable taxonomically but not temporally (expe ). The latter two distributions both follow
from assuming that birth and death rates jointly track random uniform variates. The only difference is that
expe holds the rates constant through time, so they result from the invariant ecological traits of individual
species.

Testing the models with empirical data could be straightforward. For example, a study of tree community
ecology could examine counts of seedlings or saplings sorted by species. The counts might follow a geometric
distribution because this is assumed of birth rates in both of the new models. Just as interestingly, repeated
censuses across several years could be used to show whether varation is temporally consistent: do species
with high counts in a given year still have high counts in following years? If so, then the expe model should
hold for counts of adult individuals – meaning that traits matter. If not, then the odds model might be
sufficient.

The published empirical data suggest that the expe dynamic is actually the most common when sampling
is intense, richness is high, and a coherent, non-saturated pattern is present (Fig. 2A). The database is so
highly eclectic that this unlikely to reflect a bias in the primary literature or sampling of that literature
– trees (Fig. 2B), birds (Fig. 2C), and certain insect groups (Fig. 2D) have little in common, but all of
them often drift into the expe range of the diagram. There is some additional interesting variation across
ecological categories, but either expe or odds is often the strongest model. This fact is not very surprising
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considering that their assumptions are biologically basic: there is every reason to think that reproductive
rates do vary amongst species in the same communities, regardless of whether that variation is consistent
through time.

By contrast, the log series is usually not the best model for well-sampled terrestrial data (Fig. 2A; Antão et
al., 2021). It is widely believed that most empirical SADs do have a ”hollow curve” pattern, with long tails
of rare species that loosely fit the log series (McGill et al. 2007). But such RADs very often fit expe .

The fact that the log series isn’t dominant has very broad implications. The description of the model by
Fisher et al. (1943) is a classic in the field, and the deeply related neutral model of biodiversity (Hubbell,
2001) has been profoundly influential (Rosindell et al., 2011). Ironically, a large body of literature has been
devoted to altering Hubbell’s original model by adding yet more biological assumptions: variation through
dispersal limitation and habitat preference (Zillio & Condit, 2007), conspecific frequency dependence (Jabot
& Chave, 2011), and much more (e.g., Al Hammal et al., 2015). The neutral model was complex from the
start, explicitly assuming a major role for varying immigration rates and steady speciation rates in addition
to assuming complete ecological equivalence among species. Its variants are even more complex, and elaborate
models are unlikely to have fidelity to the world (Finocchiaro, 2021).

The odds and expe models succeed in capturing large differences among communities that one might sensibly
expect to exist, but they sidestep all the complexity. It is literally not possible for simpler models to exist. As
a result, ecologists may now have the tools to discern biologically important patterns by contrasting highly
testable and distinct theories of community assembly – and to finally estimate species richness in a robust
and justifiable manner.
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ecological-community-assembly

Figure 1. Simulation analyses based on three models of population dynamics. See the text for details of
the models. Species pools of 10,0000 species are assumed. Each illustrated pattern is the final set of counts
obtained after 1000 iterations of the relevant death and birth algorithm. Black lines = simuated data; red
lines = fits of the log series; blue lines = fits of the scaled odds distribution; green lines = fits of the expe

distribution. (A) A routine model producing a log series-shaped pattern, which assumes no variation among
species or through time in turnover rates (Kendall, 1948; Caswell, 1976; Hubbell, 2001). (B) The same data
with the x-axis on a square root scale. (C) A model producing the scaled odds distribution, which assumes
high variability among species and through time. (D) Square root scale. (E) A model producing the expe

distribution, which assumes high variability among species and no variation through time. (F) Square root
scale.
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Figure 2. Relative support for the three models. Cartesian coordinates are a function of log likelihood scores
relative to a saturated model (see text). Points near a corner are much better supported by the noted
distribution; points at a centre are equally well-described by all three distributions. (A) Performance as a
function of sampling intensity and species richness. Redder and larger points include more non-singleton
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species, characteristic of large sample sizes. (B) Tree inventories. (C) Mammal inventories (gold) and bird
inventories (turquoise). (D) Frog and lizard samples (green) and insect inventories (violet).
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Figure 3. Empirical distributions best fitting four species abundance distributions. Each one is favoured over
the next-best supported model by the largest margin observed across the entire Ecological Register data set.
Line colours are as in Fig. 1. (A) The log series is most strongly supported by an ant survey from southern
Ghana (Belshaw & Bolton, 1994). (B) The odds distribution is best supported by an arthropod inventory
from Jefferson City, Missouri (Dowdy, 1947). (C) The expe distribution is best supported by a tree inventory
from Barro Colorado Island, Panama (Condit et al., 1996). (D) A saturated model (line not shown) is most
strongly needed to account for a tree inventory from Mawnai, India (Mishra et al., 2005).
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Figure 4. A test of accuracy applied to four species diversity estimators. Each point represents a species
inventory of terrestrial trees, arthropods, or tetrapods drawn from the Ecological Register (Alroy, 2015).
The logged x-axis shows estimates based on the original, complete inventories; the logged y-axis shows
estimates based on estimates recomputed after randomly excluding half of the individuals in each inventory.
Diagonal lines are lines of unity, so scatters centered below the lines indicate bias. (A) Fisher’s α (Fisher et
al., 1943). (B) Estimates based on fitting the scaled odds distribution (eqn. 10). (C) Estimates based on
fitting the expedistribution (eqn. 16). (D) Estimates based on the Chao 1 index (Chao, 1984).
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