Coupling clearing and Hybridization Chain Reaction approaches to investigate gene expression in organs inside whole-mount intact insect.

Marilyne Uzest¹, Bastien Cayrol¹, and Stefano Colella¹

¹Univ Montpellier

April 18, 2024

Abstract

Detecting RNA molecules within their natural environment inside intact arthropods has long been challenging, particularly in small organisms covered by a tanned and pigmented cuticle. Here, we have developed a methodology that enables highresolution analysis of the spatial distribution of transcripts of interest without having to dissect tiny organs or tissues, thereby preserving their integrity. We have combined an *in situ* amplification approach based on Hybridization Chain Reaction, which enhances the signal-to-noise ratio, and a clearing approach that allows the visualization of inner organs beneath the cuticle. We have implemented this methodology for the first time in Hemiptera, mapping two salivary aphid (*Acyrthosiphon pisum*) transcripts, the effector c002 and the salivary sheath protein SHP. With a multiplex approach, we could simultaneously detect different mRNAs in whole-mount pea aphid head-thorax samples and show that they were distributed in distinct secretory cells of salivary glands.

Hosted file

Cayrol_et_al_Manuscript.docx available at https://authorea.com/users/771591/articles/855739coupling-clearing-and-hybridization-chain-reaction-approaches-to-investigate-geneexpression-in-organs-inside-whole-mount-intact-insect