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Abstract

This paper is a continuation of the study conducted by Ko and Ryu (2024) [5], which introduces and analyzes a generalized

predator-prey reaction-diffusion system incorporating (repulsive) prey-taxis and a hunting cooperation effect in predators, under

homogeneous Neumann boundary conditions. In the study, the existence and uniqueness of global and classical solutions for the

time- and space-dependent system are analytically examined. Furthermore, the study examines the local and global stability

and convergence rate at the constant predator-extinction and coexistence states. In our paper, we analyze the stationary

system corresponding to the system in [5], with a specific focus on examining the existence and nonexistence of positive and

nonconstant solutions. The nonexistence occurs when the diffusion rate of prey is sufficiently high. On the other hand, the

existence occurs when the prey-tactic rate is sufficiently high, indicating a strong repulsive prey-taxis, and the diffusion rate of

prey is sufficiently low. For this investigation, we separately employ the energy method and the Leray-Schauder degree theory.
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1. Introduction

In [5], we have provided a qualitative study on the following reaction-diffusion system modeling predator-

prey interactions incorporating a hunting-cooperation functional response and prey-taxis:
ut − τ∆u = F(u, v) in (0,∞)× Ω,

vt −∆v − χ∇ · (q(v)∇u) = G(u, v) in (0,∞)× Ω,

∂nu = ∂nv = 0 on (0,∞)× ∂Ω,

(1.1)

where

F(u, v) = g(u)− vf(u, v) and G(u, v) = βvf(u, v)− γ(v);

Ω ⊆ RN is a bounded domain with smooth boundary denoted by ∂Ω; n(x) is the outward unit normal

vector on ∂Ω with ∂n = ∂/∂n; and the parameters β, τ , and χ are positive constants. Moreover, on the

given functions g, f , γ and q, we have assumed that there exist positive constants K, Mg, Mf , Mγ , and

Mq such that the following hypotheses hold:

(H1) g ∈ C1([0,∞),R), g(0) ≥ 0, g(K) = 0, 0 < g(u) ≤ Mg for all 0 < u < K, while g(u) < 0 for any

u > K.

(H2) f ∈ C1([0,∞)2, [0,∞)), f(u, 0) ≥ 0, f(0, v) = 0, fu(u, v) > 0 and fv(u, v) > 0 for any u, v > 0,

and f(u, v) ≤Mf for all u, v ≥ 0.

(H3) γ ∈ C1([0,∞), [0,∞)), γ(0) = 0, γ′(0) =Mγ , γ(v) ≥Mγv and γ′(v) > 0 for any v ≥ 0.

(H4) q ∈ C1([0,∞), [0,∞)), q(0) = 0, and q(v) ≤Mqv for all v ≥ 0.

Here, u and v represent the densities of the prey and its predator, respectively. Moreover, τ represents the

diffusion rate, indicating that each prey species exhibits random movement within Ω, and β signifies the

conversion rate of prey into predators. The function g, satisfying (H1), reflects the prey species’ intrinsic

growth rate, demonstrating the logistic property. The functional response f , satisfying (H2), illustrates the

cooperative effect among predators when hunting their own prey. The function γ represents the predator’s

net growth rate, influenced by the death rate of predators or by competition among predators. The term

−χ∇· (q(v)∇u) denotes a repulsive prey-taxis (e.g., [3]), indicating an ecological situation where predators

in Ω tend to move in the opposite direction of the increasing prey species gradient, suggesting that the

prey possesses a defense mechanism against its predators. Here, q and χ are respectively referred to as the

prey-tactic sensitivity function and the intrinsic prey-tactic rate. Synthetically, the system (1.1) is a model

of predator-prey interaction characterized by three features: both prey and predators having a generalized

growth rate, the prey possessing a group defense mechanism implemented in the form of prey-taxis diffusion

against their predators, and the predators exhibiting a cooperative effect (e.g., [1, 13, 14]) in the form of

a response function when hunting such prey. For a detailed derivation process and biological background

regarding (1.1), refer to [5].

Following Turing’s groundbreaking work, one of the most intriguing questions in the field of PDEs is

whether spatially inhomogeneous steady states can be generated. As a result, a remarkably large number

of interesting studies have been conducted on the occurrence and non-occurrence of stationary patterns

in reaction-diffusion systems, observed in various fields such as ecology, biology, and chemistry. Building
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on this trend, the predator-prey systems with (attractive) prey-taxis, which have been studied for pattern

formation, exhibit the following form:
ut − d∆u = uϕ(u)− vξ(u, v) in (0,∞)× Ω,

vt −∆v + χ∇ · (q(v)∇u) = cvξ(u, v)− vδ(v) in (0,∞)× Ω,

∂nu = ∂nv = 0 on (0,∞)× ∂Ω,

(1.2)

where the coefficients are positive constants; uϕ(u) represents the prey’s growth rate; ξ(u, v) is the func-

tional response; vδ(v) represents the predator’s death rate; and the term +χ∇ · (q(v)∇u) signifies that the
predators have a tendency to move in the direction of the increasing prey species gradient. When

ϕ(u) = r
(
1− u

K

)
, ξ(u, v) =

mu

1 + au
, δ(v) = b, and q(v) = vq1(v), (1.3)

where q1 ∈ C2([0, 1]), q1(v) = 0 for v ≥ vm, q1(v) > 0 for 0 ≤ v < vm, and all coefficients used here

are positive constants, the authors in [7] investigated stationary pattern formation in the system (1.2)

using index theory. In [11], global bifurcation theory was employed to establish that nonconstant positive

solutions of (1.2) are bifurcated when ϕ, ξ and δ satisfy (1.3); and q1(v) is a constant, rather than a

truncated function as in (1.3). Moreover, the authors in [6] studied instability driven by diffusion and

small taxis in (1.2) when Ω is an interval; ϕ(u) = K(1 − u)(u − a1) or 1 − u with 0 < a1 < 1 and

K = 4/(1− a1)
2; ξ(u, v) = u or (a2 + 1)u/(a2 + u) with a2 > 0; δ(v) = b1 + b2v with bi > 0 (i = 1, 2); and

q(v) = v. For further analytical or numerical research results on stationary pattern formation in prey-taxis

or predator-taxis predator-prey models similar to (1.2), we refer to [3, 4, 12]. Furthermore, in [10], the

study examined local bifurcation results of nonconstant positive steady states for a prey-taxis model with

more generalized reaction functions and prey-tactic sensitivity functions (satisfying specific assumptions)

than those in (1.2), over a one-dimensional domain.

Exploring generalized models that illustrate various dynamics based on different ecological scenarios

is always intriguing and provides valuable insights. The results obtained from the models are likely to

capture common characteristics shared by each model in different scenarios. These findings can serve as a

preliminary study for specific models that may be considered in future scenarios. Despite this significance,

research on pattern formation in generalized predator-prey systems with prey-taxis and nonconstant reac-

tion rates is rare. Furthermore, considering that (1.1) is a model with repulsive prey-taxis and cooperative

reaction functions that has recently gained considerable attention due to its significant ecological implica-

tions (see [5] and references therein) mentioned earlier, study on the stationary pattern formation in (1.1) is

necessary. Thus, in this paper, our interest extends beyond the solutions of the time- and space-dependent

system (1.1) to include the solutions of the steady-state corresponding to (1.1), namely the coupled elliptic

system: 
−τ∆u = F(u, v) in Ω,

−∆v − χ∇ · (q(v)∇u) = G(u, v) in Ω,

∂nu = ∂nv = 0 on ∂Ω.

(1.4)
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Most of the study on (1.4) is dedicated to investigating pattern formation, specifically the existence of

nonconstant positive solutions and the nonexistence of such solutions. The primary purposes of the study

outlined in this paper are as follows:

(i) We present sufficient conditions that yield the nonexistence of positive and nonconstant solutions

of (1.4) where q is in its simplest form, i.e., q(v) = v. Specifically, when τ is sufficiently large,

we establish nonexistence by imposing additional assumptions on f , g, and γ. To achieve this,

we prove that positive solutions to (1.4) have a-priori bounds by using standard elliptic regularity

theory. Moreover, we study the convergence of positive solutions of the system to the constant

positive solutions in the L∞(Ω)-norm as τ → ∞.

(ii) We are investigating conditions that guarantee the existence of positive and nonconstant solutions

of (1.4) where q(v) = v. Additional assumptions are required for f , g, and γ to achieve this

purpose, particularly when τ is small and χ is large. To achieve this existence, we need to prove

that the positive solutions have a positive and uniform lower bound. We further use the previously

obtained result on the nonexistence in (i) along with the Leray-Schauder degree theory.

The brief overview of the paper’s structure is as follows. In Section 2, we introduce additional assump-

tions required for the proposed study and present results on the constant coexistence of (1.4) from [5].

In Section 3, we present the main theorems of the results corresponding to the objectives of this study

without providing detailed proofs. In Section 4, we perform detailed proofs of these theorems.

2. Preliminary

In this section, we sequentially list the additional assumptions necessary to obtain the results of this

paper and also review the sufficient conditions from [5, Theorem 2.3] for (1.1) to have a positive constant

solution of (1.4).

First, in addition to the assumptions (H1)-(H4) given in Section 1, we will invoke and utilize the following

assumptions as necessary:

(H1b) g′(K) < 0 and g′(0) > 0 hold when g(0) = 0; g′(K) < 0 holds when g(0) > 0.

(H2e) f(u, v) ∈ C2([0,∞)2), and fvv(u, v) ≤ 0 for any u, v ≥ 0.

(H3c) γ(v)
v ∈ C1([0,∞)), γ(v)

v

∣∣∣
v=0

= Mγ , and
d
dv

γ(v)
v ≥ γ∗ for any v > 0, where γ∗ > 0 is a constant

independent of Mγ .

We next use the following notation to express the sufficient conditions for the constant coexistence of

(1.4) and the properties satisfied by this coexistence:

ξ(u) := γ−1(βg(u)) and H(u) := g(u)− f(u, ξ(u))ξ(u).

Theorem 2.1. Assume that assumptions (H1)-(H3) and (H1b) hold. Then, there exists at leat one positive

constant solution, denoted by u∗ := (u∗, v∗), of (1.1) if either one of the followings holds:

(i) H′(K) > 0 (i.e., βf(K, 0)− γ′(0) > 0);

(ii) H′(K) ≤ 0 and H(M∗) < 0 for some constant M∗ ∈ (0,K).
(2.1)
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Moreover, u∗ satisfies

H(u∗) = 0, 0 < u∗ < K, and 0 < v∗ = ξ(u∗) ≤ β
Mg

Mγ
.

For the readers’ convenience, we have extracted the proof of the theorem from [5] and included it in the

appendix of this paper. For reference, Figure 1 provides an example of how the positive constant solution

of (1.4) is determined in the function H when the former in (H1b) is satisfied. Furthermore, concrete

examples satisfying Theorem 2.1 are provided in [5, Remark 2.4].

u

H(u)

Ku∗

(a) (i) in (2.1)

M∗
u

H(u)

K
u∗

(b) (ii) in (2.1)

Figure 1. The graphs of H(u) when g(0) = 0

3. Main results

We investigate not only the existence of positive and nonconstant solutions of (1.4) with q(v) = v

but also their nonexistence. We denote Θ := (β, χ, f, g, γ,N,Ω) in the sequel for notational convenience.

Moreover, in proving the theorem below, we prepare the followings: let

0 = µ0 < µ1 ≤ µ2 ≤ · · · ≤ µi ≤ · · · and lim
i→∞

µi = ∞

be all eigenvalues of the problem −∆ϕ = µϕ in Ω and ∂nϕ = 0 on ∂Ω. Additionally, let mi denote the

multiplicity corresponding to µi. These notations will continue to be used in the study of (1.4).

Theorem 3.1. Suppose that (H1)-(H3) and (H3c) hold, and let q(v) = v. If

βMf > Mγ , µ1 > (βMf −Mγ)

1 + β
eχK

γ∗
max

u∈[0,K],

v∈[0,eχK(βMf−Mγ)/γ∗]

fv(u, v)

 (3.1)

hold, there exists a constant τ̃1 = τ̃1(Θ) > 0 such that for τ ≥ τ̃1, (1.4) has no nonconstant positive

solution.

We present another condition giving the nonexistence of nonconstant positive solutions of (1.4), dropping

the second inequality in (3.1).
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Theorem 3.2. Assume that (H1)-(H3), (H1b), (H2e), and (H3c) are satisfied, and let q(v) = v. Then,

there exists a constant τ̃2 = τ̃2(Θ) > 0 such that if

β max
u∈[0,K]

fv(u, 0) < γ∗, (3.2)

then (1.4) has no nonconstant positive solution for τ ≥ τ̃2.

As specific examples for the functions f , g, and γ satisfying all the assumptions in Theorem 3.2 when

γ∗ is large enough to satisfy (3.2), we can provide

f(u, v) =
Mfu(1 + av)

u(1 + av) + 1
, g(u) = ru(1− u/K), γ(v) = v(Mγ + γ∗v) (3.3)

with positive constants a and r. Here, we note that the references for the functional response f can be

found in [5]; and the large γ∗ implies H′(K) > 0, indicating the existence of u∗ (see the proof of Lemma

4.3).

Before ending this section, we provide the sufficient conditions for (1.4) with q(v) = v to possess a

nonconstant positive solution. In stating and proving the main result for the nonconstant coexistence

state, we need the following notations and a simple result. To the end, we first introduce the notations for

u∗ = (u∗, v∗):

L11(u∗) := g′(u∗)− v∗fu(u∗), L12(u∗) := −v∗fv(u∗)− f(u∗),

L21(u∗) := βv∗fu(u∗), L22(u∗) := βv∗fv(u∗) + βf(u∗)− γ′(v∗).

Lemma 3.3. Assume that assumptions (H1)-(H3), (H1b) and (H3c), and (i) in (2.1) hold. Assume,

additionally, that

(H5) H′(u∗) ̸= 0 for all positive constant solutions (u∗, v∗) of (1.4).

Then, (1.4) has an odd number of positive constant solutions, denoted as

(u∗k, v
∗
k) := u∗

k for k = 1, 2, . . . , 2n+ 1,

with u∗1 < u∗2 < · · · < u∗k < · · · < u∗2n+1. In addition, assume that βfv(u
∗
k) − γ∗ < 0 for all k. Then, for

odd k, there exists a constant τk = τk(Θ) > 0 such that

Q(µ,u∗
k) := µ2 −

(
L11(u

∗
k)− χv∗kL12(u

∗
k) + L22(u

∗
k)τ

τ

)
µ

+
L11(u

∗
k)L22(u

∗
k)− L12(u

∗
k)L21(u

∗
k)

τ
= 0

(3.4)

possesses two distinct positive roots, denoted as µ+(u∗
k) and µ

−(u∗
k), with µ

+(u∗
k) > µ−(u∗

k), provided that

τ < τk and χ >
L11(u

∗
k)

v∗kL12(u∗
k)

:= χk. (3.5)

On the other hand, for even k, µ+(u∗
k) is a unique positive root of Q(µ,u∗

k) = 0.
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Theorem 3.4. Suppose that (H1)-(H3), (H1b), (H2e), (H3c), and (H5) hold, and let q(v) = v. Assume,

additionally, that (3.2) holds, and

τ < min {τk : k = 1, 3, . . . , 2n+ 1} , χ > max {χk : k = 1, 3, . . . , 2n+ 1} . (3.6)

Let µ+(u∗
k) ∈ (µbk , µbk+1), and µ

−(u∗
k) ∈ (µak , µak+1) (only when k is odd) for some integers bk > ak ≥ 0.

Then, (1.4) possesses at least one nonconstant positive solution, if

|{σk : 1 ≤ k ≤ 2n+ 1, σk = even}| ≠ |{σk : 1 ≤ k ≤ 2n+ 1, σk = odd}|+ 1, (3.7)

where

σk :=



bk∑
i=ak+1

mi if k = 1, 3, . . . , 2n+ 1,

bk∑
i=0

mi if k = 2, 4, . . . , 2n,

and |·| represents the number of elements in the given set.

Remark 3.5. (i) As an example satisfying the assumptions in Theorem 3.4, we focus on the system (1.4)

with f , g, and γ given in (3.3). We choose a γ∗ in (H3c) to be large enough to satisfy (3.2), which in

turn implies that H′(K) > 0. According to the discussion in [5, Remark 2.8], (1.4) has only one positive

constant solution u∗ if γ∗ in the function γ is sufficiently large. Therefore, in Theorem 3.4, we have n = 0,

which implies that k can only be 1. Hence, if χ, γ∗ and 1/τ are large enough, we can conclude that if∑b1
i=a1+1mi is odd, then (1.4) admits a nonconstant positive solution.

(ii) Investigating sufficient conditions for pattern formation when (ii) of (2.1) is satisfied is so complex

(e.g., see [13]). Furthermore, our main model is composed of generalized terms. Therefore, there are limi-

tations in finding direct (or verifiable) conditions like (2.1) when (ii) in (2.1) is satisfied. The investigation

of pattern formation when (ii) of (2.1) is satisfied is planned for future research.

4. Proofs of main results

To begin, we derive a-priori estimates for the positive solutions to (1.4).

Lemma 4.1. Suppose that βMf > Mγ and assumptions (H1)-(H3) and (H3c) are satisfied, and let q(v) =

v. Then, all positive solutions (u(x), v(x)) to (1.4) satisfy

max
Ω

u(x) ≤ K, max
Ω

v(x) ≤ Ṽ :=
βMf −Mγ

γ∗
eχK . (4.1)

Proof. By directly applying the maximum principle (e.g., see [9]) to the first equation in (1.4), we can

immediately have that maxΩ u ≤ K.

We let v = we−χu. Then, we can obtain from the second equation in (1.4) that

−∇ ·
(
e−χu∇w

)
= G(u,we−χu) in Ω, ∂nw = 0 on ∂Ω.
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Letting w = maxΩ w(x), using assumptions (H2), (H3), and (H3c), and applying the maximum principle

once again to the above boundary value problem, one can derive that

0 ≤ G(u(x), e−χu(x)w)

≤ βMfe
−χu(x)w − γ(e−χu(x)w)

≤ βMfe
−χu(x)w − e−χu(x)w

(
γ′(0) + γ∗e

−χu(x)w
)
.

Thus, by virtue of the first desired result in (4.1), one see that

w ≤ βMf −Mγ

γ∗
eχK ,

which completes the proof. □

Recall that we denote Θ = (β, χ, f, g, γ,N,Ω) before Theorem 3.1.

Lemma 4.2. Let τ∗ > 0 be a fixed constant, and suppose that all assumptions given in Lemma 4.1 hold.

Then, every positive solution (u, v) to (1.4) satisfies that for any τ ≥ τ∗,

∥u∥C1,α(Ω) , ∥v∥C1,α(Ω) ≤ C, (4.2)

where C = C(Θ, τ∗) > 0 is a constant.

Proof. We denote and use Ci as generic positive constants depending only on Θ and τ∗. By multiplying u

in the first equation in (1.4), integrating the resulting equation on Ω, and utilizing the uniform L∞-estimate

(4.1), one can obtain ∫
Ω

|∇u|2 dx ≤ C1

τ
. (4.3)

Furthermore, by employing the elliptic regularity theory (e.g., see [2]) to the first equation in (1.4):

−∆u =
F(u, v)

τ
in Ω, ∂nu = 0 on ∂Ω,

and by using (4.1) and (4.3), one have that

∥u∥W 2,2(Ω) ≤ C2

(
∥u∥W 1,2(Ω) +

1

τ
∥F(u, v)∥L2(Ω)

)
≤ C3.

We apply the Sobolev embedding theorems (e.g., see [2]) and bootstrapping (i.e., repeating this argument

finitely many times) to show that u belongs to W 2,p(Ω) (with any p > 1), satisfying ∥u∥W 2,p(Ω) ≤ C4.

Furthermore, we can use the Sobolev embedding theorems once again to conclude that u belongs to

C1,α(Ω), and moreover, the norm ∥u∥C1,α(Ω) is independent of τ . Thus, the first estimate in (4.2) has been

established.
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We next prove the second estimate in (4.2). By multiplying v to the second equation of (1.4) and

integrating the resulting equation on Ω, and then using (4.1) and Young’s inequality, we derive∫
Ω

|∇v|2 dx =

∫
Ω

G(u, v)vdx− χ

∫
Ω

v∇u · ∇vdx

≤ C6 + C5

∫
Ω

|∇u · ∇v| dx

≤ C6 +
C2

5

2

∫
Ω

|∇u|2 dx+
1

2

∫
Ω

|∇v|2 dx.

Thus, in this derivation, using (4.3), we obtain∫
Ω

|∇v|2 dx ≤ C7. (4.4)

Similar to before, with the aid of (4.1), (4.4), and the fact that ∥u∥W 2,p(Ω) ≤ C4 for any p > 1, applying

the elliptic regularity theory to

−∆v − χ∇u · ∇v = G(u, v) + χv∆u in Ω, ∂nv = 0 on ∂Ω

which is a reformulation of the second equation in (1.4), and using the Sobolev embedding theorems and

bootstrapping, one conclude that for any p > 1, v belongs to W 2,p(Ω), so that the desired second estimate

holds. □

Proof of Theorem 3.1. We first denote (u, v) as a positive solution to (1.4), and for convenience, we let

and use

ψ =
1

|Ω|

∫
Ω

ψdx for ψ ∈ L1(Ω), U = u− u, V = v − v.

Moreover, below, we will use an arbitrary constant ϵ > 0 and generic constantsMi > 0 that are independent

of τ .

Multiplying U and V to the first and second equations of (1.4), respectively, and then integrating over

Ω by parts, the followings can be derived:

τ

∫
Ω

|∇U|2dx =

∫
Ω

UF(u, v)dx

=

∫
Ω

(F(u, v)−F(u, v))Udx−
∫
Ω

(vf(u, v)− vf(u, v))Udx

=

∫
Ω

(g′(ϕ1)− vfu(ϕ1, v))U2dx−
∫
Ω

(ψ1fv(u, ψ1) + f(u, ψ1))UVdx

(4.5)

and ∫
Ω

|∇V|2dx+ χ

∫
Ω

v∇U · ∇Vdx =

∫
Ω

VG(u, v)dx

=

∫
Ω

G(u, v)
v

V2 + v

(
G(u, v)
v

− G(u, v)
v

)
Vdx

+

∫
Ω

v

(
G(u, v)
v

− G(u, v)
v

)
Vdx

=

∫
Ω

B(u, v)V2dx+

∫
Ω

vβfu(ϕ2, v)UVdx,

(4.6)

9



where

B(u, v) =
G(u, v)
v

+ vβfv(u, ψ2)− v

(
γ(z)

z

)′
∣∣∣∣∣
z=ψ2

,

and ϕi (where i = 1, 2) and ψi (where i = 1, 2) are within the range of u to u, and v to v, respectively. We

note that ϕi and ψi (for i = 1, 2) are obtained using the mean-value theorem.

Using assumptions (H1) and (H2) and (4.1) in (4.5), we can derive that

τ

∫
Ω

|∇U|2dx ≤
∫
Ω

M1U2 +M2 |U| |V| dx. (4.7)

Thus, applying the Poincaré inequality and Young’s inequality to (4.7), one can conclude that(
τ − M1

µ1
− M2

2µ1ϵ

)∫
Ω

|∇U|2dx ≤ M2

2µ1
ϵ

∫
Ω

|∇V|2dx. (4.8)

Similarly, using assumptions (H2), (H3), and (H3c), along with (4.1), and applying the Poincaré inequality

and Young’s inequality to (4.6), one can deduce∫
Ω

|∇V|2dx− χϵ
Ṽ

2

∫
Ω

|∇V|2dx− χ
Ṽ

2ϵ

∫
Ω

|∇U|2dx

≤
∫
Ω

B̃V2dx+
M3

2
ϵ

∫
Ω

V2dx+
M3

2ϵ

∫
Ω

U2dx

≤
∫
Ω

(
B̃

µ1
+
M3

2µ1
ϵ

)
|∇V|2dx+

M3

2µ1ϵ

∫
Ω

|∇U|2dx,

(4.9)

where

B̃ = βMf −Mγ + βṼ max
u∈[0,K], v∈[0,Ṽ ]

fv(u, v).

Hence, we have from (4.8) and (4.9) that(
τ − M1

µ1
− M2

2µ1ϵ
− χ

Ṽ

2ϵ
− M3

2µ1ϵ

)∫
Ω

|∇U|2dx+

(
1− B̃

µ1
− M3

2µ1
ϵ− χ

Ṽ

2
ϵ− M2

2µ1
ϵ

)∫
Ω

|∇V|2dx ≤ 0.

Due to (3.1), if we choose a small enough value for ϵ, then the term in the second round bracket is positive.

Correspondingly, for large τ , the term in the first round bracket is also positive. This means that ∇U ≡ 0

and ∇V ≡ 0, indicating the desired result. □

We obtain the result concerning the asymptotic behavior of positive solutions of (1.4) as τ → ∞, which

will be used in proving Theorem 3.2.

Lemma 4.3. Assume that (3.2) and all assumptions in Theorem 3.2 are satisfied, and let (un, vn) be a

positive solution to (1.4) with τ = τn and q(v) = v. Then, as τn → ∞, (un, vn) converges to a positive

constant solution u∗ of (1.4) in [L∞(Ω)]2.

Proof. By integrating the equations in (1.4) with (u, v) = (un, vn) and τ = τn over Ω, we obtain that

0 =

∫
Ω

F(un, vn)dx, 0 =

∫
Ω

G(un, vn)dx for all n. (4.10)
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Furthermore, based on assumptions (H2), (H2e), and (H3c) and inequality (3.2), we can see that

∂

∂v

G(u, v)
v

= βfv(u, v)−
(
γ(v)

v

)′

≤ βfv(u, 0)− γ∗ < 0 (4.11)

for any v > 0 and 0 < u ≤ K. Using this in the second equation of (4.10) gives that

0 =

∫
Ω

vn
G(un, vn)

vn
dx < (βf(K, 0)− γ′(0))

∫
Ω

vndx

because of (H2), (H3), (H3c), and the fact that un satisfies the first estimate in (4.1). Thus, βf(K, 0) −
γ′(0) > 0, that is, H′(K) > 0. In turn, since 0 < βf(K, 0) − γ′(0) ≤ βMf − Mγ , we can conclude

that βMf > Mγ , which allows us to use the second estimate in (4.1) as well. Furthermore, due to the

given assumptions and the derived inequality H′(K) > 0, we know from Theorem 2.1 that (1.4) has an

u∗ = (u∗, v∗).

Now, contrarily, suppose that there exists a constant ϵ0 > 0 and a subsequence {(un, vn)} (which we

will still denote by itself) satisfying that for any u∗,

∥un − u∗∥L∞(Ω) + ∥vn − v∗∥L∞(Ω) ≥ ϵ0. (4.12)

We see from (4.2) that there is a function û ≥ 0 so that un → û in C1(Ω) as n → ∞, passing to a

subsequence. Moreover, due to the regularity of elliptic equations and the fact of τn → ∞, it follows that

û is a constant. Furthermore, according to (4.1), û ≤ K is satisfied. Similarly, due to (4.2), there exists a

function v̂ ≥ 0 so that passing to a subsequence, vn → v̂ in C1(Ω) as n→ ∞. Thus, considering the weak

form of the second equation in (1.4) with (u, v) = (un, vn), and taking the limit as n → ∞, we see that v̂

satisfy the following equation weakly:

−∆v̂ = G(û, v̂) in Ω, ∂nv̂ = 0 on ∂Ω. (4.13)

Furthermore, the theory of elliptic regularity guarantees that v̂ belongs to C2(Ω) and is a classical solution

to (4.13). We notice that the term G(û, v̂) in (4.13) satisfies the logistic property because of (4.11). Thus,

v̂ must also be constant to satisfy G(û, v̂) = 0. By letting n → ∞ in the first integral equation of (4.10),

one can see that F(û, v̂) = 0 as û and v̂ are constants. Thus, if û ̸= 0 and v̂ ̸= 0, then (un, vn) → (û, v̂)

uniformly on Ω as n→ ∞, where (û, v̂) satisfies

û > 0, v̂ > 0, F(û, v̂) = 0 = G(û, v̂).

As a consequence, (û, v̂) is a desired constant positive solution of (1.4). This contradicts (4.12), thereby

completing the proof.

To finish this proof, we consider two cases presented below:

Case 1. û = 0. It follows from (H3) that v̂ = 0, because (H2) gives G(û, v̂) = 0 = −γ(v̂). Thus, one can

deduce from (H2), (H3), and (H3c) that

G(un, vn)
vn

= βf(un, vn)−
γ(vn)

vn
→ −γ′(0) = −Mγ < 0 as n→ ∞,

so that we encounter a contradiction with the second equation in (4.10) for large n.
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Case 2. v̂ = 0. We see that since F(û, v̂) = 0, û = 0 or K. Especially, û = 0 occurs only when g(0) = 0

in (H1) and (H1b). If û = 0, then a contradiction occurs as in the previous case. If û = K, then one have

from (H2), (H3), and the previously derived inequality H′(K) > 0 that

βf(un, vn)−
γ(vn)

vn
→ βf(K, 0)− γ′(0) > 0 as n→ ∞.

This, in turn, implies a contradiction with the second equation in (4.10) for large values of n, thereby

completing the proof. □

Proof of Theorem 3.2. We begin with (4.8) in the proof of Theorem 3.1. From (4.8) with ϵ = 1, one

see that there is a τ -independent constant M3 > 0 so that∫
Ω

|∇U|2dx ≤ M3

τ

∫
Ω

|∇V|2dx (4.14)

for τ sufficiently large. Similarly, using (4.1) and (H2) in (4.6), we obtain that∫
Ω

|∇V|2dx ≤M4

∫
Ω

|∇U| |∇V| dx+

∫
Ω

B(u, v)V2dx+M5

∫
Ω

|U||V|dx,

whereM4 > 0 andM5 > 0 are τ -independent constants. Furthermore, the Poincaré inequality and Young’s

inequality imply(
1− M4

2
ϵ− M5

2µ1
ϵ

)∫
Ω

|∇V|2dx ≤
(
M4

2ϵ
+

M5

2µ1ϵ

)∫
Ω

|∇U|2dx+

∫
Ω

B(u, v)V2dx, (4.15)

where ϵ > 0 is a small constant such that 1 > (M4

2 + M5

2µ1
)ϵ. In particular, we note that B(u, v) ≤ 0 when

τ is sufficiently large, because assumptions (H2), (H3), (H2e), and (H3c), inequality (3.2) and Lemma 4.3

give that

B(u, v) → G(u∗)

v∗
+ v∗

(
βfv(u∗)−

(
γ(z)

z

)′
∣∣∣∣∣
z=v∗

)
≤ v∗ (βfv(u∗, 0)− γ∗) < 0

as τ → ∞. Thus, we see from (4.15) that there is a τ -independent constant M6 > 0 such that∫
Ω

|∇V|2dx ≤M6

∫
Ω

|∇U|2dx for large τ .

Hence, this, together with (4.14), establish that ∇U ≡ 0 and ∇V ≡ 0, indicating the desired result for τ

sufficiently large. □

Lemma 4.4. Assume that all assumptions in Lemma 4.1 and H′(K) ̸= 0 are satisfied, and let τ∗ > 0 be

a fixed constant. Then, all positive solutions (u, v) to (1.4) satisfy that

min
Ω
u(x), min

Ω
v(x) ≥ C∗

for τ ≥ τ∗, where C∗ = C∗(Θ, τ∗) > 0 is a constant.
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Proof. Suppose, contrarily, that our conclusion is not valid. Then, there is a sequence {τn} satisfying

τn ≥ τ∗, and so correspondingly, the positive solutions (un, vn) to (1.4) with τ = τn and q(vn) = vn satisfy

that

min
Ω
un → 0 or min

Ω
vn → 0 as n→ ∞. (4.16)

As τn ≥ τ∗, we can assume, after extracting a subsequence, that τn → τ̂ ∈ [τ∗,∞]. By Lemma 4.2, we may

also assume that there is a subsequence {(un, vn)} (continuing to denote as itself) and two nonnegative

functions û, v̂ ∈ C1(Ω) so that as n→ ∞, (un, vn) → (û, v̂) in [C1(Ω)]2. We then see from (4.16) that

min
Ω
û = 0 or min

Ω
v̂ = 0,

and from Lemma 4.1 that

max
Ω

û ≤ K and max
Ω

v̂ ≤ Ṽ . (4.17)

Moreover, we notice that (un, vn) solves (1.4) with τ = τn and q(vn) = vn, and therefore, as in the proof

of Lemma 4.3, it also satisfies (4.10).

Next, for every possible case, we induce a contradiction.

Case 1. minΩ û = 0. We first consider the subcase where τ̂ = ∞. Then, we see that û ≥ 0 is a constant,

and thus û = 0 as minΩ û = 0. From assumptions (H2) and (H3), and the second equation of (4.10), one

have in turn that v̂ ≡ 0, since

0 =

∫
Ω

βv̂f(û, v̂)dx =

∫
Ω

γ(v̂)dx ≥
∫
Ω

Mγ v̂dx.

However, assumptions (H2), (H3), and (H3c) give that

βf(un, vn)−
γ(vn)

vn
→ γ′(0) =Mγ > 0 as n→ ∞.

This gives a contradiction to the second equation of (4.10) with sufficiently large n. We next consider the

subcase where τ̂ <∞. Then, (û, v̂) satisfies the first equation in (1.4) with τ = τ̃ , which can be written as

−τ̂∆û = F(û, v̂) = g(0) + g′(ϕ1)û− v̂ûfu(ϕ1, v̂) in Ω, ∂nû = 0 on ∂Ω,

due to (H1) and (H2). Here, ϕ1 lying between 0 and û arises from the mean-value theorem. Thus, because

of (4.17), (H1), and (H2), we see that there is a constant M1 > 0 so that −τ̂∆û +M1û ≥ 0 in Ω. Using

minΩ û = 0 and employing the strong maximum principle along with the Hopf boundary lemma, one can

further induce that û ≡ 0 in Ω. Then, as before, we attain v̂ ≡ 0, which once again leads to a contradiction.

Case 2. minΩ v̂ = 0. We first consider the subcase where τ̂ = ∞. We then notice that û is a constant

and v̂ satisfies

−∆v̂ = G(û, v̂) in Ω, ∂nv̂ = 0 on ∂Ω.

Thus, using (4.17), (H2), and (H3c), we see that there is a constant M2 > 0 satisfying −∆v̂ +M2v̂ ≥ 0 in

Ω, so that, as before, we have that v̂ ≡ 0 in Ω. In turn, from the first equation in (4.10), one obtain that

0 =
∫
Ω
g(û)dx, which, together with (H1) and the first estimate in (4.17), gives û = 0 or û = K. Here,
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û = 0 is observed only when g(0) = 0. If û = 0, then, as in Case 1, we arrive at a contradiction. If û = K,

then we can derive from (H3) and the given assumption H′(K) ̸= 0 that

βf(un, vn)−
γ(vn)

vn
→ βf(K, 0)− γ′(0) ̸= 0 as n→ ∞,

which contradicts with the second equation in (4.10) for large n. We next consider the subcase where

τ̂ <∞. We see that v̂ satisfies

−∆v̂ − χ∇û · ∇v̂ = −χ
τ̂
v̂F(û, v̂) + G(û, v̂) in Ω, ∂nv̂ = 0 on ∂Ω.

Then, we see from (4.17) and assumptions (H1), (H2), and (H3c) that there exists a constant M3 > 0

satisfying −∆v̂ − χ∇û · ∇v̂ +M3v̂ ≥ 0 in Ω. Analogously, as before, one have that v̂ ≡ 0 in Ω, which

in turn gives that û ≡ 0 or û ≡ K. Thus, similarly to the previous subcases, we once again reach at a

contradiction. □

By virtue of Theorem 2.1, we provide straightforward information on the positive constant solutions

to (1.4). We recall the definitions of Lij(u∗) (where i, j = 1, 2) as previously stated before Lemma 3.3.

Moreover, we denote Lij = Lij(u∗) (where i, j = 1, 2) for simplicity.

Lemma 4.5. Assume that all assumptions in Lemma 3.3 hold.

(i) The number of positive constant solutions to (1.4) is odd: these solutions are denoted by u∗
k = (u∗k, v

∗
k)

for k = 1, 2, . . . , 2n+ 1 in Lemma 3.3.

(ii) If k is odd, then H′(u∗k) < 0, whereas if k is even, then H′(u∗k) > 0.

Proof. Since H′(K) > 0 and (H5) are given, H(u) = 0 has an odd number of positive roots u∗ in (0,K)

(e.g., see Figure 1(a)). Moreover, due to (H5), we have H′(u∗k) ̸= 0 for all k. Thus, our second claim also

holds. □

Lemma 4.6. Assume that all assumptions in Lemma 3.3 hold.

(i) If k is odd, there exists a constant τ̂k = τ̂k(Θ) > 0 such that if τ ≥ τ̂k, then Q(µ,u∗
k) > 0 for all

µ ≥ 0.

(ii) If k is odd, there exists a constant τk = τk(Θ) > 0 such that the quadratic equation Q(µ,u∗
k) = 0

attains two distinct positive roots µ−(u∗
k) and µ

+(u∗
k), provided that (3.5) is satisfied.

(iii) If k is even, then Q(µ,u∗
k) = 0 possesses only one positive root µ+(u∗

k) for any τ > 0.

Proof. Consider the case where u∗ = u∗
k. From straightforward calculations, we derive that

H′(u∗k) = g′(u∗k)− v∗kfu(u
∗
k)− ξ′(u∗k) (v

∗
kfv(u

∗
k) + f(u∗

k)) and ξ′(u∗k) =
βg′(u∗k)

γ′(v∗k)
.

Using this, we can obtain from (H3) and Lemma 4.5(ii) that

−γ′(v∗k)H′(u∗k) = L11L22 − L12L21

{
> 0 if k is odd,

< 0 if k is even.
(4.18)
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Moreover, we easily see that (H3c) and the inequality βfv(u
∗
k)− γ∗ < 0 give

L22 = βfv(u
∗
k)v

∗
k +

γ(v∗k)

v∗k
− γ′(v∗k) =

βfv(u∗
k)−

(
γ(v)

v

)′
∣∣∣∣∣
v=v∗k

 v∗k

≤ (βfv(u
∗
k)− γ∗)v

∗
k < 0.

(i) Let k be odd. Then it follows from (4.18) that L11L22−L12L21 > 0. Moreover, if we choose a τ̂k > 0

such that

L11 − χv∗kL12

−L22
≤ τ̂k,

then we see that when τ ≥ τ̂k, Q(µ,u∗
k) > 0 for all µ ≥ 0.

(ii) Let k be odd. Because of H′(u∗k) < 0, it is straightforward to know that if

L11 − χv∗kL12

−L22
> τ and D(τ) > 0, (4.19)

where

D(τ) = (L11 − χv∗kL12 + L22τ)
2 + 4γ′(v∗k)H′(u∗k)τ,

then the desired result follows. Furthermore, assuming that χ > χk and given that L22 < 0, it is evident

that
L11−χv∗kL12

−L22
> 0. Here, χk is defined in Lemma 3.3. Thus, D(τ) = 0 attains two positive roots

since D(0) > 0 and D(
L11−χv∗kL12

−L22
) < 0. In particular, let τk denote the smaller of the two roots. Then,

obviously, (4.19) holds for any τ < τk.

(iii) Due to (4.18), the fact of H′(u∗k) > 0 directly leads to the desired assertion. □

Proof of Lemma 3.3. According to Lemma 4.5(i), the system (1.4) has 2n+1 distinct positive constant

solutions u∗
k with k = 1, 2, . . . 2n + 1. Moreover, from (ii) and (iii) in Lemma 4.6, it follows that µ−(u∗

k)

(only when k = odd) and µ+(u∗
k) exist. This completes the proof. □

We finally study the global existence of nonconstant positive solutions to (1.4). To achieve this, we

employ the degree argument. We note that when (3.2) and all assumptions in Theorem 3.4 hold, it follows

that

βMf > Mγ and H′(K) > 0,

as in the proof of Lemma 4.3. This implies that (1.4) admits a constant and positive solution u∗ (see

Theorem 2.1), and the L∞-estimate in Lemma 4.1 holds. Moreover, we note that (H2e) and (3.2) imply

the inequality βfv(u
∗
k)− γ∗ < 0 in Lemma 3.3, so that we can apply Lemma 3.3 below.

We recall the definitions of the eigenvalue µi and the multiplicity mi, as stated before Theorem 3.1. For

simplicity, we denote u = (u(x), v(x)), C1
n(Ω) = {ϕ ∈ C1(Ω) : ∂nϕ = 0 on ∂Ω}, E = C1

n(Ω)⊕ C1
n(Ω), and

Λ =

{
u ∈ E :

C∗

2
< u, v < 2max

{
K, Ṽ

}}
,
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where Ṽ and C∗ are respectively defined in Lemmas 4.1 and 4.4. We define

A(τ,u) = (I −∆)
−1

 F(u, v)

τ
+ u

χ∇u · ∇v − χv
F(u, v)

τ
+ G(u, v) + v


for τ > 0 and u ∈ Λ. Here, I is the identity map on C1(Ω) and the operator (I − ∆)−1 represents

the inverse of I − ∆ subject to homogeneous Neumann boundary condition. One can observe, using the

standard method, that for each τ > 0, A(τ,u) is completely continuous on Λ. Furthermore, u is a positive

fixed point of problem u = A(τ,u) if and only if it is a positive solution to (1.4). According to Lemmas

4.1 and 4.4, the positive fixed point u is always included in Λ, and due to the choice of Λ, u ̸= A(τ,u)

for all u ∈ ∂Λ and τ > 0, and thus, the Leray-Schauder degree deg(I −A(τ, ·),Λ, 0) is well-defined. When

u = A(τ,u) (i.e., (1.4)) has only positive constant solutions u∗ in Λ, to show that by calculating the degree

value, (1.4) has a positive and nonconstant solution, we shall calculate the fixed-point index of A(τ,u) at

u∗, denoted by index(A(τ, ·),u∗).

To find the index value, we start with the eigenvalue problem

λ(ϕ, ψ)T + (I −Au(τ,u∗))(ϕ, ψ)
T = 0, (4.20)

where (ϕ, ψ) ̸≡ (0, 0), and we recall Theorem 2.8.1 in [8], known as the Leray-Schauder Theorem: if problem

(4.20) does not have 0 as an eigenvalue, then

index(A(τ, ·),u∗) = (−1)σ.

Here, σ =
∑
λ>0 nλ, where nλ represents the algebraic multiplicity of each eigenvalue λ > 0 of (4.20).

Upon doing some computations, we can express (4.20) as follows:

−(1 + λ)∆ϕ+

(
λ− L11

τ

)
ϕ− L12

τ
ψ = 0 in Ω,

−(1 + λ)∆ψ +

(
χv∗

L11

τ
− L21

)
ϕ+

(
λ+ χv∗

L12

τ
− L22

)
ψ = 0 in Ω,

∂nϕ = ∂nψ = 0 on ∂Ω.

(4.21)

Using the Fourier expansions of ϕ and ψ in (4.21) and setting

Pi(λ,u∗) := det

(1 + λ)µi + λ− L11

τ
−L12

τ

χv∗
L11

τ
− L21 (1 + λ)µi + λ+ χv∗

L12

τ
− L22


= (µi + 1)2λ2 +

(
2µi −

L11

τ
+ χv∗

L12

τ
− L22

)
(µi + 1)λ+Q(µi,u∗),

whereQ(µ, ·) was defined in Lemma 3.3, we see that (4.21) has a nontrivial solution if and only if Pi(λ,u∗) =

0 for some i ≥ 0 and λ ≥ 0. Thus, according to the Leray-Schauder Theorem,

index(A(τ, ·),u∗) = (−1)σ, σ =
∑
i≥0

∑
λi>0

mλimi (4.22)
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if Pi(0,u∗) ̸= 0 for all i ≥ 0. Here, mλi is the multiplicity of λi and mi is the multiplicity of µi when λi is

a positive root of Pi(λ,u∗) = 0. The sum of mλi
mi for all i satisfying Q(µi,u∗) > 0 is even. Therefore, to

determine the index value in (4.22), it is sufficient to verify that for all i ≥ 0, Q(µi,u∗) ̸= 0, and find all i

for which Q(µi,u∗) < 0.

Our next task is to compute index(A(τ, ·),u∗
k) with respect to τ .

Lemma 4.7. Assume that (3.2) and all assumptions in Theorem 3.4 hold.

(i) If k is odd and τ ≥ τ̂k, where τ̂k was defined in Lemma 4.6(i), then

index(A(τ, ·),u∗
k) = 1.

(ii) If k is odd, and χ and τ satisfy (3.5), then

index(A(τ, ·),u∗
k) = (−1)σk ,

provided that

µ−(u∗
k) ∈ (µak , µak+1) and µ+(u∗

k) ∈ (µbk , µbk+1) for some integers bk > ak ≥ 0,

where σk was defined in Theorem 3.4.

(iii) If k is even, then for any τ > 0,

index(A(τ, ·),u∗
k) = (−1)σk ,

provided that

µ+(u∗
k) ∈ (µbk , µbk+1) for some integer bk ≥ 0.

Proof. (i) According to Lemma 4.5(ii), H′(u∗k) < 0 since k is odd. Moreover, Lemma 4.6(i) shows that

Q(µi,u
∗
k) > 0 for all i ≥ 0. Thus, σ in (4.22) is even, which yields the desired index value.

(ii) By Lemmas 4.5 and 4.6(ii), we see that Q(µi,u
∗
k) < 0 is true only when ak + 1 ≤ i ≤ bk. This

implies that σ =
∑bk
i=ak+1mi + even = σk + even, which proves our assertion.

(iii) Similarly to the proof of part (ii), it can be proven. □

We have now reached the point where we can prove the final theorem on pattern formation.

Proof of Theorem 3.4. As mentioned before, we see that u ̸= A(τ,u) for all u ∈ ∂Λ and τ > 0. Thus,

by using the homotopy invariance property of the degree, one obtain that

deg(I −A(τ, ·),Λ, 0) = constant for any τ > 0. (4.23)

We notice from (3.4) and Lemma 4.6(iii) that there exists a constant tk = tk(Θ) > 0 so that if τ ≥ tk,

0 < µ+(u∗
k) < µ1 for k = 2, 4, . . . , 2n. (4.24)

We first take a∗ = max{τ̃2, τ̂k1 , tk2 : k1 = 1, 3, . . . , 2n + 1, k2 = 2, 4, . . . , 2n}, where τ̃2 and τ̂k were

respectively defined in Theorem 3.2 and Lemma 4.6(i). Then, from Lemma 4.7(i), we see

index(A(a∗, ·),u∗
k) = 1 for k = 1, 3, . . . , 2n+ 1. (4.25)
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Moreover, using (4.24) in Lemma 4.7(iii), we find that

index(A(a∗, ·),u∗
k) = (−1)m0 = −1 for k = 2, 4, . . . , 2n. (4.26)

We apply the additivity property of the degree, if necessary (when n ≥ 1), to obtain that

deg(I −A(a∗, ·),Λ, 0) =
2n+1∑
k=1

index(A(a∗, ·),u∗
k), (4.27)

because of a∗ ≥ τ̃2. As a result, by inserting the index values from (4.25) and (4.26) into (4.27), we can

determine deg(I −A(a∗, ·),Λ, 0) = 1. Therefore, using (4.23), we can have that

deg(I −A(τ, ·),Λ, 0) = 1 for any τ > 0. (4.28)

Suppose, contrariwise, that (1.4) admits no positive and nonconstant solution when χ and τ satisfy

(3.6). Then, similar to the above, by virtue of (ii), (iii) in Lemma 4.7 and the additivity property of the

degree, one can derive that

deg(I −A(τ, ·),Λ, 0) =
2n+1∑
k=1

(−1)σk .

However, from the assumption given in (3.7), it can be concluded that deg(I − A(τ, ·),Λ, 0) ̸= 1, which

contradicts (4.28), thereby completing the proof. □
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Appendix: Proof of Theorem 2.1

Proof. The existence of positive constants u and v satisfying

0 = F(u, v) = g(u)− vf(u, v) and 0 = G(u, v) = βvf(u, v)− γ(v)

is ensured.

Obviously, βg(u) = γ(v), and (H1) gives u ∈ (0,K). Moreover, since (H3) implies the existence of the

inverse of γ when v ≥ 0, we have

v = γ−1(βg(u)) = ξ(u).

We can easily observe that

ξ(0) = γ−1(βg(0)) ≥ 0, ξ(K) = γ−1(βg(K)) = 0, (4.29)

and further,

ξ′(0) =
βg′(0)

γ′(ξ(0))
and ξ′(K) =

βg′(K)

γ′(0)
. (4.30)

Plugging v = ξ(u) in F(u, v), we obtain H(u) = F(u, ξ(u)). Now, we confirm that (2.1) guarantees the

existence of u ∈ (0,K) such that H(u) = 0. Consequently, such an u is denoted as u∗, and in turn,

v∗ = ξ(u∗) is determined. To the end, we divide and consider two cases: g(0) = 0 and g(0) > 0.

Case 1. g(0) = 0. In this case, ξ(0) = 0 follows, so that, from (4.29), (4.30), and (H2), we can derive

that H(0) = 0 = H(K), and

H′(0) = g′(0)− ξ(0)fu(0, ξ(0))− ξ′(0)ξ(0)fv(0, ξ(0))− ξ′(0)f(0, ξ(0))

= g′(0),

H′(K) = g′(K)− ξ(K)fu(K, ξ(K))− ξ′(K)ξ(K)fv(K, ξ(K))− ξ′(K)f(K, ξ(K))

= −g
′(K)

γ′(0)
(βf(K, 0)− γ′(0)) .

Thus, from (i) in (2.1), (H1b) and (H3), we see that H′(0) > 0 and H′(K) > 0 (i.e, βf(K, 0)− γ′(0) > 0),

which ensures that H is positive when u > 0 is close to 0, but negative when u < K is close to K, so

that there exists an u∗ ∈ (0,K) satisfying H(u∗) = 0. In turn, ξ(u∗) = v∗ ≤ β
Mg

Mγ
since Mγv∗ ≤ γ(v∗) =

βg(u∗) ≤ βMg. Even if the second option in (2.1) is met, we can still achieve the desired result.

Case 2. g(0) > 0. In this case, 0 < g(0) = H(0) follows from (H2), so that H(u) > 0 for small u. Thus,

the desired assertion holds true because H′(K) > 0 or the existence of M∗ in (2.1) implies that there is an

u ∈ (0,K) such that H(u) < 0. □
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