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Abstract

In this paper, we investigate a class of anisotropic initial-boundary value problems, involving the Finsler-Laplacian. Firstly, by

using a first-order differential inequality technique, we provide some appropriate conditions on the data which guarantee the

blow-up of the solution at some explicit finite time. Next, under different appropriate conditions on the data, we will make

use of a comparison principle to prove the global boundedness of the solution. Finally, by using a maximum principle for an

appropriate P-function, in the sense of L.E. Payne, we derive some explicit exponential time decay bounds for the solution and

its derivatives..
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Abstract
In this paper, we investigate a class of anisotropic initial-boundary value problems, involving the Finsler-
Laplacian. Firstly, by using a first-order differential inequality technique, we provide some appropriate
conditions on the data which guarantee the blow-up of the solution at some explicit finite time. Next, under
different appropriate conditions on the data, we will make use of a comparison principle to prove the global
boundedness of the solution. Finally, by using a maximum principle for an appropriate P-function, in the sense
of L.E. Payne, we derive some explicit exponential time decay bounds for the solution and its derivatives..
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1 INTRODUCTION

In this article, we investigate a class of anisotropic initial-value problems representing the mathematical model for the thermal
conductivity in a material which conducts heat at different rates, depending on its crystallographic structure or composition.
In most of the applications intensively studied so far, the heat diffusion is typically modeled as isotropic, which means that it
is the same in all directions and the Laplace operator is the one which naturally appears into the corresponding heat diffusion
equation. The mathematical model of the anisotropic heat conductivity requires consideration of the properties of the materials
described above, so the Laplacian operator has to be replaced with a more complex operator and in this paper we consider the
Finsler-Laplacian, which better describes the relation between the heat flux and the temperature gradient in each direction.
Such problems are highly interesting for researchers from many fields of science and engineering, since they appear in many
applications, such as, for instance, the design of electronic devices (microchips), aircrafts etc., where high heat fluxes can occur
and the anisotropic diffusion of the heat can affect the performances of the devices, the failure or damage of the aircraft etc.
Surprisingly, despite the importance of these problems in applications, it seems the literature is still very poor in results on
this type of thermal conductivity. To our knowledge, at this moment there is only one paper in the literature discussing the
anisotropic heat diffusion, involving the Finsler-Laplacian, namely the recent paper by G. Akagi, K. Ishige and R. Sato1. This
paper is the first one dealing with some fundamental questions for the anisotropic parabolic problems described above, regarding
the blow-up, global boundedness and time decay estimates of the solution.

AMS Subject Classification: 35K20, 35K59, 35B44, 35B50.
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Let n ≥ 2 and H : Rn → [0,∞) be a convex function of class C4 (Rn \ {0}), which satisfies the following conditions

H(tξ) = |t|H(ξ) for any t ∈ R, ξ ∈ Rn,

H ≥ 0 in Rn and H (ξ) = 0 if and only if ξ = 0,

Hess
(
H2
)

is positive definite in Rn \ {0}.

(1.1)

We say that such a function is a norm on Rn, since it has the properties of a norm. A typical example is the lp-norm, that is

H(ξ) = ∥ξ∥p =

(
n∑

i=1

ξp
i

)1/p

for p ∈ (1,∞) . (1.2)

The anisotropic Laplacian (or Finsler-Laplacian) of a function u : Rn → R, with respect to the above norm H, is defined by

∆Hu(x) :=
n∑

i=1

∂

∂xi

(
H(∇u)Hξi (∇u)

)
. (1.3)

where
Hξi =

∂H
∂ξi

(ξ) and ∇u(x) =
(

∂u
∂x1

(x), ...,
∂u
∂xn

(x)
)

. (1.4)

For instance, when H is the standard Euclidean norm, then the Finsler-Laplacian coincides with the standard Laplacian, that
is ∆H = ∆. Note also that here and in what follows we use ξ ∈ Rn for the argument of H and x ∈ Rn for the argumend of a
function u.

The Finsler-Laplace operator has been intensively studied in the last few decades in various contexts, including both the
Finsler geometry (see, for instance, M-Amar - G. Belletini3, S.-I. Ohta15,16, S.-I. Ohta - K.-T. Sturm17,18, Z. Schen25 and the
references therein) and the partial differential equations, mainly of elliptic type (see, for instance, A. Alvino et al.2, V. Ferone -
B. Kawohl8, A. Cianchi - P. Salani6 and references therein).

This paper is concerned with the following class of initial-boundary value problems for the Finsler-Laplacian:
∆Hu – ut = f (u), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = g(x), x ∈ Ω,

(1.5)

where Ω ⊆ Rn is a bounded domain with a C2,ϵ-boundary ∂Ω, while f and g are given functions assumed to satisfy the following
conditions:

f ∈ C1, f (0) = 0, f (x) ≥ 0, s > 0, (1.6)

g ∈ C2, g ≥ 0, g(x) = 0, x ∈ ∂Ω. (1.7)

Under these assumptions on the data, the maximum principle implies that u (x, t) is nonnegative. Note also that since Hess
(
H2
)

is positive definite in Rn\ {0} and H2 is homogeneous of degree 2, then H2 is strictly convex in Rn and ∆H is an uniformly
elliptic operator in any compact subset of Ω\ω, where ω := {x ∈ Ω : ∇u = 0}. Since H ∈ C4 (Rn\ {0}), we have by the classical
regularity theory that the solution of (1.5) is of class C3 on Ω\ω (see O. A. Ladyzenskaja-V. A. Solonnikov-N. N. Uralceva12).
Therefore, we will consider as solutions of equation from (1.5) the strong solutions for which the equality in the equation holds
almost everywhere.

It is well-known that the solutions of the initial-value problems may not exist for all time and that the only way that the
solution can fail to exist is by becoming unbounded at some finite time t (see, for instance, the case H(ξ) = |ξ| in J.M. Ball4 or H.
Kielhofer11). In Section 2 of this paper, we will establish conditions on the data of problem (1.5) forcing the solution u(x, t) to
blow up at some finite time t∗ and, under these conditions, we derive an upper bound for the blow up time t∗. In Section 3, we
determine conditions on the data sufficient to guarantee global boundedness of the solution. Finally, in Section 4, under some
appropriate conditions on the data we will derive some explicit exponential decay estimates in time for the solution and its
derivatives.

The results of this paper extend those obtained by L.E. Payne and G.A. Philippin19, G.A. Philippin and V. Proytcheva23, in the
particular case H(ξ) = |ξ|. In order to handle our general case, our approach will follow naturally the techniques developed in these
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papers. Other similar investigations for various classes of parabolic problems have also been published in the last decade (see, for
instance, L.E. Payne and G.A. Philippin20,21, L.E. Payne, G.A. Philippin and S. Vernier-Piro22 or C. Enache7. For other results
concerning the local and global existence of solutions of some partiular cases of problem (1.5) we refer the reader to the book of
A.A. Samarskii and al.24 or to the survey papers of H.A. Levine13 and V.A. Galaktionov and J.L. Vazquez10 and its references.

Finally, the notations ui := ∂u
∂xi

, uij := ∂2u
∂xi∂xj

, Hi := ∂H
∂ξi

, Hij = ∂2H
∂ξi∂ξj

will be used throughout this paper and summation from 1 to
n is understood on repeated indices. Using these notations, for instance, we have

Hijuij =
n∑

i=1

n∑
j=1

∂2H
∂ξi∂ξj

∂2u
∂xi∂xj

. (1.8)

2 PRELIMINARIES. SOME USEFUL IDENTITIES AND INEQUALITIES

In this section, we remind some useful identities, inequalities and concepts that appear in the remaining part of this paper, when
we prove of our main results.

Lemma 1. (see Lemma 2.2 in L. Barbu - C. Enache5 ) If H ∈ C3(RN \ {0}) is a positive homogeneous function of degree 1, then
we have

Hi(ξ)ξi = H(ξ), Hij(ξ)ξi = 0, Hijk(ξ)ξi = –Hjk(ξ), (2.1)

for any ξ ∈ RN \ {0} and i, j, k ∈ {1, . . . , N}.

Lemma 2. (Kato inequality; see Lemma 2.2 in G. Wang - C. Xia27) At a point where ∇u ̸= 0, we have

aijakluikujl ≥ aij HkHluik ujl, (2.2)

where aij(∇u)(x) := ∂2

∂ξi∂ξj
( 1

2 H2)(∇u(x)).

Next, let us recall that there is another interesting function H0, related to H, which is defined to be the support function of
K := {x ∈ Rn : H (x) < 1}, namely

H0 (x) := sup
ξ∈K

⟨x, ξ⟩ . (2.3)

We call WH (x0) :=
{

x ∈ Rn : H0 (x – x0) ≤ r
}

a Wulff ball of radius r centered at x0. We say that γ : [0, 1] → Ω is a minimal
geodesic from x1 to x2 if

dH (x1, x2) :=

1∫
0

H0
(

·
γ (t)

)
dt = inf

1∫
0

H0
(

·
γ (t)

)
dt, (2.4)

where the infimum is taken on all C1 curves γ (t) in Ω from x1 to x2. In fact γ is a straight line and dH (x1, x2) = H0 (x2 – x1). We
call dH the H-distance between x1 and x2. Now we can define the diameter dH of Ω with respect to the norm H on Rn as

dH := sup
x1,x2∈Ω

dH (x1, x2) . (2.5)

In the same spirit we define the inscribed inradius iH of Ω with respect to the norm H on Rn as the radius of the biggest Wulff
ball that can be enclosed in Ω.

Finally, let us recall the definition of H-mean curvature of St :=
{

x ∈ Ω : u = t
}

. To this end let ν be the outward normal of St,
{eα}n–1

α=1 be a basis of the tangent space Tp (St), gαβ = g
(
eα, eβ

)
be the first fundamental form,

(
gαβ
)

be the inverse matrix of(
gαβ

)
and ∇ be the covariant derivative in Rn. Then the H-second fundamental form hH

αβ and the H-mean curvature KH are
defined by

hH
αβ :=

〈
Hξξ ◦ ∇eαν, eβ

〉
, and KH = gαβhH

αβ . (2.6)

We then have:

Lemma 3. (see Lemma 2.4 in G. Wang - C. Xia27 ) Let u be a C2 function with a regular level set St := {x ∈ Ω̄ : u = t}. Let
KH(St) be the H-mean curvature of the level set St. We then have

∆Hu(x) = –HKH(St) + HiHjuij = –HKH(St) +
∂2u
∂ν2

H
, (2.3)
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for x with u(x) = t, where νH := Hξ(ν) = –Hξ(∇u).

Finally, when KH ≥ 0, we say that ∂Ω is H-mean convex. In such a case we can also say that Ω is H-convex.

3 SOME BLOW-UP CONDITIONS

In this section we will make use of a first order differential inequality technique, previously employed by G.A. Philippin and V.
Proyetcheva23 in the case H (ξ) =

∣∣ξ∣∣ (see, also, C. Enache7), to establish some sufficient conditions on the data of problem (1.5)
to produce blow-up of the solution u(x, t) at some finite time t∗. Moreover, under these conditions, we will show that the same
technique provides an explicit upper bound for t∗.

To this end, let us introduce the following auxiliary functions:

A(t) :=
∫
Ω

u2(x, t)dx, (3.1)

B(t) :=
∫
Ω

(
F(u) –

1
2

H2(∇u)
)

dx, (3.2)

where
F(u) :=

∫ u

0
f (s) ds. (3.3)

The main result of this section is formulated in the following theorem:

Theorem 1. Let u(x, t) be the solution of the parabolic problem (1.5) and assume that the data of problem (1.5) satisfy the
following conditions:

sf (s) ≥ 1
2

(4 + α)F(s), s > 0, (3.4)

where α is a positive parameter, and

B(0) =
∫
Ω

(
F(g) –

1
2

H2(∇g)
)

dx ≥ 0. (3.5)

We then conclude that u(x, t) blows up at some finite time t∗ < T, with

T :=
4

α(α + 4)
A(0)B–1(0) ≤ ∞. (3.6)

Proof. We first compute

A′(t) = 2
∫
Ω

uut dx = 2
∫
Ω

u
[
∆Hu + f (u)

]
dx

= –2
∫
Ω

H2(∇u) dx + 2
∫
Ω

uf (u)dx

≥ (4 + α) B(t),

(3.7)

where we have successively used the differential equation (1.5), the divergence theorem, the assumption (3.4) and the definition
of B(t).

Next, we also compute

B′(t) =
∫
Ω

[
fu,t –HHξi uit

]
dx =

∫
Ω

[
fut + (HHξi )iut

]
dx

=
∫
Ω

ut
[
f (u) + ∆Hu

]
dx =

∫
Ω

u2
t dx ≥ 0

(3.8)

where we have used again the divergence theorem. Therefore, B(t) is a nondecreasing function in t, and we have

B(t) ≥ B(0) ≥ 0, (3.9)

by (3.5).
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Next, using the Schwarz inequality and inequalities (3.7) and (3.8), we obtain the following chain of inequalities:

AB′ =
∫
Ω

u2dx
∫
Ω

u2
t dx ≥

(∫
Ω

uutdx
)2

=
1
4

(A′)2 ≥
(

1 +
α

4

)
A′B. (3.10)

Therefore,
d
dt

(BA–(1+ α
4 )) ≥ 0. (3.11)

So BA–(1+ α
4 ) is a nondecreasing function of t and we have

BA–(1+ α
4 ) ≥ B(0)A–(1+ α

4 )(0) =: M ≥ 0 (3.12)

Next we integrate (3.11) and make use of (3.7) to obtain

–
4

α(α + 4)
(A– α

4 )′ =
1

α + 4
A′A–(1+ α

4 ) ≥ BA–(1+ α
4 ) ≥ M. (3.13)

Integrating now (3.13) from 0 to t, we obtain the inequality

(A(t))–α/4 ≤ (A(0))–α/4 –
α(α + 4)

4
Mt, (3.14)

which cannot hold for
t ≥ T :=

4α(α + 4)
A(0)B–1(0)

. (3.15)

In conclusion, the solution u(x, t) of problem (1.5) fails to exist by blowing up at some finite time t∗ < T , with T > 0 given in
(3.15).

4 SOME GLOBAL BOUNDEDNESS CONDITIONS

In this section, we will establish conditions on the data of problem (1.5) which prevent the blow up of u(x, t) in finite time and
guarantee the global boundedness of the solution. As in the particular case H (ξ) =

∣∣ξ∣∣, investigated by G.A. Philippin and L.E.
Payne in19, we assume that the data of problem (1.5) satisfy the following condition

f (0) = 0, sf ′(s) ≥ f (s) > 0, s > 0. (4.1)

We note that (4.1) implies that f (s)/s is a non-decreasing function in s. The solution u(x, t) of problem (1.5) can blow-up in a
finite time t∗. In this case, the solution exists in an interval (0, τ ), with τ < t∗. We thus denote

um := max
Ω×(0,τ )

u(x, t) < ∞. (4.2)

Our aim is to determine some conditions on initial data g(x) sufficient to guarantee that the blow-up does not occur. To this end,
we make use of the first eigenvalue λ1 of the Finsler-Laplacian and the corresponding function ϕ1 for a region Ω̃ ⊇ Ω:∆Hϕ1(x) + λ1ϕ1(x) = 0, ϕ1(x) > 0, x ∈ Ω̃,

ϕ1(x) = 0, on ∂Ω̃.
(4.3)

Moreover, since ϕ1(x) is determined up to an arbitrary multiplicative constant, we normalize ϕ1(x) by the condition

max
Ω̃

ϕ1(x) = 1. (4.4)

The reason for replacing by Ω̃ ⊇ Ω in our investigation is merely to allow an explicit computation of ϕ1 and λ1, if possible, by
considering some particular shapes for Ω̃.
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Lemma 4. Let u(x, t) be a solution of problem (1.5), where f satisfies (4.1). If τ is any time prior to blow-up time, then u(x, t)
satisfies the following estimate

0 ≤ u(x, t) ≤ Γ1exp
(

–
(
λ1 –

f (um)
um

)
t
)

, t ∈ [0, τ ], (4.5)

where
Γ1 := max

Ω

(
g(x)
ϕ1(x)

)
. (4.6)

Proof. First inequality in (4.5) follows from the maximum principle. To obtain the second inequality, we consider the following
auxiliary function

v(x, t) = u(x, t)exp
(

–
f (um)

um
t
)

, (4.7)

and compute
(∆Hv – vt) exp

(
– f (um)

um
t
)

= ∆Hu – ut + f (um)
um

u

≥ ∆Hu – ut + f (u) = 0.
(4.8)

We then have 
∆Hv – vt ≥ 0, x ∈ Ω, t ∈ (0, τ ),

v(x, 0) = g(x), x ∈ Ω,

v(x, t) = 0, x ∈ ∂Ω, t ∈ (0, τ ).

(4.9)

The comparison principle then implies that
v(x, t) ≤ w(x, t) := Γ1ϕ1e–λ1t, (4.10)

because we have 
∆Hw – wt = 0, x ∈ Ω, t ∈ (0, τ ).

w(x, 0) = Γ1ϕ1(x) ≥ g(x), x ∈ Ω,

w(x, t) ≥ 0, x ∈ ∂Ω, t ∈ (0, τ ).

(4.11)

Now, the combination of (4.7) and (4.10) implies the desired inequality (4.5).

Theorem 2. Under the assumptions of the previous lemma, if Γ1 also satisfies the condition

f (Γ1)
Γ1

< λ1, (4.12)

then t∗ = ∞ and we have
max
Ω

f (u(x, t))
u(x, t)

< λ1, 0 ≤ t < ∞. (4.13)

Proof. We suppose that (4.13) is not true and establish a contradiction. By continuity, there exists a first time t̃ for which f (u)/u
reaches the value λ1, that is

max
Ω

f (u(x, t̃))
u(x, t̃)

= λ1. (4.14)

Since f (s)/s is a nondecreasing function of s > 0, Lemma 4 implies

u(x, t) ≤ Γ1, 0 ≤ t ≤ t̃, (4.15)

which leads to the following chain of inequalities

f (u(x, t))
u(x, t)

≤ f (Γ1)
Γ1

< λ1, x ∈ Ω, 0 ≤ t̃, (4.16)

in view of (4.12). In particular, we have

max
Ω

f (u(x, t̃))
u(x, t̃)

< λ1, (4.17)

which is in contradiction with the definition of t̃. We then conclude that t̃ = ∞ and the proof of the theorem is complete.
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5 SOME EXPLICIT TIME DECAY ESTIMATES

In this section, we will establish sufficient conditions on the data to derive some exponential time decay bounds for u(x, t), the
solution of problem (1.5). For this aim, we shall derive some maximum principle for an appropriate combination of u, H and
data of problem (1.5). The combination that we consider will be of the following form (see G. Wang - C. Xia26 or L. Barbu - C.
Enache5 for the stationary case):

P(x, t) =
{

H2(∇u) dx + 2
∫ u

0
f (s)ds + αu2

}
e2αt, (5.1)

where α is a real positive parameter to be appropriately chosen.

The main result of this section is formulated in the following theorem:

Theorem 3. Let u(x, t) be the solution of problem (1.5). Assume that Ω is H-convex and condition (4.1) holds. Assume also that
Ω and g(x) ≥ 0 are small enough in the following sense

f (Γ1)
Γ1

≤ π2

4i2H
– α. (5.2)

Then the auxiliary function P(x, t), defined in (5.1), takes its maximum value at t = 0, so that we have

H2(∇u) + 2
∫ u

0
f (s)ds + αu2 ≤ M2e–2αt, (5.3)

where
M2 := max

Ω

{
H2(∇g) + α

∫ g

0
f (s)ds + αg2

}
. (5.4)

Proof. The proof of the theorem is given in several steps.

Step 1. First of all, let us remind that the solution of (1.5) is of class C3 on Ω\ω, so that we can differentiating (5.1), to obtain
successively in Ω\ω that

Pi = 2 {HHkuki + fui + αuui} e2αt, (5.5)

Pij = 2
{

HluljHkuki + HHkluljuki + HHkukij

+f ′uiuj + fuij + αujui + αuuij
}

e2αt,
(5.6)

respectively

Pt = 2
{

HHkukt + fut + αuut + αH2 + 2α
∫ u

0
f (s)ds + α2u2

}
e2αt. (5.7)

Moreover, from (5.5) we can derive the following useful identities :

Hkuki =
Pie–2αt

2H
–

f
H

ui – α
u
H

ui, (5.8)

and

HiHkuki =
HiPie–2αt

2H
–

Hif
H

ui – αHi
u
H

ui =
HiPie–2αt

2H
– f – αu. (5.9)

Let us now remind that

aij(∇u)(x) :=
∂2

∂ξi∂ξj
(
1
2

H2)(∇u(x)) = (HiHj + HHij)(∇u(x)). (5.10)

Then, we can rewrite the equation (1.5) as

aijuij = (HiHj + HHij)uij = ut – f . (5.11)

Moreover, making use of (5.8) in (5.11), we get

HHijuij = –
HiPie–2αt

2H
+

f
H

Hiui + α
u
H

Hiui + ut – f

= –
HiPie–2αt

2H
+ αu + ut.

(5.12)
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On the other hand, differentiating (5.11) we have

HlHijulkuij + HHijlulkuij + 2HilHjulkuij + aijuijk = utk – f ′uk (5.13)

But by Lemma 2.1 we have
Hijuj = 0 for all i. (5.14)

Then by taking derivative of (5.14) with respect to xi and summing over i, we get

Hijuij + Hijluliuj = 0. (5.15)

Next, we compute
aijPij – Pt = 2aij

{
HluljHkHki + HHkluljuki + HHkukij + f ′uiuj + fuij

+αuiuj + αuuij
}

e2αt – 2 {HHkukt + fut + αut

+αH2 + 2αF(u) + α2 + u2
}

e2αt in Ω\ω.

(5.16)

Making now use of (5.10) and (5.11) in (5.16), after some simplifications we get

aijPij – Pt = 2
{

HiHjHluljHkuki + H2HijHkluljuki – HHkHlHijulkuij

–H2HkHijlulkuij + f ′H2 + f ′(HHij + HiHj)uiuj – f 2

+α(HHij + HiHj)uiuj – αuf – HHkukt

–αH2 – 2αF – α2u2
}

e2αt in Ω\ω.

(5.17)

Next, we compute separately some of the above terms. First, using (5.9) we get

HiHjHlHkuljuki =
(

HiPie–2αt

2H
– f – αu

)2

= (f + αu)2 + . . . (5.18)

where here and in what follows the dots stand for terms in Pk.
On the other hand, using (5.10) we have

H2HijHlkuljuki = (aij – HiHj)ujl(akl – HkHl)uki

= aijujlakluki + HiHjujlHkHluki – 2HiHjaklujluki

= aijujlakluki + HiHjujlHkHluki – 2HiHjaklujluki

= aijujlakluki +
[HiPi

2H e–2αt – (f + αu)
]2

+2
[

Pl
2H e–2αt – f +αu

H ul

] [
Pk
2H e–2αt – f +αu

H uk

]
[HkHl + HHll] .

(5.19)

Now using Kato inequality (see Lemma 2) and (5.8), we get

aijujlakluk ≥ aijHkHlulkujl = aij( Pi
2H e–2αt – f +αu

H ui)(
Pj

2H e–2αt – f +αu
H uj)

= aij
(f +αu)2

H2 uiuj + . . . = (HiHjuiuj︸ ︷︷ ︸
=H2

+ HHijuiuj︸ ︷︷ ︸
=0

) (f +αu)2

H2 + . . .

= (f + αu)2 + . . . .

(5.20)

Replacing (5.20) into (5.19) and opening up the parentheses, we get

H2HijHlkuljuki ≥ 2(f + αu)2 – 2 (f +αu)2

H2 HkukHlul︸ ︷︷ ︸
=H2

–2 (f +αu)2

H2 HHklukul︸ ︷︷ ︸
=0

+ . . .

≥ 0 + . . . .

(5.21)
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Next, we use again (5.9) to compute

HHkHlHijulkuij =
[HlPl

2H e–2αt – (f + αu)
] [

– HiPi
2H e–2αt + αu + ut

]
= –(f + αu)(αu + ut) + . . . .

(5.22)

Finally, using again (5.8) and (5.12), we get

H2HkHijlulkuij = H2Hijl

[
Pl
2H e–2αt – (f +αu)ul

H

]
uij = H2Hijl

(f +αu)
H uluij + . . .

= HHijuij(f + αu) + . . .

=
[HiPi

2H e–2αt + (αu + ut)
]

(f + αu) + . . .

= (αu + ut)(f + αu) + . . .

(5.23)

Substituting now (5.18), (5.21), (5.22) and (5.23) into (5.17), after simplifications we obtain

aijPij – Pt + . . . ≥ 2α
[
uf – 2F

]
e2αt ≥ 0, in Ω\ω. (5.24)

It then follows from Nirenberg’s type maximum principle14 that P takes its maximum value either:

(i) at a point P on ∂Ω for some t > 0; or

(ii) at a critical point of u(x, t) for some t > 0; or

(iii) at a point P in Ω at time t = 0.

In the next two steps, we will show that under our assumptions (i) and (ii) can not hold.
Step 2. In what follows we’ll use Friedman’s type maximum principle9 to show that P(x, t) cannot take its maximum value on

∂Ω, so possibiity (i) is eliminated.
Indeed, suppose that P(x, t) takes its maximum value at P̂ = (x̂, t̂) on ∂Ω. Then by Friedman’s type maximum principle, we have

∂P
∂νH

∂P
∂νH

= 2
[

HHiuijν
j
H + f

∂u
∂νH

+ αu
∂u
∂νH

]
e2αt

= 2
[
HHiuijν

j
H

]
e2αt > 0.

(5.25)

On the other hand, from differential equation (1.5) evaluated on ∂Ω ∈ C2,ϵ, we have ∆u = 0, or equivalently

–HKH +
∂2u
∂ν2

H
= 0. (5.26)

Moreover, since

HHiuijν
j
H = –

∂2u
∂ν2

H
, (5.27)

we get
HHiuijν

j
H = –HKH , (5.28)

so that (5.25) implies the following
–HKH > 0, (5.29)

which contradicts the fact that KH ≥ 0. Note that ∇u ̸= 0 on ∂Ω in view of Friedman’s maximum principle, so H(∇u) ̸= 0 on ∂Ω.
Step 3. We suppose that the second possibility (ii) holds, i.e. P(x, t) takes its maximum at a critical point Q̄ = (x̄, t̄). Then we

have
P(x, t) ≤ P(x̄, t̄), x ∈ Ω, t > 0. (5.30)

Evaluating (5.30) at t = t̄, we get

H2(∇u) ≤ 2
∫ um

u
f (s)ds + α(u2

m – u2), (5.31)
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where um = max
Ω

u(x, t̄). Using now Cauchy’s mean value theorem we can write

2
∫ um

u
f (s)ds = 2

[∫ um

0
f (s)ds –

∫ u

0
f (s)ds

]
=

f (ξ)
ξ

(u2
m – u2(x, t̄))

≤ f (um)
um

(u2
m – u2(x, t̄)),

(5.32)

where ξ is an intermediate value between u and um and in the last step we used the fact that f (u)/u is monotone increasing. The
insertion of (5.32) into (5.31) leads to the following inequality

H2(∇u) ≤
[
α +

f (um)
um

]
(u2

m – u2). (5.33)

We are now choosing a point x̂ ∈ ∂Ω with
dH(x̄, x̂) = dH(x̄, ∂Ω) ≤ iH , (5.34)

and γ(t) : [0, 1] → Ω̄ the minimal geodesic connecting x̄ with x̂. Using the estimate (5.33) and integrating along the geodesic
connecting x̄ and x̂ we obtain

π

2
=
∫ um

0

1√
u2

m – u2
du ≤

√
α +

f (um)
um

∫ 1

0

1
H(∇u)

du

=

√
α +

f (um)
um

∫ 1

0

⟨∇u(γ(t)), γ̇(t)⟩
H(∇u(γ(t)))

dt ≤
√
α +

f (um)
um

∫ 1

0
Ho(γ̇(t))dt

≤
√
α +

f (um)
um

iH ,

(5.35)

where the Cauchy-Schwarz inequality was used in the last step. Therefore,

π2

4i2H
≤ α +

f (um)
um

. (5.36)

The inequality (5.36) is a necessary condition in order that P(x, t) takes its maximum at a critical point of u(x, t). On the other
hand using (5.2) and the fact that f (s)/s is a nondecreasing function we obtain the following chain of inequalities,

f (um)
um

≤ f (Γ1)
Γ1

<
π2

4i2H
– α, (5.37)

which is in contradiction with (5.35). This completes the proof of the theorem.
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