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Abstract

Landscape genetics is a field dealing with local genetic differences and contributes to strategic conservation planning. Recently,

environmental DNA (eDNA) metabarcoding has proven useful not only for detecting species but also for assessing genetic

diversity and genetic structure on a large scale such as in phylogeography. However, it remains unclear whether eDNA analysis

also has sufficient power to perform the landscape genetics, which focuses on a local scale. To reveal the applicability of eDNA

to landscape genetics, we conducted an eDNA metabarcoding analysis of the mitochondrial DNA D-loop region of the fluvial

sculpin Cottus nozawae in the upper Sorachi River in Japan and compared the results with inferences based on traditional

tissue-based approaches. As a result, the spatial distribution of haplotypes was generally consistent between the eDNA- and

tissue-based approaches. In addition, the genetic differentiation statistics calculated using eDNA and tissue samples were highly

correlated when compared in the same genetic region. Furthermore, if an inference based on genome-wide SNP data from tissue

samples was taken as known truth, the inference by eDNA was not necessarily inferior to the inference by the same region from

tissue samples. Finally, we confirmed that analyses using eDNA data can reveal patterns such as isolation-by-distance shown in

previous studies on this species, indicating the applicability of eDNA to basic landscape genetics. Even though some limitations

remain, eDNA may have great potential for conducting basic landscape genetics.

Introduction

Landscape genetics is an integrated field aiming to understand the relationship between landscape features
and microevolutionary processes that generate local genetic differences (Manel et al. 2003). This field
has developed not only as a basic discipline but also as an applied science, because knowledge of local
genetic structure is useful for strategic conservation planning through the identification of dispersal barriers
or corridors (Sommer et al. 2013; Bowman et al. 2016). Landscape genetics is becoming increasingly
important under ongoing climate change and habitat loss (Manel and Holderegger 2013; Nakajima et al.
2023).

In freshwater ecosystems, environmental DNA (eDNA) metabarcoding is rapidly developing and becoming
widespread as a cost-efficient and non-invasive tool for acquiring species information (Ruppert et al. 2019;
Doi and Nakamura 2023). In recent years, eDNA metabarcoding has gradually gained attention not only
for species detection but also for population-based analysis using intraspecific variation (Reviewed in Adams
et al. 2019; Sigsgaard et al. 2020; Andres et al. 2023b; Couton et al. 2023). Previous studies drawing
population-based inferences, such as by examining genetic diversity and differentiation, reported that despite
some limitations such as the lack of individual information or the difficulty of distinguishing false positives
and negatives from correct data, eDNA-based analysis has high applicability, given the sampling effort of
traditional population studies (Tsuji et al. 2020a; Adams et al. 2023). However, most population-based
studies using eDNA to date have been experimental or, when conducted in the field, have focused on
intrapopulation genetic diversity, phylogenetic relationships, or fragmentation among populations at large
scales (e.g., between watersheds or dams) (Turon et al. 2020; Snyder and Stepien 2020; Weitemier et al.
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2021; Tsuji et al. 2023). Notably, there is a lack of research specifically focused on landscape genetics and its
metrics dealing with local genetic variation. As landscape genetics typically requires a great effort to sample
a large number of individuals, the application of eDNA has the potential to significantly simplify landscape
genetics research.

The analysis of landscape genetics is essentially different from that of phylogeography (Wang 2010). In
inferring recent gene flow and its limiting factors, the key data is the proportion of a given genotype in the
gene pool within each population (gene frequency), not the ancestry or phylogenetic relationships between
genotypes/individuals (Hudson et al. 1992; Bohonak and Roderick 2001; Bohonak and Vandergast 2011).
Although some analytical methods require information on individuals (e.g., sibship analysis or assignment
tests), the frequency-based statistics of genetic differentiation that are most often the focus when evaluating
gene flow do not require information on individuals. Furthermore, since false positives and negatives usually
display low abundance, they should only have a minor effect on the calculation of these frequency-based
estimates (Couton et al. 2023). Consequently, the question of whether landscape genetic statistics can be
calculated would come down to whether gene frequencies within each population reflect actual frequencies.
In eDNA metabarcoding, gene frequencies can be obtained as relative read counts instead of numbers of
individuals (or numbers of genomes for non-haploids). Despite differences in the nature of the obtained data,
previous studies performed in tanks or even in the field have shown a good congruence in gene frequencies
(typically as haplotype frequencies) between eDNA- and tissue-based approaches (Sigsgaard et al. 2016;
Marshall and Stepien 2019; Andres et al. 2021, 2023a; Couton et al. 2023; Wakimura et al. 2023). Therefore,
landscape genetics analyses using eDNA are qualitatively considered feasible. However, it remains unclear
whether the statistics of genetic differentiation calculated from eDNA samples in the field are sufficient to
withstand landscape genetic analysis. At the same time, analytical treatments that have been claimed to be
effective in previous population-based eDNA studies, such as the removal of low-frequency reads (Tsuji et
al. 2023) or the conversion of data to semi-quantitative rankings (Turon et al. 2020), would also need to be
investigated; it is unclear whether they are also effective in landscape genetics.

As a model case, we targeted the fluvial sculpin Cottus nozawaein the upper watershed of the Sorachi River
in Japan, for which detailed landscape genetics studies had been previously conducted. In this study, we
performed an eDNA metabarcoding analysis of the mitochondrial DNA (mtDNA) D-loop region of this
species and compared the results with inferences based on traditional tissue-based approaches. The aims
of this study are (i) to clarify whether eDNA-based local genetic structure is consistent with tissue-based
inferences, (ii) to reveal the extent to which the statistics of genetic differentiation calculated by eDNA are
consistent with those obtained from tissue samples, as well as to what extent the analytical treatments of
eDNA datasets change the results, and (iii) to discuss the applicability of eDNA to landscape genetics.

Materials and Methods

1. Study sites and sampling

This study was conducted in tributaries in the upper section of the Sorachi River, Hokkaido, Japan (Figure
1; Table 1). In this area, Nakajima et al. (2021, 2023) conducted population sampling of C. nozawae
individuals and investigated the population structure of this species. From the downstream of riffles or runs
of 21 sites whereC. nozawae had been sampled before, water samples of 0.8 L were collected from the surface
and filtered through Millipore 0.45 μ m Sterivex-HV filters (Merck KGaA, Darmstadt, Germany) with 100
mL syringes (JMS, Tokyo, Japan) in June 2023. Note that the site Pop 19 (in Figure 1) was approximately
500 m downstream from the population sampling site. Each 0.8 L of water at every site could be filtered
with one Sterivex filter, except for one site (two filters were needed in Pop 18). The Sterivex filters were
immersed in 1.3 mL of RNAlater (Thermo Fisher Scientific, Massachusetts, USA) and transported to the
laboratory under refrigeration. After the RNAlater was removed using QIAvac Vacuum Systems (QIAGEN,
Hilden, Germany) and a vacuum pump, total DNA was extracted using the DNeasy Blood & Tissue Kit
(QIAGEN). The protocol of DNA extraction was basically followed by the “ATL-S procedure” in Fukuzawa
et al. (2023), except that the volumes of the first addition of buffer ATL and proteinase K were changed to
400 μ L and 40μ L, respectively, and the final elution with buffer AE was performed in a volume of 120 μ
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L. The DNA sample from Pop 18 was purified using the DNeasy PowerClean Pro Cleanup Kit (QIAGEN)
to remove PCR inhibitors, as amplification in subsequent PCR was difficult.

2. Tissue-based sequencing and primer design

For reference, the partial control region sequences of approximately 16 individuals per population were
amplified from tissue-based genomic DNA used in previous studies. Although Nakajima et al. (2021, 2023)
did not include the distant populations Pop 20 and 21, tissue samples of some individuals were actually
obtained in 2020, and these samples were also used as outgroups in the present study (Table 1). First, the
entire control region was amplified with the primers L-Thr (5’-AGC TCA GCG YCA GAG CGC CGG TCT
TGT AA-3’) and H12Sr5 (5’-TGA TAA TAA AGT CAG GAC CAA G-3’) (Yokoyama and Goto 2002) using
TaKaRa Ex Taq Hot Start Version (Takara Bio, Shiga, Japan) with each 10 μ L reaction containing 1.0 μ L
of 10×Ex Taq Buffer, 0.8 μ L of dNTPs (each 2.5 mM), each 0.5 μ L of 10 μ M primers, 0.05 μ L of TaKaRa
Ex Taq HS, and 1.0 μ L of genomic DNA. The PCR conditions were initial denaturation at 94°C for 2 min
and 30 cycles of denaturation at 98°C for 10 sec, annealing at 58°C for 30 sec, and extension at 72°C for 1
min. After the PCR products were purified using the ExoSAP-IT Express PCR Product Cleanup Reagent
(Thermo Fisher Scientific), the 5’-end of the control region, which is the most used region in studies of
Japanese sculpin (Yamamoto 2019), was sequenced by Eurofins Genomics (Tokyo, Japan) using the reverse
internal primer H16498m (5’-CCT GAA RTA GGA ACC AAA TG-3’) (Yokoyama and Goto 2002). Sequence
data were aligned using Clustal W (Thompson et al. 1994) implemented in BioEdit (Hall 1999), and unique
haplotypes were identified with the aid of DnaSP 6 (Rozas et al. 2017). Primers for eDNA were designed to
amplify both the haplotypes from this study and those reported in Yokoyama and Goto (2002) (Table S2),
as well as to have an amplification product length of around 400 bp, which can be sequenced by Illumina
MiSeq:

CNdloopS1 F: 5’-ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT NNN NNN GCT CAA AGA
AAG GAG ATT YTA ACT C-3’

CNdloopS1 R: 5’-GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC TNN NNN NCC GTT
GGC ATT AAG AAA TCA ACT G-3’

Furthermore, not only tissue-based data from the same D-loop region, but genome-wide SNP data, which are
considered more informative, were used as a partial reference. Data from multiplexed ISSR genotyping by
sequencing (MIG-seq; Suyama and Matsuki 2015) at the studied 21 sites were downloaded from the DDBJ
Sequence Read Archive (DRA) under accession number DRA017315, and SNPs were identified from the
dataset at the 21 sites for examining the population structure and genetic differentiations (details found in
Text S1).

3. Molecular protocol for the eDNA samples

A first-round PCR (1st PCR) of eDNA was performed using KOD Plus Neo (Toyobo, Tokyo, Japan), with
each 20 μ L reaction containing 2.0μ L of 10×PCR Buffer, 2.0 μ L of dNTPs (each 2 mM), 1.2μ L of MgSO4

(25 mM), each 0.5 μ L of 10μ M primers, 0.4 μ L of KOD Plus Neo polymerase, and 2.0μ L of template
DNA. The PCR conditions were initial denaturation at 94 °C for 2 min and 35–40 cycles of denaturation at
94°C for 15 sec, annealing at 63°C for 30 sec, and extension at 68°C for 30 sec. The number of cycles was
initially 35, and samples for which no target peak was identified by electrophoresis after the second-round
PCR (2nd PCR) were analyzed again at 38 cycles and then 40 cycles (Table S1). Although the number of
PCR cycles was kept modest to minimize errors (Wakimura et al. 2023), the haplotype accumulation curve
suggested that the sequencing coverage was sufficient to detect haplotypes in the samples (Figure S1). The
1st PCR was conducted with eight replicates per sample (20 μ L × 8), and individual replicates were pooled
and purified using 160 μ L of VAHTS DNA Clean Beads (Vazyme Biotech, Nanjing, China) as templates
for the 2nd PCR. The 2nd PCR was conducted using KOD FX Neo (Toyobo) and primers with appropriate
unique index sequences. For this PCR, each 10 μ L reaction contained 5.0 μ L of 2×PCR Buffer, 2.0 μ L of
dNTPs (each 2 mM), 0.5 μ M of each forward and reverse primer, 0.2 μ L of KOD FX Neo polymerase, and
1.0 μ L of the template. The thermal conditions were as follows: initial denaturation at 94 °C for 2 min, 12
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cycles of denaturation at 98°C for 10 sec, annealing at 60°C for 30 sec, and extension at 68°C for 30 sec, and
a final extension at 68°C for 2 min. The 2nd PCR products were purified again using VAHTS DNA Clean
Beads, and positive bands of targeted amplicons were confirmed using the Fragment Analyzer System and
the dsDNA 915 Reagent Kit (Agilent Technologies, California, USA). The prepared libraries were sequenced
on the Illumina MiSeq platform using the MiSeq Reagent Kit v3 (2 × 300 cycles) (Illumina, California,
USA). The procedures from the purification of 1st PCR products to this MiSeq run were performed by
Bioengineering Lab. (Kanagawa, Japan). Fastq files containing raw reads were denoised using the DADA2
1.18.0 (Callahan et al. 2016), an algorithm known to have high accuracy in the context of population-level
inference (Tsuji et al. 2020b; Macé et al. 2022). DADA2 was performed in Qiime2 2022.11 (Bolyen et al.
2019) with the default parameters except: –p-trunc-len-f 240,–p-trunc-len-r 180, and –p-mim-overlap 20.
The obtained sequences were annotated by a local BLAST search against a reference database consisting
of sequences of the studied species obtained from Yokoyama and Goto (2002), Ito et al. (2018), and the
present study (Table S2). Sequences with an identity of 90.0% or more were picked up (but no sequences
were matched at 90.0%–99.4%; see Results).

4. Population structure, genetic diversity, and genetic differentiation

Haplotype frequencies based on relative read counts (eDNA) or the number of individuals (tissue) within each
site were plotted and compared. Additionally, the spatial patterns of haplotype frequencies were compared
with the population structure inferred from genome-wide SNP data.

To identify overall trends in intrapopulation genetic diversity, haplotype diversity (h S;hS = 1−
∑

i pi
2, whe-

re pi is the haplotype frequency of the i -th haplotype) and haplotype richness (hr ; number of haplotypes
corrected for differences in the number of individuals or total read counts among populations; haplotype
version of allelic richness (El Mousadik and Petit 1996)) of each population were calculated. For interpopu-
lation genetic differentiation, we first calculated Nei’s F ST (G ST; Nei 1973), as haplotype differentiation in
Hudson et al. (1992) (i.e., it does not matter whether two haplotypes differ by one nucleotide or by tens).
Other than G ST, we also used the allele frequency distance (AFD; Berner 2019) with the modification of
using haplotypes instead of alleles. AFD is considered less susceptible to differences in sample size between
populations and more sensitive in the range of weak differentiation that is of interest in local scale studies
(Berner 2019). In addition, this metric is identical toD PS (1 - proportion of shared alleles; Bowcock et al.
1994), which is known to reflect recent gene flow (˜10 generations) particularly relevant to management and
the purpose of landscape genetics (Leroy et al. 2018; Savary et al. 2021). Hereafter, we refer to this metric
as D PS, although this notation has not yet been used for haplotype-based analysis. The calculation process
of D PS for two arbitrary populations Pop A and Pop B isDPS = (

∑
i |piPopA − piPopB | )/2, where piPopA

and piPopB are the haplotype frequencies of the i -th haplotype in Pop A and Pop B, respectively. As this
study focuses on local genetic differentiation reflecting recent gene flow, subsequent analyses and discussions
are primarily based on D PS, while analyses using more common and well-known G ST statistics were also
conducted.

To clarify the spatial scale at which gene flow is more dominant than genetic drift for genetic differentiation,
Mantel correlograms displaying the spatial correlation of D PS (as simple genetic distance available in eDNA)
and geographic distance for each 7.5 km distance class until 60 km and then from 60 km to 128 km (maximum
value) were generated. Within the distance classes where the correlation coefficient is significantly positive,
gene flow among populations is considered to be particularly active (Diniz-Filho and De Campos Telles 2002).
The correlogram in each distance class was assessed with 9999 permutations using the package ecodist 2.0.9
(Goslee and Urban 2007) in R 4.2.1 (R Core Team 2022).

Genetic differentiation statistics were also calculated by SNP data (Text S1). Generally, genetic diversity
and genetic drift pressure differ between nuclear DNA and mtDNA (Toews and Brelsford 2012; Morin et al.
2018; Saitoh 2021). However, at the spatial scale at which gene flow is dominant, because the theoretical
pattern of being inversely proportional to migration is common (Allendorf et al. 2022), genetic differentiation
should be synchronized regardless of markers in the absence of sex differences. On the spatial scale explicitly
stated, the more informative SNP data were used as the known truth.
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5. Comparison of eDNA- and tissue-based genetic differentiation

Correlations between the metrics calculated by eDNA- and tissue-based approaches were examined for each
statistic of genetic diversity and differentiation. For genetic differentiation, statistics were calculated in the
three datasets: the entire dataset, the dataset upstream of the Kanayama dam (upstream dataset), and the
dataset only between population pairs with a waterway distance of <15 km (15-km dataset). The upstream
dataset was used to exclude the effects of a long spatial gap and a dam, and the 15-km dataset was used
to reveal the pattern at the spatial scale where gene flow is especially dominant (Nakajima et al. 2021).
Correlations of genetic differentiations for the entire dataset and upstream dataset were tested by Mantel
tests (9999 permutations and 10000 times bootstrapping to estimate confidence intervals) using the package
ecodist in R, and the statistics for datasets not in matrix style (genetic differentiation in the 15-km dataset
and genetic diversity) were tested by simple bootstrapping (10000 times) using the package CarletonStats
2.2 (Chihara and Loy 2023).

6. Differences by the additional data treatment

Since data obtained in eDNA metabarcoding are different in nature from conventional tissue-based ap-
proaches and contain erroneous sequences, previous studies have indicated that data filtering or the conver-
sion of relative read counts to semi-quantitative rankings are effective in population-based analysis (although
their scope is mainly phylogeography). To investigate their effectiveness in landscape genetics analysis, D

PS andG ST were calculated from the eDNA dataset in which the following treatments were performed and
compared to tissue-based statistics: treatment 1, haplotypes with a low frequency (pi < 0.01) in each pop-
ulation were removed from the data (replaced to 0 reads) (Tsuji et al. 2023); treatment 2, haplotypes with
less than half of the proportion of the most predominant haplotype in each population (pi < max pi/2) were
removed from the data (Tsuji et al. 2023); treatment 3, haplotype frequency was converted into the following
semi-quantitative rankings: rank 1 if pi ≤ 0.5 ; rank 2 if 0.5 < pi ≤ 0.75; rank 3 if0.75 < pi ≤ 0.9; rank 4 if
0.9 < pi (Turon et al. 2020).

7. Application to basic landscape genetics

Finally, to verify that eDNA can address basic landscape genetics questions, we examined whether two
patterns previously shown in the targeted system (Nakajima et al. 2021) were also detected by analysis using
eDNA. These patterns were: (i) genetic differentiation is significantly correlated with waterway geographic
distance (isolation-by-distance) and (ii) genetic differentiation is not correlated with differences in summer
water temperature between populations. From the 19 populations except Pop 20 and Pop 21 where water
temperature data are unavailable and 13 populations in the upstream dataset (assuming local scale studies),
correlations ofD PS with waterway geographic distance and water temperature differences were calculated
by Mantel tests with 9999 permutations.

Results

An average of 2848 reads per sample were assigned to the reference ofC. nozawae (Table 1), all with sequence
identity of >99.4%. A total of 66 haplotypes were detected from eDNA, whereas 58 haplotypes were detected
from tissue samples. Among the haplotypes detected from eDNA, 35 haplotypes matched with 100% identity
to haplotypes detected from tissue samples, and the other haplotypes matched with 99.4%–99.7% identity
(representing differences of 1–2 bases). The number of haplotypes detected in each population was 2–17
(mean: 8.62) in eDNA and 1–11 (mean: 6.43) in tissue samples, and the haplotype diversity h S ranged
from 0.01–0.83 (mean: 0.57) in eDNA and 0.00–0.89 (mean: 0.64) in tissue samples. Global G ST was 0.33
in eDNA and 0.29 in tissue samples, and the average D PS was 0.86 in both eDNA and tissue samples.
Pairwise G ST ranged from 0.01–0.90 (eDNA) or 0.01–0.89 (tissue), and D PSranged from 0.17–1.00 (eDNA)
or 0.25–1.00 (tissue) (Table S3).

The spatial distribution of haplotypes was generally consistent between eDNA and tissue samples (Figure 2).
Some major patterns of the spatial structure could be commonly found, such as the dominance of a unique
haplotype in Pop 3, the presence of haplotypes commonly found at many sites in Pop 1–11, and Pop 12

5
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being composed almost entirely of one haplotype also found in the downstream sites (Pop 13–15). Compared
with the results of the STRUCTURE analysis using SNP data, some patterns such as the presence of spatial
structure or the uniqueness of Pop 3 were common, but there were some differences from D-loop region
results, such as the absence of a clear differentiation between Pop 1–11 and Pop 12–13 in SNP data.

The statistics of genetic diversity and differentiation calculated from eDNA were positively correlated with
those calculated from tissue samples (Figures 3 and S2). For genetic differentiation, the correlation coefficient
was r = 0.73 (p < 0.001) forG ST and r = 0.83 (p < 0.001) forD PS. From the spatial autocorrelation analysis
by the Mantel correlogram, r values were consistently positive up to approximately 30 km and significant up
to at least 15 km in all genetic markers, indicating that gene flow can be considered particularly strong in
this range. Correlations of genetic differentiation calculated between eDNA and SNP data were low when
calculated for all 21 populations, but there was some correlation when calculated only for population pairs
less than 15 km apart (Figure 3, Table 2).

Additional data treatment of the eDNA dataset did not increase the correlation of its statistics with tissue-
based statistics (Tables 2 and S4). Treatment 2, which involved bold data removal, significantly worsened
the correlation in most datasets (95% CI not overlapping). In terms of the correlation coefficient alone,
treatment 3 (semi-quantitative approach) sometimes outperformed the no treatment dataset, although the
differences were not significant.

From the basic analysis including spatial and water temperature data, the detection patterns from our
eDNA data were congruent with those of previous studies, with a significant correlation between genetic
differentiation and waterway distance (r = 0.50, p < 0.001 for 19 populations; r = 0.52, p < 0.01 for
upstream populations; Figures 4 and S3) and no significant correlation between genetic differentiation and
water temperature differences (r = 0.20, p = 0.16 for 19 populations; r = 0.32, p = 0.06 for upstream
populations).

Discussion

In this study, we investigated the local genetic structure of C. nozawae from eDNA analysis for the D-loop
region and compared the results with those obtained from tissue samples, to reveal the applicability of eDNA
to landscape genetics.

The haplotype distributions obtained from eDNA and tissue samples showed similar patterns, although
there were some differences in each haplotype frequency. Major spatial patterns, including the presence of
genetically isolated sites and differences corresponding to spatial structure, were also detected from both
approaches. Note that the population structure inferred from the D-loop region is only based on a single
locus; thus, the strength of the population structure was not as apparent as that inferred from genome-
wide SNP data, which is commonly used in present-day tissue studies (Figure 2). Nevertheless, showing
the haplotype distribution obtained from eDNA should be useful for understanding a rough spatial pattern
within an entire watershed.

All statistics of genetic diversity and differentiation calculated from eDNA were significantly correlated with
those obtained from tissue samples. Regarding genetic diversity, the correlation with tissue-based approaches
was lower in hr than h S (Figure S2). This is likely because statistics based on the number of haplotypes
tend to be more affected by potentially erroneous sequences generated in next-generation sequencing than
those based on gene frequencies. As for genetic differentiation, the main subject of this study, both statistics
used were based on gene frequencies and were highly correlated between eDNA- and tissue-based calculations
using the same marker. The correlation coefficients were similar to those of a previous study that calculated
a statistic identical to D PS from eDNA and found a correlation of r = 0.76 with tissue samples (Andres et
al. 2023a). What is novel and particularly important in this study is the fact that these high correlations
are observed not only for the entire dataset but also for datasets featuring nearby sites (upstream dataset
and 15-km dataset) (Table 2). This indicates that genetic differentiation can be calculated with nearly the
same accuracy as for tissue samples even at spatial scales where gene flow is the dominant factor in shaping
the strength of genetic differentiation. On the other hand, some distant sites did not share any haplotypes
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(i.e.,D PS = 1; Table S3), and comparisons of the strength of genetic differentiation between such pairs of
sites are deemed difficult in the used marker.

Another important aspect in local scale inference is that eDNA-based differentiation was not necessarily
inferior to tissue-based differentiation using the same region when inferences based on SNP data are regarded
as more reliable (see D PS in upstream dataset and 15-km dataset in Table 2). In population genetics, a
higher number of individuals x loci will lead to better accuracy in inference, and the inference obtained
from small samples introduces biases associated with the individuals sampled. In eDNA, although there
are usually fewer available loci, it is possible that the samples contain information from many individuals
(Tsuji et al. 2020a), which may be more reflective of the “gene pool” in each site. How many individuals
are generally reflected in eDNA samples is still under study (Couton et al. 2023), but because the studied
area displays high population densities in C. nozawae (about 50 individuals per 100 m2; Suzuki et al. 2021),
information on a large number of individuals might be obtained from eDNA. Nevertheless, a clear difference
in the accuracy between the eDNA- and tissue-based approaches could not be identified. The take-home
message at this time is that eDNA analysis is not necessarily inferior to the tissue-based analysis from
approximately 16 individuals per population when the same markers are used.

When exploring regional haplotypes or their new distributions from the perspective of phylogeography, it
is paramount to minimize false positives and negatives (Turon et al. 2020; Tsuji et al. 2023). However,
genetic differentiation at the local scale, such as that addressed in this study, is fundamentally dependent on
gene frequencies within each population, and their overall spatial patterns or relationship to the environment
are the subject of analysis. In addition, although the effect of haplotypes detected at low frequencies on
statistics is relatively low, the sharing of the same haplotype at low frequencies at multiple sites sometimes
provides important information for the comparison of the strength of gene flow (Slatkin and Barton 1989).
On the other hand, since denoising primarily removes erroneous sequences that occur in sync with the correct
sequences (Callahan et al. 2016), the remaining false positives are likely to be randomly distributed in small
amounts across all samples and may not have a large impact on inferences. For these reasons, bulk removal
of low-frequency sequences may not be a beneficial option in landscape genetics. Conversely, it may be worth
considering the results that a semi-quantitative approach (treatment 3) did not decrease the correlation with
tissue samples but rather increased it in some datasets (Table 2). The fact that the accuracy did not change
much when detailed values were converted to rough values suggests that the calculated statistics should be
used to capture overall trends rather than to find meaning in slight differences in values.

Future challenges and perspectives

This study revealed the feasibility and usefulness of eDNA in landscape genetics. Even if the degree of
accuracy demonstrated in this study is accepted by users as a usable level, there are certain limitations that
cannot be immediately resolved. The first is the low information content of short DNA fragments available
in eDNA. This study used a single region of approximately 400 bp of mtDNA, but longer sequences would
be difficult to amplify due to the degradation of DNA in water (Jo et al. 2017). In addition, mtDNA,
which is generally used in eDNA studies, has limited information that is equivalent to that of a single locus
(Andres et al. 2023b). Landscape genetics studies after the 2010s are commonly conducted by analyzing
multiple independent loci (Wang 2011). For more accurate analysis, it is essential to use loci in nuclear
DNA, which is not linked to mtDNA and is regarded as independent loci (Couton et al. 2023). The use of
nuclear DNA in eDNA is still challenging, however, this issue could be solved through the implementation
of microsatellite and SNP analysis currently under development (Andres et al. 2021; Liu et al. 2024).
Another limitation is that eDNA cannot provide individual information. The statistics calculated in this
study do not require individual information because they deal with gene frequency in gene pools, and eDNA
sampling may even be possible to reduce bias due to the selection of some individuals in the population.
However, in order to address more complex biological questions in the field, analyses requiring individual
information will sometimes be required (Couton et al. 2023). Actually, in the studied species in the Sorachi
River, source-sink structures (asymmetric gene flow) from low-temperature tributaries to high-temperature
tributaries have been detected through an analysis using the theory of assignment test (Paetkau et al. 1995),
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which assigns individuals to groups (Nakajima et al. 2021), but this analysis cannot be applied without
individual information.

Nevertheless, this study shows that eDNA has the potential to perform basic analyses via summary statistics
with the same level of accuracy as that seen in tissue samples. Given that the “basic landscape genetics,” as
practiced in the 2000s when only short sequence data could be handled, could be rapidly performed through
cost-efficient and non-invasive sampling, the usefulness of eDNA analyses is evident. With the increasing
number of available markers, landscape genetics using eDNA is expected to be more useful and be utilized
for various purposes such as the evaluation and conservation of habitat connectivity under environmental
changes.
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Pop ID Longitude (E°) Latitude (N°) eDNA (D-loop) eDNA (D-loop) eDNA (D-loop) Tissue (D-loop) Tissue (D-loop) Tissue (D-loop) Tissue (SNP) Tissue (SNP)

1 142.670 43.057 2015 10.000 0.830 16 5.762 0.766 32 0.253
2 142.672 43.085 1044 8.998 0.706 16 6.681 0.859 22 0.257
3 142.699 43.107 1379 1.984 0.012 17 1.529 0.111 31 0.251
4 142.703 43.218 1997 6.000 0.683 16 5.412 0.813 30 0.262
5 142.699 43.218 1631 4.996 0.338 16 3.683 0.641 34 0.260
6 142.678 43.163 1278 6.000 0.756 16 5.274 0.781 21 0.255
7 142.699 43.155 3535 6.490 0.206 16 2.688 0.328 32 0.262
8 142.680 43.133 2290 9.983 0.406 16 5.874 0.797 32 0.265
9 142.739 43.136 3570 10.833 0.743 16 5.083 0.797 32 0.260
10 142.680 43.129 4024 16.968 0.747 16 5.724 0.797 32 0.259
11 142.624 43.137 2394 8.987 0.533 18 5.529 0.759 32 0.258
12 142.665 43.196 1404 2.000 0.091 14 1.000 0.000 14 0.243
13 142.603 43.173 2207 9.000 0.485 16 3.625 0.563 32 0.256
14 142.346 43.135 7422 16.679 0.782 16 5.913 0.813 21 0.244
15 142.393 43.149 3013 15.990 0.753 16 6.324 0.813 22 0.248
16 142.558 43.207 2730 6.000 0.747 16 4.305 0.742 22 0.258
17 142.501 43.216 3569 6.994 0.632 15 5.468 0.800 19 0.253
18 142.401 43.216 556 2.000 0.498 15 4.653 0.747 21 0.236
19 142.403 43.218 2201 15.990 0.778 16 7.350 0.891 20 0.238
20 142.543 43.323 7166 7.999 0.628 9 2.000 0.198 11 0.220
21 142.241 43.625 4382 5.995 0.552 9 3.000 0.494 9 0.157

Reads, number of sequence reads assigned to each site and studied species after BLAST; n, number of
individuals; hr , haplotype richness; h S, haplotype diversity;H E, expected heterozygosity

Table 2 Summary of the correlation between eDNA- and tissue-based genetic differentiation statistics.

Correlation [95% CI] Correlation [95% CI] Correlation [95% CI]

Stat. Treatment Entire dataset Upstream dataset 15-km dataset
(A) eDNA vs tissue (both D-loop) (A) eDNA vs tissue (both D-loop) (A) eDNA vs tissue (both D-loop) (A) eDNA vs tissue (both D-loop) (A) eDNA vs tissue (both D-loop) (A) eDNA vs tissue (both D-loop)

GST No treatment 0.734 [0.643, 0.849] 0.888 [0.828, 0.934] 0.891 [0.798, 0.946]
Treatment 1 0.728 [0.634, 0.843] 0.882 [0.821, 0.928] 0.887 [0.790, 0.944]
Treatment 2 0.496 [0.439, 0.575] 0.558 [0.493, 0.655] 0.583 [0.416, 0.730]
Treatment 3 0.757 [0.658, 0.841] 0.906 [0.857, 0.939] 0.930 [0.890, 0.963]

DPS No treatment 0.825 [0.791, 0.867] 0.842 [0.778, 0.905] 0.841 [0.758, 0.915]
Treatment 1 0.823 [0.789, 0.864] 0.840 [0.777, 0.907] 0.839 [0.755, 0.914]
Treatment 2 0.673 [0.622, 0.753] 0.654 [0.578, 0.730] 0.643 [0.520, 0.755]
Treatment 3 0.784 [0.747, 0.825] 0.803 [0.721, 0.878] 0.829 [0.737, 0.902]

(B) eDNA (D-loop) vs tissue (SNP) (B) eDNA (D-loop) vs tissue (SNP) (B) eDNA (D-loop) vs tissue (SNP) (B) eDNA (D-loop) vs tissue (SNP) (B) eDNA (D-loop) vs tissue (SNP) (B) eDNA (D-loop) vs tissue (SNP)
GST No treatment 0.091 [0.031, 0.183] 0.510 [0.125, 0.682] 0.561 [0.329, 0.742]
DPS No treatment 0.456 [0.406, 0.523] 0.626 [0.500, 0.748] 0.667 [0.517, 0.789]

(C) tissue (D-loop) vs tissue (SNP) (C) tissue (D-loop) vs tissue (SNP) (C) tissue (D-loop) vs tissue (SNP) (C) tissue (D-loop) vs tissue (SNP) (C) tissue (D-loop) vs tissue (SNP) (C) tissue (D-loop) vs tissue (SNP)
GST No treatment 0.299 [0.248, 0.460] 0.544 [0.156, 0.716] 0.636 [0.425, 0.797]
DPS No treatment 0.487 [0.446, 0.565] 0.536 [0.331, 0.708] 0.627 [0.433, 0.774]

Upstream dataset, only 13 populations upstream of the Kanayama dam; 15-km dataset, only between pop-
ulation pairs with a waterway distance of <15 km. The confidence interval (95% CI) in the entire dataset
and upstream dataset was obtained by bootstrapping testing in Mantel tests, while the 95% CI for the
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15-km dataset, which is not matrix style, was obtained by simple bootstrapping. In the comparison of the
same region, the results calculated using eDNA datasets obtained after the three types of treatment are also
displayed: Treatment 1, removal of low read frequencies; Treatment 2, bold removal of low read frequencies;
Treatment 3, conversion to semi-quantitative rankings. See Table S4 for the full combinations.

Figure Legends

Figure 1 Sampling localities. The number on the map indicates the population ID. Pop 1–13 are located
upstream of the Kanayama dam and can be particularly assumed to be within the local scale. The map was
created using the National Land Numerical Information from the MLIT of Japan (nlftp.mlit.go.jp/)

Figure 2 Spatial population structure among 21 sites estimated by three types of markers. (A, B) The
haplotype compositions in each site estimated by the D-loop region using eDNA-based (A) and tissue-based
(B) approaches. Haplotype names correspond to Table S2. Within each site, boxes separated by black lines
indicate different haplotypes, and the box size reflects haplotype frequency. Only the haplotypes with high
frequency (the sum of pi [?] 0.5 in either eDNA or tissue) are shown in color (except white). Different colors
except white indicate different haplotypes. (C) Population structure inferred by the STRUCTURE analysis
using SNP data obtained by MIG-seq. Barplots display the proportion of the membership coefficients in the
inferred subpopulations (clusters) at K = 6 for all individuals. The number indicates the population ID.

Figure 3 Congruence of eDNA- and tissue-based genetic differentiation. (A) Mantel correlograms showing
the spatial autocorrelation of genetic data. The r values obtained from the three types of markers are
displayed. Filled markers indicate significant correlations from a null model of spatial structure (p< 0.05).
(B, C) Correlation of genetic differentiation statistics calculated by haplotype frequencies estimated from
eDNA- and tissue-based approaches for statistics D PS (B) and G ST(C). (D, E) Correlation between genetic
differentiation statistics calculated by eDNA samples and genome-wide SNP data for statisticsD PS (D) and
G ST (E). Filled circles indicate the population pairs less than 15 km apart, and correlations in this 15-km
dataset are also shown.

Figure 4 Relationship of eDNA-based genetic differentiation with geographic distance and water temper-
ature in the 13 sites upstream of the Kanayama dam. Scatter plots of D PS versus waterway distance (A)
and summer water temperature differences (B) between populations are displayed.
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figures/Fig2/Fig2-eps-converted-to.pdf
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figures/Fig3-rev/Fig3-rev-eps-converted-to.pdf
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figures/Fig4-rev/Fig4-rev-eps-converted-to.pdf
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