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Abstract

Solar energetic particles (SEPs) can cause severe damage to astronauts and sensitive equipment in space, and can disrupt

communications on Earth. A lack of thorough understanding the eruption processes of solar activities and the subsequent

acceleration and transport processes of energetic particles makes it difficult for physics-based models to forecast the occurrence

of an SEP event and its intensity. Therefore, in order to provide an advance warning for astronauts to seek shelter in a timely

manner, we apply neural networks to forecast the intensity of SEP events. The neural network uses a time series of past and

current electron and proton flux in 5-minute intervals to predict future proton flux 30 minutes or 1 hour ahead. In addition to

regular neural networks, we also use recurrent neural networks (RNNs), which are designed to handle time series data. For each

model, we consider two approaches: a single model trained on all data, and the ensemble of models where the particular model

is selected dynamically for each input using the predicted behavior of the input data. Overall, our results indicate that a single

RNN model forecasts proton flux of each event with less error. Furthermore, the RNN model incurs less error in predicting

proton flux, but a larger lag, than the forecasting matrix method proposed by Posner (2007). When advance and extended

warnings are incorporated, the RNN model can improve SEP event prediction scores.
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Abstract16

Solar energetic particles (SEPs) can cause severe damage to astronauts and sensitive equip-17

ment in space, and can disrupt communications on Earth. A lack of thorough understand-18

ing the eruption processes of solar activities and the subsequent acceleration and trans-19

port processes of energetic particles makes it difficult for physics-based models to fore-20

cast the occurrence of an SEP event and its intensity. Therefore, in order to provide an21

advance warning for astronauts to seek shelter in a timely manner, we apply neural net-22

works to forecast the intensity of SEP events. The neural network uses a time series of23

past and current electron and proton flux in 5-minute intervals to predict future proton24

flux 30 minutes or 1 hour ahead. In addition to regular neural networks, we also use re-25

current neural networks (RNNs), which are designed to handle time series data. For each26

model, we consider two approaches: a single model trained on all data, and the ensem-27

ble of models where the particular model is selected dynamically for each input using28

the predicted behavior of the input data. Overall, our results indicate that a single RNN29

model forecasts proton flux of each event with less error. Furthermore, the RNN model30

incurs less error in predicting proton flux, but a larger lag, than the forecasting matrix31

method proposed by Posner (2007). When advance and extended warnings are incor-32

porated, the RNN model can improve SEP event prediction scores.33

Plain Language Summary34

One possible threat to the astronauts and the equipment during any space explo-35

ration mission is the high-energy radiation coming from Solar Energetic Particle (SEP)36

events. SEP events cannot be prevented, so astronauts must be given advance warning37

so they have enough time to seek shelter. The goal of this research is to forecast the high-38

energy proton radiation environment in the near-Earth space in a continuous manner.39

We use neural networks, a method which can learn patterns from a dataset and then use40

the learned model to make predictions. The neural network outputs proton flux (SEP41

intensity) ahead in time, for example by 30 minutes or 1 hour, with a 5-minute cadence42

of every SEP electron and proton flux measurement. The machine learning uses a stream43

of past and current electron and proton fluxes as well as other information of solar erup-44

tions to predict future fluxes of high-energy SEP protons. Relativistic electrons travel45

faster and arrive at Earth earlier than sub-relativistic protons, so they could serve as an46

advance warning of the arrival of more lethal sub-relativistic protons. The machine learn-47

ing model results show an improved prediction of SEP proton intensity and event oc-48

currence.49

1 Introduction50

Solar energetic particles (SEPs) are high-energy particles from the Sun which, at51

a high enough intensity, can cause harm to astronauts and sensitive equipment in space.52

The intensity of these events is measured in proton flux. A solar eruption can acceler-53

ate SEPs up to tens of GeV in larger events, and the flux of >10 MeV protons could in-54

crease many orders of magnitude (>104) over the background level from Galactic cos-55

mic rays. Protons of >150 MeV are very difficult to shield, and they can penetrate 2056

gm cm−2 of material, i.e., 7.4 cm of Al or 15.5 cm of water (or human flesh) (Reames,57

2013). Because of the danger presented by intense SEP events, it is essential to provide58

an advance warning so that astronauts can move themselves and their equipment to safety59

timely.60

SEPs contain many species: protons, alpha particles, heavier nucleons, electrons,61

and X-rays. High-energy protons are the biggest concern of all. They are most abundant,62

difficult to shield, and can deposit all their energies along their tracks deep into human63

tissue or electronics on spacecraft. Relativistic electrons typically arrive at Earth ear-64

lier than sub-relativistic protons because electrons travel faster and experience less scat-65
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tering during their propagation through the interplanetary medium. Observations show66

that near relativistic electrons in the energy range from a few hundred keV to a few MeV67

appear in almost every event when high-energy SEP protons are observed (Posner, 2007),68

and the rise of electron intensity typically precede that of protons by tens of minutes.69

Therefore, measurements of relativistic electrons can become an advanced signal for the70

arrival of more lethal protons. This work focuses on the prediction of SEP proton inten-71

sity using leading information from near relativistic SEP electrons.72

The predicted intensity is proton flux, which can also be measured continuously73

over time. Therefore, we use time series data for features which precede the event in or-74

der to predict a time series of proton flux. Specifically, a fixed window of time contain-75

ing past and current values of proton and electron flux in measurement cadence inter-76

vals (5 minutes in this study) are used for input, and a value of proton flux is predicted77

at either half an hour or one hour in the future. We compare the performance of the stan-78

dard neural network implementation (NN) with recurrent neural networks (RNN), which79

contain additional weight matrices characterizing dependencies between inputs across80

time, making them a good fit for time series forecasting problems. An additional con-81

tribution of our approach is the separation of data into different intensity ranges, which82

are used to train and test multiple models. This approach is meant to address the im-83

balance between SEP events and background values.84

The rest of this paper is organized as follows: Section 2 discusses previous works85

related to our studies. Section 3 describes our approach, including the input and out-86

put and the algorithm. Section 4 goes into detail on the experimental evaluation, includ-87

ing the data, evaluation criteria, procedures, results, and analysis. Finally, Section 5 sum-88

marizes the paper and discusses limitations and potential improvements.89

2 Related Work90

Related studies have 3 general directions in forecasting. The first direction uses prop-91

erties of solar flares. Most of the existing prediction models use either the post-eruptive92

observations of solar flares to forecast or nowcast SEPs (NOAA-SWPC-PROTON (Balch,93

2008); AFRL-PPS (Smart & Shea, 1976, 1989; Huang et al., 2012; Belov, 2009; Laurenza94

et al., 2009) or the forecast of solar flares from the sun’s magnetic field measurement (Georgoulis,95

2008; E. Park et al., 2018; Bobra & Ilonidis, 2016; Huang et al., 2018) to forecast SEPs.96

Among similar works, Garcia (2004) performs a spectral analysis of hard x-ray bursts,97

and uses them to determine whether an SEP will occur based on the hardening of the98

spectral index. Then, they predict the magnitude of the event by applying an empiri-99

cal function using the max temperature and max x-ray flux. In the work from Kahler100

et al. (2005), the Proton Prediction System (PPS) uses peak x-ray flux and the x-ray101

flare rise time in order to forecast peak proton flux. If the predicted proton flux exceeds102

the 10 pfu threshold, which indicates that there is an SEP event, then the location of103

the solar flare is used by the PPS to predict the onset and peak times of the SEP. Núñez104

(2011) uses two models: one for well-connected events and one for poorly-connected events.105

In events when there is a direct magnetic connection between Earth and solar flare, the106

first time derivatives of x-ray and proton fluxes are found to be correlated. The model107

for the well-connected events can use the correlation and the associated solar flare to pre-108

dict SEP proton event. For poorly-connected events, an ensemble of model trees is used109

for predicting future proton flux of a poorly-connected event using past proton flux.110

The second direction of SEP prediction studies utilizes CME properties. Compared111

to using the properties of solar flares to predict SEPs, it is less popular to use CMEs to112

predict SEPs due to the fact that the identification of CMEs requires image processing113

and recognition from observations in application to real-time SEP prediction. However,114

a potential nowcast of SEPs is reported by St. Cyr et al. (2017) using the near-real-time115

temporal cadence (15 s) of K-cor observations very close to the solar disk (1.05−3Rs)116
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in the Mauna Loa Solar Observatory (MLSO). During the 2016 January 1 SEP event,117

MLSO was the first to issue warning comparing to all other predicting techniques (St.118

Cyr et al., 2017). An empirical formula is developed by Richardson et al. (2018) which119

uses the speed and connection angle of CMEs to predict the peak intensity of 14- to 24-120

MeV protons. The formula tends to overpredict the intensity for small, predominantly121

western events, since the formula was obtained based on large wide-spread three-spacecraft122

events. Although this formula predicts intensity, it can be used to forecast SEP occur-123

rence by using a threshold of proton flux 10−4 (MeV s cm2 sr)−1. The prediction algo-124

rithm is evaluated using the false alarm rate (FAR) and probability of detection (POD),125

among other metrics, and with different portions of the data depending on which com-126

binations of type II solar radio emissions are present. Although the CME speed shows127

positive correlation with the occurrence and intensity of SEPs (J. Park et al., 2012; Dier-128

ckxsens et al., 2015; Cane et al., 2010), for a given CME speed, the SEP intensity can129

vary over 3 orders of magnitude. Moreover, a slow CME could drive a stronger shock130

with a mach number of 3.43−4.18 and a fast CME could drive a weaker shock with a131

mach number of 1.90 − 3.21 (Shen et al., 2007). It is not clear how SEP intensity re-132

lates to the CME speed, given that there are many other factors that could affect SEP133

events.134

The third direction is to use measurements of relativistic electrons as an advanced135

signal. Posner (2007) found relativistic electron intensity onset to occur earlier than pro-136

ton intensity by up to one hour ahead. They use time series data of 1-minute increments.137

Each instance consists of the current measurements of electron intensity and the max138

rate of electron rise (difference in consecutive electron measurements) within a window139

from 5 minutes ago to 1 hour ago. The model consists of a 18x13 matrix, in which the140

rows are ranges of 0.3-1.2 MeV electron intensity values and the columns are ranges of141

electron rise rate values. The predicted proton intensity in each cell is the average fu-142

ture (up to 1 hour ahead) 30-50 MeV proton intensity of all instances within that cell’s143

input parameter ranges. Forecasting is performed by finding the corresponding matrix144

cell for a given test instance, and predicting the proton intensity in that cell.145

3 Approach146

We follow the basic concept of the predictive power contained in relativistic elec-147

tron measurements. We propose using a time series of past and current electron and pro-148

ton intensity measurements and their time derivatives to forecast proton intensity ahead149

of time. Instead of just using the definitive correlation between proton intensity and elec-150

tron intensity and its time derivative in Posner (2007), we use a machine learning ap-151

proach to the problem. This way, we can build a model that can include subtle corre-152

lations between future proton intensity and all other available time series measurements.153

We also make different models according to conditions based on the radiation level.154

In Section 3.1, we discuss the time series and features in more detail. In Section155

3.2, the basic machine learning approach is discussed, and extensions to this approach156

using multiple models are detailed in Section 3.3.157

3.1 Input and Output for Forecasting Proton Intensity158

We use time series of particle measurements to predict future >10 MeV proton in-159

tensity. The learning and prediction are made based on the natural log scale of parti-160

cle intensity in pfu. A time window of the past two hours up to the current hour is used161

to predict an output proton flux at 30 minutes or 1 hour from the current time. The ca-162

dence of input data is 5 minutes. Let t be the current time, t+1 to be 5 minutes after163

the current time, and t-1 to be 5 minutes before the current time. Then the input time164

window is from t-24 through t, and the output is either t+6 or t+12.165
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Figure 1. Illustration of the method used for selecting one of multiple models to use for pro-

ton intensity prediction.

The main features used are the electron intensities from the >0.25 and >0.67 MeV166

channels and the proton intensities from the >10 MeV channel obtained by the EPHIN167

instrument on SOHO at the L1 point (Müller-Mellin et al., 1995). The >10 MeV pro-168

ton intensity is calculated from the intensities in three differential energy (P8, P25, and169

P41) channels through integration of power-law extrapolated/interpolated spectrum. The170

data set covers 1995-2002.171

In addition to the above features, we add phases to the feature input for each timestep172

of the past 2 hours in order to help the model to handle different stages of SEP events.173

We define three phases for an SEP event: rising, falling, and background. These phases174

are determined by a separate program designed for identifying the onset, threshold, peak,175

and end timestamps of each event. Using these timestamps, we can determine when the176

intensity is rising (between onset and peak), falling (between peak and end), and back-177

ground (everywhere else), and use these as the phase inputs. However, when an event178

occurs in practice, it is not known that the intensity is rising or falling until some time179

after the transition. Therefore, for any change of phase in the input, we use the previ-180

ous phase as the label until 30 minutes pass, after which we replace them with the true181

phase. This is done for both the training and testing sets.182

3.2 Basic Approach with One Model183

To form a baseline, we apply a single neural network model to the whole dataset;184

this approach will be referred to as M1 (One Model for intensity prediction). We com-185

pare the multilayer perceptron algorithm (which from here on will be denoted as NN,186

or neural network) to recurrent neural networks (RNNs); recurrent neural networks are187

designed to work with time-series data, so they are expected to perform better in this188

study. The Keras implementation in Python is used to create our models, with the Gated189

Recurrent Units (GRU ) layer for the recurrent neural network model. GRU layers are190

described in more detail by Chung et al. (2014). During training, the neural network min-191

imizes the loss function, which is the mean square error (MSE) between the target pro-192

ton intensity and the predicted proton intensity.193

3.3 Multiple Models194

Due to the substantial imbalance between background flux and SEP events, the195

basic approach of training a single neural network on all of the data could miss most of196
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the rare SEP events. Methods such as oversampling of the SEP events could address this197

issue, but are computationally expensive when the training set is large. Instead of train-198

ing a single model, we train multiple models. These models are specialized for certain199

situations so that they can be more accurate. The approach involves two training stages;200

the first training stage is model selection, and the second training stage is proton flux201

prediction using multiple models. We refer to this approach as M3 (Three Models for202

intensity prediction).203

Figure 1 illustrates the process for predicting the proton intensity via selecting an204

intensity model based on the predicted phase. D is the training set with features and205

known proton intensity. Dphase is the training set containing all the same features as D,206

but with a known phase. We use the program mentioned in Section 3.1 in order to cre-207

ate background, rising, and falling labels for Dphase. The first stage of training is to train208

the model selector Mselector, a classifier model that is trained on Dphase to predict the209

phase of a training instance. Mselector makes predictions on D (in which the phase is not210

known), and based on these predictions, D is split into disjoint subsets Dbackground, Drising,211

and Dfalling. In the second stage of training, the three proton intensity models Mbackground,212

Mrising, and Mfalling are trained on their respective training sets which were determined213

in the first training stage. Testing is performed by using Mselector to determine whether214

a test instance is to be passed to Mbackground, Mrising, or Mfalling, then using the cho-215

sen model to predict proton intensity.216

Since model selection (phase prediction in our case) is a classification task, cate-217

gorical cross-entropy is used as the loss function for the model selector. Since the data218

is imbalanced and we cannot split it for this model, we set class weights such that there219

is a one-to-one weight ratio between falling and background instances, and a three-to-220

one ratio between rising and background. Additionally, we experiment with setting the221

sample weights to be 4 times higher than other instances for all samples between the on-222

set of an event and when the intensity reaches ln(10). Larger weights are given to the223

rising class in order to help the algorithm with on-time prediction of the onset through224

the rising edge. Further detail on weighting procedures is described in Section 4.2.1.225

4 Experimental Evaluation226

We evaluate our proposed methods with existing methods on two forecasting tasks.227

The first task is forecasting the proton intensity 30 minutes (t+6) and 60 minutes (t+12)228

ahead. The second task is forecasting the occurrence of SEP events (proton intensity ex-229

ceeding a threshold) 30 minutes and 60 minutes ahead.230

4.1 Evaluation Criteria231

4.1.1 Evaluation of SEP Time-Intensity Profile Prediction232

The intensity models are primarily evaluated using mean absolute error (MAE).233

This calculates the absolute difference between the actual and predicted values at each234

timestamp. Since we are only interested in the SEP events, we calculate MAE only for235

the events found by the event-finding program that occur within the test set, and av-236

erage over all of these events. For the purposes of evaluation, we consider an event to237

be the rising portion, from onset to peak. In Figure 2, the vertical teal arrow shows the238

error at one timestamp; this is calculated for all timestamps between the onset and the239

peak and averaged to obtain MAE.240

Another factor we want to look at is whether the predictions are on-time or too241

late. To do this, we measure lag by shifting the predictions between the onset and peak242

of each event in the test set to align with the targets, and measuring MAE at each shift.243

The shift with the lowest MAE is considered the lag, or x-axis error, between the tar-244

–6–



manuscript submitted to Space Weather

Figure 2. A diagram to illustrate the metrics for evaluating intensity predictions

gets and predictions. In Figure 2, the procedure can be visualized as incrementally shift-245

ing the solid red line left and measuring MAE between the red and blue lines at each shift,246

with the dashed red line being the lag with the minimum MAE. Similarly with MAE,247

this is done only for the events in the test set rather than the entire test set, and between248

the onset and the peak.249

4.1.2 Evaluation of SEP Event Forecasting250

In addition to evaluating the proton intensity predictions in terms of error and lag,251

we also assess the approach’s ability to forecast SEP events; that is, predicting the oc-252

currence of >10 MeV proton intensity above the 10 pfu threshold before the actual in-253

tensity crosses the threshold. In order to perform this evaluation, some terms must be254

defined first. We define the warning period as all consecutive timestamps during which255

the prediction is above the threshold. The warning period of an alert is represented by256

the red bars in Figure 3. Alert 1 of Figure 3 is an example where the warning is able to257

detect SEP event 1, as the warning is ongoing at the time that SEP event 1 starts. How-258

ever, the warning alone is not always sufficient for event detection. Alert 2 is an exam-259

ple of Issue 1, where a gap in the warning period can lead to the event being missed; these260

gaps occur when the predictions fluctuate below the threshold. Alert 3 is an example of261

Issue 2, in which the event can also be missed if the warning ends before the start of the262

event. In order to address these two issues, we prolong the warning after the prediction263

drops below the threshold; the prolonged warning is called the extended warning period,264

indicated by the green bars in Figure 3. The extended warning can be considered as smooth-265

ing out the fluctuations in the forecast. To investigate an appropriate duration for the266

extended warning, we vary the duration from 15 minutes up to 2.5 hours in increments267

of 15 minutes. The extended warning may end before the specified duration if the pre-268

diction exceeds the threshold again.269
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Figure 3. Different scenarios of SEP events (blue) and warnings (red); issues of event detec-

tion which can be addressed by extended warning (green) and advance warning (yellow). In this

example, the extended warning lasts 30 minutes.

Issue 3 is that the warning can be too late, as shown in Alert 4 of Figure 3, where270

the warning begins after SEP event 2 starts. Since the proton intensity predictions for271

t+6 or t+12 are generated at time t, we can address this issue by beginning to warn at272

time t; the period between time t and either t+6 or t+12 is called the advance warning273

period, indicated by the yellow bars in the figure. Alert 5 is another example of Issue274

3, in which the warning is too late and the advance warning is unable to forecast the SEP275

event. We will further discuss this alert in Section 4.3 to illustrate the weakness of the276

persistent model, one of the baseline models for comparative evaluation.277

To investigate the merits of advance and extended warning, we evaluate four dif-278

ferent approaches in which different combinations of advance and extended warning are279

used to define an alert. An approach which uses neither is used as a baseline for com-280

parison. The warning period, during which the prediction is above the threshold, is al-281

ways included in the alert. The four approaches are as follows:282

• Approach W (baseline): without advance or extended warning283

• Approach EW: with extended warning, but without advance warning284

• Approach AW: with advance warning, but without extended warning285

• Approach EAW: with both advance and extended warnings286

The performances of the four approaches are evaluated in terms of true positives,287

false negatives, and false positives. An alert is a true positive (TP) if it starts before an288

event starts and ends after the event starts. An event is a false negative (FN) if either289

there is no alert corresponding to the event, or there is an alert, but it starts after the290

event has begun (i.e. the alert is too late). Finally, an alert is a false positive (FP) if it291

has no overlap with any event duration. True negatives cannot be counted since the ab-292

sence of both alerts and events cannot be quantified. Additionally, composite metrics293
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including recall, precision, and F1 score (the harmonic mean of recall and precision) are294

calculated; these are defined in Equations 1, 2, and 3.295

recall =
TP

TP + FN
(1)296

precision =
TP

TP + FP
(2)297

F1 =
2 ∗ precision ∗ recall
precision+ recall

=
2 ∗ TP

2 ∗ TP + FP + FN
(3)298

4.2 Learning and Evaluation Procedures299

The training and testing sets are split chronologically such that the first 80% of the300

usable data is for training and the last 20% is for testing. (Note on usable data: since301

each instance requires 2 hours of data before it and either 30 minutes or 1 hour after,302

the first 24 and the last 6 or 12 timestamps are unusable as the current time.) There are303

21 SEP events in the training set, and 18 SEP events in the test set. In each of the three304

approaches, the features used are the >0.25 MeV electron intensities, >0.67 MeV elec-305

tron intensities, and >10 MeV proton intensities, and all are tested with and without306

phase inputs, with both NN and RNN algorithms.307

For each of the intensity models, a single hidden layer with 30 units is used; this308

layer is changed from fully-connected to recurrent for the RNN experiments. For both309

regular and recurrent neural networks, the hidden layer uses a sigmoid activation. Weight310

updates are done using the Adam optimizer, and up to 1000 iterations are allowed un-311

less the network converges before then. The neural network converges if the loss func-312

tion does not change by more than 10−4 over 20 iterations. Each experiment is run five313

times with different random initialization, and the average and standard deviation of MAE314

and lag are reported for each metric.315

4.2.1 Phase-Selection Model Procedures316

In order to incorporate the machine learning phase-selection model into the M3 method,317

some weighting must be applied to address the class imbalance between rising instances318

and other instances. In a preliminary experiment, the phase-selection model was tested319

without class weights, with class weights, and with sample weights for the NN algorithm;320

RNN was only tested with class weights, which was determined to be the best at distin-321

guishing background from rising instances by the time we tested with RNNs. Class weights322

are assigned to be three times higher for rising instances than for other instances, and323

sample weights are assigned to be four times higher for instances between event onsets324

and ln(10) thresholds than for other instances. When testing with the RNN, both the325

phase-selection model and the intensity models are RNNs.326

To evaluate the machine learning-based phase selection model, we look at a 3x3327

confusion matrix for the three classes of background, rising, and falling. We emphasize328

on-time classification of the rising class since the main goal is to identify the start of events,329

so we look at precision and, more importantly, recall for the rising class. We also look330

at the F1 score, which is the harmonic mean of the precision and recall. To summarize331

the results of the model selector described by Torres (2020), it was found that adding332

weights to rising instances when training the model selector always yielded improvement333

over not using weights in terms of intensity prediction performance. The addition of sam-334

ple weights yielded slightly better performance than only using class weights, but using335

only class weights resulted in fewer errors in instances where the prediction is background336
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but the actual instance is rising. That is, only using class weights results in fewer SEP337

events missed, and so the phase-selection model in this paper only uses class weights.338

4.2.2 Baseline Methods Used for Comparison339

To further assess the performance of our approaches, we compare our models with340

two baseline methods. The first is the persistent model, a simple baseline method in which341

the predicted proton flux value is the current proton flux value, which is equivalent to342

nowcast. The second is the forecasting matrix method described by Posner (2007) as de-343

scribed in Section 2. SOHO has two energy channels of 0.3-1.2 MeV electron measure-344

ments, while the electron intensities we use are >0.25 MeV. Furthermore, the forecast-345

ing matrix predicts 30-50 MeV proton intensities, while our methods predict >10 MeV346

proton intensities, so the matrix in Posner (2007) cannot be used to perform direct com-347

parison. Therefore, we must train and test a forecasting matrix on the dataset we use,348

with some adjustments to the implementation. In our implementation, we maintain the349

same number of matrix cells (13x18) and clip the input parameter values such that all350

cells have at least one instance, and therefore can predict a proton intensity using any351

cell. These bounds are 0.01 to 0.2 per minute for the time derivation of log of electron352

intensity, and -3 to 8 for the log of the current electron intensity in pfu. Since both base-353

line methods are deterministic, the results are reported for only a single run. We eval-354

uate both methods in terms of MAE and lag in the time series , and we compare the re-355

sults with our neural network approach. Additionally, we evaluate Posner’s method’s abil-356

ity to detect events and compare results with the neural network approach.357

4.3 Results of Predicting SEP Time-Intensity Profile358

Tables 1 and 2 compare the four different approaches at t+6 and t+12, respectively.359

We also look at how each of the neural network-based approaches performs with and with-360

out phases in the input, as well as how each performs using NN or RNN as the algorithm.361

The results for M3 use class weights since the RNN was only tested with class weights362

for that approach.363

Table 1. Comparison of the four approaches predicting intensity at t+6 (Underlined values are

the best within each neural network column, bold values are the best value for each metric, and

values in parentheses are standard deviations.)

MAE Lag

Persistent 0.419 6.000

Posner 1.531 4.000

Input Approach NN RNN NN RNN

No phases
M1

0.441 0.379 4.444 5.222
(0.018) (0.025) (0.396) (0.396)

M3
0.432 0.433 5.211 6.133

(0.015) (0.042) (0.654) (0.665)

Phases
M1

0.475 0.405 5.289 4.589
(0.012) (0.033) (0.512) (0.655)

M3
0.448 0.470 4.500 4.744

(0.023) (0.026) (0.846) (0.547)
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Table 2. Comparison of the four approaches predicting intensity at t+12 (Underlined values

are the best within each neural network column, bold values are the best value for each metric,

and values in parentheses are standard deviations.)

MAE Lag

Persistent 0.732 12.000

Posner 1.586 6.722

Input Approach NN RNN NN RNN

No phases
M1

0.690 0.599 9.600 9.722
(0.037) (0.016) (0.422) (0.798)

M3
0.652 0.680 10.111 10.367

(0.020) (0.036) (0.674) (0.302)

Phases
M1

0.653 0.648 7.956 8.733
(0.036) (0.041) (0.523) (0.577)

M3
0.677 0.700 8.922 8.489

(0.024) (0.018) (0.567) (1.191)

In Table 1, one of the bold values and three out of four of the underlined values364

are from M1 as the approach, which is unexpected since the M3 approach was designed365

to minimize errors. Posner’s forecasting matrix method has a bold value for lag, which366

will be explained later in this section. Table 2 also has a bold value in an M1 row, but367

the underlines are divided evenly between M1 and M3, rather than M1 having most of368

the underlines as in Table 1. Again, Posner’s method has the bold value for lag. All of369

the best results outperform those of the persistent model.370

Looking at the MAE columns, M3 with NN and M1 with RNN give the best re-371

sults for for both t+6 and t+12, both without phases. This shows that the MAE of each372

approach depends on which neural network is used, but either way, including phases does373

not yield significant improvement. The MAE values obtained using Posner’s forecast-374

ing matrix method are much higher compared to the MAE values using neural networks.375

However, for t+6, only two neural network models perform better than the persistent376

model in terms of MAE, with only one of those two models being significantly better.377

For t+12, almost all neural network models have significantly lower MAE than the per-378

sistent model. This can be explained by the fact that the neural network models have379

more fluctuations in their predictions, which can yield larger vertical gaps, particularly380

when the proton flux is relatively flat or slow-rising.381

For the lag, starting with the neural network-based approaches, M1 has the best382

value in three out of four cases, with M3 having the lowest lag with RNN and phase in-383

puts when predicting t+12. Phase inputs help to improve the lag in three out of four cases384

as well. Since the persistent model’s prediction is equal to the current value, the lag is385

exactly 30 minutes when predicting 30 minutes ahead, and the lag is exactly 1 hour when386

predicting 1 hour ahead. The persistent model’s lags do not outperform any of the other387

methods. Posner’s forecasting matrix method yields the lowest lag; however, this is mainly388

because the method generally overpredicts the proton intensity, as will be illustrated in389

Section 4.3.1.390

For further visualization and analysis, we must select a generally better method391

out of the neural network-based methods. For t+6, M1 with RNN and no phases has the392

lowest MAE, but this method has a relatively high lag. The next best-performing method393
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Figure 4. Plots of event predictions using Posner’s forecasting matrix method (red) and M1

method with RNN and phase inputs (green), predicting t+6. The arrows point out the times of

crossing the ln(10) threshold using M1.

in terms of MAE is M1 with RNN and phases; the metrics for this method are not sig-394

nificantly different from the best-performing metrics, so it can be considered the method395

with the best balance of both low MAE and low lag. A similar assessment can be made396

for t+12, except that the lag for M1 with RNN and phases is not significantly better than397

Posner’s method. Therefore, the remainder of the paper will focus on M1 with RNN and398

phases.399

Additionally, the best neural network-based method will be compared with one of400

the two baseline approaches. Analyzing the lag results, it can be seen that the persis-401

tent model is a poor choice for this problem because it is unable to predict SEP events402

ahead of time, which is the goal of this paper. For a t+6 forecasting example, if an SEP403

occurs at time t, the persistent model will predict that an SEP will start at time t+6.404

With the advance warning described in Section 4.1.2, we can start an alert at time t. How-405

ever, the alert is not useful because the SEP event has already started at time t. Alert406

5 in Figure 3 illustrates this issue, where the advance warning (yellow bar) starts at the407

same time as the SEP event (blue bar). Therefore, the persistent model cannot forecast408

correctly, and will not be included in further discussion. Posner’s method has high MAE409

values, but its low lags allow it to predict SEP events early, so it will be used as the base-410

line for comparison against the best neural network-based method.411
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Figure 5. Comparison of lag and max correlation for each event between electron and proton

(top) and between high energy electron and proton (bottom).

4.3.1 Sample Prediction Plots412

In addition to the tables, prediction plots for four representative events are shown413

in Figure 4, using the M1 approach with the overall best results as seen in Table 1, as414

well as Posner’s method. The upper-left plot is a relatively-fast rising event, while the415

upper-right is a slower-rising event. The lower-left reaches very high intensities, while416

the lower-right is just barely above the threshold of ln(10). Each of the plots shows three417

hours of background before the event, which are not used during evaluation. With the418

M1 method, these plots show fairly small errors on both the x- and y-axes, which is con-419

sistent with the results in Table 1 for MAE and lag. Posner’s forecasting matrix method420

generally tends to overpredict the proton intensity when the electron intensity has a sharp421

rise and underpredict when the electron intensity is flat. Overpredicting the rising edge422

can cause the predictions to be ahead of the actual rising edge, resulting in a smaller lag423

on average.424
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4.3.2 Analysis of Results425

The plots in Figure 5 can help to better understand why it is difficult to achieve426

low lag in the predictions for some events. To generate these plots, a similar procedure427

is done for calculating lag between the actual and predicted values, but this is done for428

electron and proton values instead, and uses Pearson correlation rather than MAE to429

choose the best lag since the actual electron and proton values cannot be compared with430

each other. Additionally, correlations are calculated for all 5-minute shifts up to 6 hours,431

rather than only 2 hours. Out of the 39 events in the data set, there are 15 events (38%)432

with zero lag between the proton intensity and >0.25 MeV electron intensity, 5 events433

(13%) with between 5 minutes and 1 hour of lag, and 19 events (49%) with more than434

one hour of lag. For the >0.67 MeV electron channel, there are 15 events (38%) with zero435

lag, 10 events (26%) with up to 1 hour of lag, and 14 events (36%) with more than one436

hour of lag. Because 51% and 64% of events (using the >0.25 MeV and >0.67 MeV elec-437

tron channels, respectively) have a lag of an hour or less, there is limited information that438

can be used ahead of the SEP event for prediction, and our forecasts are likely to have439

a lag. The large number of SEP events with less than an hour of lag is visualized by the440

clustering of dots towards the left of the plots in Figure 5. It would be more desirable441

if more of the dots were clustered toward the upper-right of the plots, as this would al-442

low for earlier predictions than what the algorithm is currently capable of, while the elec-443

tron and proton are still highly correlated. However, despite limitations in the numer-444

ical lag results for predicting SEP intensity-time profile, the predictions are still suffi-445

cient to warn of the occurrence of an incoming SEP event, as will be demonstrated in446

the next section.447

4.4 Results of SEP Event Forecasting448

We compare our method (M1 with RNN and phase inputs) with Posner’s method449

according to the 4 approaches (W, EW, AW, and EAW) to extended and advanced warn-450

ings described in Section 4.1.2. The results in terms of event forecasting metrics are shown451

in Tables 3 and 4. These results use 2 hours of extended warning, which is found by ex-452

perimenting with different durations. By varying the extended warning duration, Fig-453

ure 6 shows the trend of F1 scores for each method. In most cases, the F1 scores plateau454

around 2 hours.455

In approach W, which uses neither the advance nor extended warnings, Posner’s456

method yields more true positives than M1, but also more false positives. M1 yields few457

true positives. Posner’s method has both better recall and precision despite the high num-458

ber of false positives, and therefore a higher F1 score.459

In approach EW, which includes the extended warning but no advance warning,460

M1 has more true positives than in approach W, while Posner’s method remains the same461

in terms of true positives. For both methods, the number of false positives drops com-462

pared to approach W, with M1 still having fewer false positives than Posner; this results463

in a higher precision for M1. When predicting at t+6, Posner’s method has more true464

positives than when predicting t+12, so this difference results in Posner having a higher465

F1 score than M1 at t+6, but lower than M1 at t+12.466

In approach AW, which includes the advance warning but no extended warning,467

the number of true positives predicted by M1 increases substantially compared to not468

using advance warning. At t+6, M1 has slightly fewer true positives than Posner, but469

slightly more at t+12. The number of false positives remains lower for M1 than for Pos-470

ner. Since the numbers of true positives are close for both methods, the recall values are471

close as well. M1 having fewer false positives results in a slightly higher precision for M1472

than for Posner, therefore resulting in M1 having a slightly better F1 score.473
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Figure 6. Comparison between our method and Posner’s method in event forecasting with

different durations of extended warning. The top plot does not include advance warning, using

Approach W when the extended warning duration is zero and Approach EW when the extended

warning duration is above zero. The bottom plot includes advance warning, using Approach AW

when the extended warning duration is zero and Approach EAW when the extended warning

duration is above zero.

Finally, approach EAW, in which both the advance and extended warning are in-474

cluded, shows similar trends to those of approach AW. The number of true positives pre-475

dicted by M1 increase even more from approach AW, and the numbers of false positives476

decrease from approach AW, with a larger decrease for M1 than for Posner. As in ap-477

proach AW, M1 has fewer true positives than Posner at t+6, but more at t+12, result-478

ing in a slightly lower recall for M1 at t+6, but higher at t+12. Due to the very low num-479

bers of false positives for M1 compared to Posner, M1 has much higher precision values.480

These result in M1 having higher F1 scores compared to Posner.481

From these results, we generally observe that M1 performs better than Posner’s482

method when advance warning is included. One reason is that M1 generally lags the ris-483

ing edge as observed in Section 4.3.1, and advance warning helps mitigate the lag in M1484

and predicts more positives. Also, we observe that Posner’s method yields more true pos-485

itives even without advance warning. One reason is that Posner’s method tends to over-486
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Table 3. Results of the four event forecasting applications at t+6. (Underlined F1 values are

the best within each approach, and the bold F1 value is the best across all approaches.)

Approach W Approach EW Approach AW Approach EAW

Method M1 Posner M1 Posner M1 Posner M1 Posner

TP 4.8 12.0 6.2 12.0 12.2 13.0 12.6 13.0

FN 13.2 6.0 11.8 6.0 5.8 5.0 5.4 5.0

FP 9.2 13.0 1.4 5.0 9.0 13.0 2.6 8.0

Recall 0.27 0.67 0.34 0.67 0.68 0.72 0.70 0.72

Precision 0.34 0.48 0.82 0.71 0.58 0.50 0.83 0.62

F1 0.30 0.56 0.48 0.69 0.62 0.59 0.76 0.67

Table 4. Results of the four event forecasting applications at t+12. (Underlined F1 values are

the best within each approach, and the bold F1 value is the best across all approaches.)

Approach W Approach EW Approach AW Approach EAW

Method M1 Posner M1 Posner M1 Posner M1 Posner

TP 2.2 5.0 4.6 5.0 13.2 13.0 14.2 13.0

FN 15.8 13.0 13.4 13.0 4.8 5.0 3.8 5.0

FP 6.8 9.0 1.8 5.0 5.6 8.0 1.2 5.0

Recall 0.12 0.28 0.26 0.28 0.73 0.72 0.79 0.72

Precision 0.24 0.36 0.72 0.50 0.70 0.62 0.92 0.72

F1 0.16 0.31 0.38 0.36 0.72 0.67 0.85 0.72

predict the proton intensities, and hence tends to be ahead of the rising edge. However,487

this also results in Posner’s method having more false positives, which occur in all four488

approaches. Furthermore, for both methods, we observe that having neither the advance489

warning nor extended warning yields the lowest F1 scores, while having both advance490

and extended warning yields the highest F1 scores, as indicated in Tables 3 and 4.491

5 Conclusions492

The problem studied in this work is the forecasting of future proton flux given a493

time series of past and current electron and proton flux. We use a single model as the494

basic approach, and present another approach which splits the data by intensity ranges495

and select the model using a separate machine learning model. We compare regular neu-496

ral networks and recurrent neural networks, and experiment with phase inputs.497

Overall, our results indicate that a single RNN model generally performs better in498

terms of proton flux prediction, less MSE in predicting proton flux, but a larger lag, than499

the forecasting matrix method proposed by Posner (2007). Based on the direct predic-500

tion of SEP proton intensity and timing, the RNN model makes fewer true positive and501

false positive predictions of SEP proton events than Posner, yielding poor recall, pre-502

cision, and F1 scores. This is because the RNN prediction of SEP proton intensity is gen-503
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erally delayed. Suppose we allow warnings to be issued immediately after predictions are504

made and extended by up to 2 hours of predicted duration. In that case, the RNN model505

prediction of SEP proton events can dramatically improve the true positive while the506

false positive remains low, which results in better recall, precision, and F1 scores.507

Based on our analysis of the electron and proton time series, obtaining a lag of zero508

in our results is quite difficult with just electron and proton time series, and other fea-509

tures preceding the proton event would be required in order to achieve a lag of zero be-510

tween the predicted and actual future proton values. The prediction could also be im-511

proved by using a longer dataset; our current data does not cover an entire solar cycle,512

and ends on a solar maximum. This means that the algorithm is trained on few events513

and evaluated on many events; the algorithm would be more effective when the distri-514

butions of events in the training and test sets are similar.515
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