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Abstract

The use of remote sensing to monitor animal populations has greatly expanded during the last decade. Drones (i.e. Unoccupied

Aircraft Systems or UAS) provide a cost- and time-efficient remote sensing option to survey animals in various landscapes and

sampling conditions. However, drone-based surveys may also introduce counting errors, especially when monitoring mobile

animals. Using an agent-based model simulation approach, we evaluated the error associated with counting a single animal

across various drone flight patterns under three animal movement strategies (random, directional persistence, and biased towards

a resource) among five animal speeds (2, 4, 6, 8, 10 m/s). Flight patterns represented increasing spatial independence (ranging

from lawnmower pattern with image overlap to systematic point counts). Simulation results indicated that flight pattern was the

most important variable influencing count accuracy, followed by the type of animal movement pattern, and then animal speed.

A lawnmower pattern with 0% overlap produced the most accurate count of a solitary, moving animal on a landscape (average

count of 1.1 ± 0.6) regardless of the animal’s movement pattern and speed. Image overlap flight patterns were more likely to

result in multiple counts even when accounting for mosaicking. Based on our simulations, we recommend using a lawnmower

pattern with 0% image overlap to minimize error and augment drone efficacy for animal surveys. Our work highlights the

importance of understanding interactions between animal movements and drone survey design on count accuracy to inform the

development of broad applications among diverse species and ecosystems.
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Abstract

The use of remote sensing to monitor animal populations has greatly expanded during the last decade. Dro-
nes (i.e. Unoccupied Aircraft Systems or UAS) provide a cost- and time-efficient remote sensing option to
survey animals in various landscapes and sampling conditions. However, drone-based surveys may also in-
troduce counting errors, especially when monitoring mobile animals. Using an agent-based model simulation
approach, we evaluated the error associated with counting a single animal across various drone flight patterns
under three animal movement strategies (random, directional persistence, and biased towards a resource)
among five animal speeds (2, 4, 6, 8, 10 m/s). Flight patterns represented increasing spatial independence
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(ranging from lawnmower pattern with image overlap to systematic point counts). Simulation results indica-
ted that flight pattern was the most important variable influencing count accuracy, followed by the type of
animal movement pattern, and then animal speed. A lawnmower pattern with 0% overlap produced the most
accurate count of a solitary, moving animal on a landscape (average count of 1.1 ± 0.6) regardless of the
animal’s movement pattern and speed. Image overlap flight patterns were more likely to result in multiple
counts even when accounting for mosaicking. Based on our simulations, we recommend using a lawnmower
pattern with 0% image overlap to minimize error and augment drone efficacy for animal surveys. Our work
highlights the importance of understanding interactions between animal movements and drone survey design
on count accuracy to inform the development of broad applications among diverse species and ecosystems.

Keywords: agent-based model, Unoccupied Aircraft System (UAS), Unmanned Aerial Vehicle (UAV), Re-
motely Piloted Aircraft System (RPAS), count bias, survey error

Introduction

Drones (i.e. Unoccupied Aircraft Systems or UAS) are increasingly being used for myriad ecological appli-
cations, including animal monitoring (Koh and Wich, 2012; Vermeulen et al. , 2013; Hodgson et al. , 2018),
vegetation evaluation (Olsoy et al. , 2018, 2020), and nest observation (Lyons et al. , 2019; Lachman et al.
, 2020). Benefits associated with using drones in animal monitoring, compared to traditional animal survey
techniques, include less time and effort in the field (McMahon, Ditmer and Forester, 2022), reduced animal
disturbance compared to ground surveys (Barr et al. , 2020; Krauseet al. , 2021), and greater survey accuracy
(Hodgson et al. , 2018; Jones et al. , 2020). Additionally, drones can be launched over areas inaccessible for
ground surveys (Junda, Greene and Bird, 2015; Wang, Shao and Yue, 2019), provide a safer alternative for
ecologists compared to occupied aircraft (Sasse, 2003; Christie et al. , 2016; Hartmann, Fishlock and Leslie,
2021), and enable creation of digital repositories of high-resolution imagery from use of advanced sensor
technologies (Wang, Shao and Yue, 2019). Drone use in animal monitoring continues to increase (Linchant et
al. , 2015), a trend that is exemplified by the recent annual publication rate of articles investigating animal
surveys using drones during the past decade (Elmoreet al. , 2023). However, drone surveys have limitations
compared to traditional methods, including relatively short battery lives (Linchant et al. , 2015), large post-
processing time requirements for images (Barbedo and Vieira Koenigkan, 2018), and line of sight restrictions
(Chabot and Bird, 2015; Duffy et al. , 2018).

Numerous survey methods are used in conservation science for population assessments and span a spectrum
of spatial independence (Silvy, 2020). Typical drone survey methods sample an area with a lawnmower
(i.e., back and forth) pattern (Elmore et al. , 2023). Belt transects are less common in drone surveys, and
point counts, a common technique for ground surveys, could be adapted to drone surveys using programmed
flight patterns (Silvy, 2020). Lawnmower patterns in drone surveys typically include 60-80% frontal and side
overlapping of adjacent images (Fig. 1a-1d; Ezat, Fritsch and Downs, 2018; Lyons et al. , 2019; Aubertet
al. , 2021). While overlapping images are necessary for mapping orthorectified landscapes (Koh and Wich,
2012), image overlap for animal monitoring can increase sampling bias due to risk of repeatedly counting
individuals (Brack, Kindel and Oliveira, 2018; Lenzi et al. , 2023). Yet, common default flight settings among
commercially-available drone software use overlapping lawnmower flight patterns (Harriset al. , 2019; Frazier
and Singh, 2021), an approach that may not support accurate surveys.

Animal movements have the potential to influence counting accuracy in drone surveys through omission of
individuals or multiple counts often caused by the same animal(s) occurring in several overlapping images
(Brack, Kindel and Oliveira, 2018). Lenzi et al. (2023) mentioned “ghost” animals produced when overlapping
drone images were mosaicked. These were individuals that moved during subsequent image capture, creating
blurred or transparent animals on the final mosaicked photo, leading to possible erroneous counts. However,
even when transect and image overlaps do not occur, multiple counts of mobile animals in drone surveys
can happen (Witczuk et al. , 2018). The distance travelled by animals within a given period depends on
many factors, including life history needs and a variety of abiotic (e.g., seasonal resources) and biotic (e.g.,
conspecific competition) influences (Nathan et al. , 2008). For example, breeding colonies of nesting shorebirds
often remain on their nests (i.e., fixed locations) for long periods of time during breeding seasons (Hodgson
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et al. , 2016; Jones et al. , 2020). In contrast, male white-tailed deer (Odocoileus virginianus ) travel great
diurnal distances (< 7.5 km) during the breeding season (Webb et al. , 2010), and wild pigs (Sus scrofa )
travel between up to 2.1 km daily, with evidence that lone boars travel longer distances than sounders (Kay
et al. , 2017). Animals also exhibit changes in activity period throughout the day, with white-tailed deer
(Webb et al. , 2010; Massé and Côté, 2013), black bears (Lewis and Rachlow, 2011) and wolves (Merrill and
Mech, 2003) all moving more frequently during crepuscular periods. Thus, variation in animal movement
patterns and speeds depend on the species ecology and current environment.

Movement models can be used to depict various animal movement patterns along a spectrum of speeds
with (1) random walks representing animals dispersing randomly on the landscape, (2) correlated random
walks depicting animals moving with directional persistence, mimicking something analogous to migration,
and (3) biased random walks depicting animal home ranging behavior in some cases (Codling, Plank and
Benhamou, 2008). These movement models challenge the common assumption among traditional survey
methods of animals being detected in their original position (i.e., no movement) and can be applied to
understand the influence of animal movement on drone-based survey count error. Only one study, to our
knowledge, has quantified error associated with various drone flight patterns for monitoring a mobile animal
(Hodgson, Peel and Kelly, 2017), the humpback whale, but their study has limited application to terrestrial
systems.

Simulations represent an alternative and powerful approach to evaluate how animal movements can affect
drone surveys. Simulations have been employed to investigate how various drone survey speeds and altitudes
influence abundance and occupancy estimates (Baxter and Hamilton, 2018). The virtual environment can
also provide insights not possible in real-world settings due to field inconsistency and other potential con-
founding variables (e.g., image processing, observer biases, varying detection rates). Agent-based modeling
(ABM; also referred to as individual-based modeling) uses iterative computer simulations to incorporate
real-world parameters in a controlled environment, modeling scenarios that can address targeted research
questions (Chudzinskaet al. , 2021; Hoegh, van Manen and Haroldson, 2021). Here we used an ABM si-
mulation approach (Grimm et al. , 2020) to (1) quantify error rates among six drone flight patterns and
three common animal movement patterns at five different speeds and (2) provide suggestions for optimal
drone flight patterns that minimize error associated with animal movement. Our ABM simulation approach
permitted a robust examination of the potential influence of animal movements and drone flight patterns
on survey count errors that would otherwise be difficult to replicate in field experiments. We predicted law-
nmower flight patterns with overlapping images would overestimate true counts due to counting the same
individual multiple times. We also predicted how subsampling methods such as belt transects and multiple
single images (i.e., systematic point counts) would underestimate true counts due to a greater probability of
omitting the moving animal. Finally, we predicted that an increase in animal speed and persistence in the
directional movement of the animal would lead to overestimation as the animal could cross multiple images.

Materials and Methods

Drone Parameters

We examined the potential error among drone flight patterns and animal movement models (speed and move-
ment pattern) using ABM simulations created in Python 3.9 (Van Rossum and Drake, 2009). To realistically
approximate methodologies that conservation practitioners currently employ, the simulated drone sensor was
programmed to approximate specifications of a 20-megapixel camera with a focal length of 6.8 mm and field
of view of approximately 67 degrees. Flights were modeled at 61 m above ground level, representing one of se-
veral typical altitudes for animal monitoring using a multi-copter drone (McEvoy, Hall and McDonald, 2016;
Wang, Shao and Yue, 2019) which has been shown to have zero or minimal behavioral impacts to several
animal species (Barret al. , 2020; Krause et al. , 2021). This altitude and sensor combination produced a 1.28
cm ground sample distance and captured a ˜ 50 m x 65 m ground footprint for each image. For simplicity,
we adjusted the ground viewing window in simulations to a 60 x 60 m area, with grid cells in our simulation
measuring 4 m by 4 m in dimension. The drone speed was simulated at 10 m/s to approximate a realistic
platform speed for image capture and sharpness. To approximate real-world drone battery capabilities and
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line-of-sight considerations, surveys did not exceed a 30-min flight time (Raoult et al. , 2020).

2.2 Landscape and Drone Flight Patterns

We simulated six drone flight patterns, which increased along a spectrum of spatial independence among
images and included the following commonly used flight patterns: (1) a lawnmower pattern with 60% image
overlap (Fig. 1a), (2) a lawnmower pattern with 40% image overlap (Fig. 1b), (3) a lawnmower pattern with
20% image overlap (Fig. 1c), (4) a lawnmower pattern with 0% image overlap where images touched (Fig.
1d), (5) a randomized belt transect (Fig. 1e), and (6) systematic points (Fig. 1f). To ensure the assumption
that the animal was 100% available and detectable during the simulated survey, the landscape dimensions
were slightly revised for the lawnmower patterns with 20, 40, and 60% image overlap to ensure complete
coverage by the drone imagery. The lawnmower patterns with 20% and 40% image overlap covered a 242,064
m2 (492 x 492 m) landscape; whereas for 60% overlap, the landscape size was adjusted to 219,024 m2 (468 x
468 m). For the lawnmower pattern with 0% image overlap, transect, and systematic point flight patterns,
the landscape size was fixed at 230,400 m2 (480 x 480 m).

Transect surveys included one horizontal belt transect with a length of 384 m (80% of the total landscape
length) and a width of 60 m (image width; Fig. 1e). Image captures from transects were programmed to have
60% frontal overlap, capturing imagery of 10% of the total landscape. Transects were generated to include
stochasticity among simulations by randomly selecting the initial x and y coordinates for each replicate in
places that would allow the entire transect to be placed horizontally across the landscape. The systematic
points flight pattern simulated 16 image captures evenly distributed across the landscape (Fig. 1f), which
amounts to the same number of images captured by the transect survey. However, since the systematic
points flight pattern did not exhibit any image overlap it was able to capture 25% of the total landscape.
The animal was counted when it was located inside the image viewing window. To account for approaches
where multiple images would be stitched into an orthomosaic (Frazier and Singh, 2021), an animal was not
counted in an image if it had not moved more than 4 m from its previous location as the animal would have
remained within the same grid cell. Previous studies describing “ghost” animal issues (Brack, Kindel and
Oliveira, 2018; Lenzi et al. , 2023) do not detail how far animals moved when creating discrepancies, but in
our case movements greater than 4 m were assumed to be large enough to cause issues with post-processing
software within the simulations.
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Figure 1. Drone flight patterns simulated over a theoretical landscape: a) lawnmower with 60% overlap,
b) lawnmower with 40% overlap, c) lawnmower with 20% overlap, d) lawnmower with 0% overlap, e) belt
transect, f) systematic points. Grey boxes denote viewing window of the first image taken during each survey
representing a 60 x 60 m area.

2.3 Animal Movement

To best quantify error rates, only one animal was simulated within the landscape so that counts >1 indicated
multiple counting, whereas 0 or average counts <1 were associated with animal omission. While the simula-
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tion of multiple animals on the landscape at a time would add realism to the natural world, this would have
added complexity to our model and negated our study objective; instead, we aimed to create a simulation
with just enough complexity to isolate our variables of interest and address our study objectives (Grimm and
Railsback, 2005). For each survey type, the animal was first positioned randomly on the landscape. Initial
validation simulations had no movement, mimicking a stationary animal for the entire survey duration as
a control to compare to other simulation scenarios that subsampled the landscape. A moving animal was
then simulated with one of three different movement patterns: (1) random walk, (2) correlated random walk,
and (3) biased random walk. Walks were created by sampling an exponential step length distribution and
varying turning angle distributions (see Appendix; Duchesne, Fortin and Rivest, 2015). For each walk type,
simulations were run with average animal velocities representing a spectrum of natural terrestrial animal
speeds (2, 4, 6, 8,10 m/s), as animal taxa differ substantially in various locomotion behaviors that affect
speed (walking, running, etc.). To maintain standardized comparisons within the study purpose for drone
surveys, the simulated animal was designed to only move within the closed landscape (i.e., no immigration
or emigration) and was always available for detection within the viewing window of the drone (i.e., no oc-
clusion). Count outputs also assumed that perception and detection probability during image review was
perfect. If an animal reached the border of the landscape, depending on its programmed movement type, it
was randomly reflected in a new direction and continued its programmed movements within the simulated
landscape area until the drone survey was complete.

2.4 Simulations

A total of 90 scenarios were simulated with each combination of drone flight pattern (n = 6), animal movement
pattern (n = 3), and animal speed (n = 5) iterated 10,000 times, resulting in a total of 900,000 simulations.
For each simulation, the number of times the animal was captured within the image taken by the drone was
recorded and the mean and standard deviation (SD) of the raw counts were reported for model replicates
to compare various combinations of our variables; these also act as measures of effect size. Accuracy of the
survey counts was based on the deviation from the true value (i.e., one animal; Hone, 2008). We also report
the percentage of simulations that returned the correct number of animals (n = 1), omitted the animal, or
had multiple counts among scenarios. We compare subsampled landscape (transect and systematic point)
counts to control scenario counts using a randomly placed, stationary animal on the landscape and report
differences in mean and SD of the raw counts. A full description of the simulations, following the ODD
protocol (Overview, Design concepts, and Details) for agent-based models (Grimm et al. , 2020), is provided
in the Appendix.

Results

Flight pattern, animal movement pattern, and animal speed all affected the count bias with flight pattern
appearing to have the most influence (Fig. 2). With one animal on the landscape, the mean and standard
deviation of animal counts ranged from 0.2 ± 0.7 to 3.2 ± 2.7 animals among flight patterns, from 1.1 ±
1.1 to 1.6 ± 2.1 animals among movement patterns, and 1.2 ± 1.2 to 1.5 ± 2.0 animals among animal
speeds. Although flight pattern was the most influential variable determining accurate animal counts in
drone surveys, combinations of various animal movement patterns and speeds also resulted in more accurate
counts of the simulated animal within various flight patterns (Fig. 2 and 3).

For flight patterns, the lawnmower pattern with 0% overlap was the least biased of all animal movement
types and speeds (1.1 ± 0.6 animals, Fig. 2) with comparatively high accuracy (73.2% of simulations with
correct counts; Fig. 3). The next most accurate flight pattern was the lawnmower pattern with 20% overlap
(63% of simulations with correct counts) followed by the lawnmower with 40% and 60% overlap (45.7% and
33.6% of simulations with correct counts, respectively; Fig. 3). Counts increased overall with lawnmower
overlap percentage, averaging 1.4 ± 0.9, 1.9 ± 1.4, and 3.2 ± 2.7 animals for 20%, 40%, and 60% overlap,
respectively (Fig. 2). The transect and systematic point flight patterns were the most likely to omit the
animal in the drone survey (0.2 ± 0.7 and 0.4 ± 0.5 animals, respectively; Fig. 2). The transect flight pattern
very rarely returned an accurate animal count across movements and speeds (Fig. 2) and mostly omitted
(87.1%) the animal, as did the systematic points (63.1%; Fig. 3). As the transect flight pattern captured 10%
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of the landscape, it should have captured the animal in 10% of our simulations; however, the average count
for a moving animal was 0.2 ± 0.7, indicating that animal movement influenced survey counts, especially
when compared to the average of 0.1 ± 0.3 for the stationary animal transect count. Similarly, the systematic
points flight pattern, with images covering 25% of the landscape, had an average count of 0.4 ± 0.5 mobile
animals, compared to 0.25 ± 0.4 stationary animals.

Animal counts were most accurate for the correlated random walk (1.1 ± 1.1 animals) among drone flight
patterns for almost all animal speeds (Fig. 2). Generally, the random and biased animal walks resulted
in overestimated animal counts (1.6 ± 2.1 and 1.6 ± 1.9 animals, respectively), particularly when overlap
increased for lawnmower patterns from 20% to 60% (Fig. 2). The correlated random walking animal resulted
in the least number of multiple counts (12.0%), with 36.0% and 37.7% of simulations having multiple counts
for the random and biased random walking animal, respectively (Fig. 3). Animal movement resulted in the
omission of the animal in 20.3% (correlated random walk), 32.1% (biased random walk), and 33.7% (random)
of simulations (Fig. 3).

Varying the speed of the animal exhibited one clear trend among variables; increasing animal speed increased
the variation around counts (i.e., lowered precision) for most flight patterns and animal walks (Fig. 2). The
lawnmower pattern with 60% overlap and, to a lesser extent the 40% overlap, tended to overestimate animal
counts, with average counts and variability nearly doubling, as animal speed increased from 2 to 10 m/s during
random and biased random walking (Fig 2). In contrast, increasing animal speed tended to decrease multiple
counts for the correlated random walk (Fig. 3). Animal speed also influenced the number of correct counts
in some cases, with the percentage of correct survey counts decreasing for the 0% (66.0% and 69%) and 20%
(51.8% and 53.7%) overlap for the random and biased walks, respectively, but increasing for the correlated
random walk for those flight patterns (84.4% and 83.5%, respectively; Fig. 3). The number of correct survey
counts also increased with animal speed for systematic points when the animal had a correlated random
walk (38.3% correct at 2 m/s to 84.6% correct at 10 m/s; Fig. 3).

Figure 2. Mean and standard deviation for raw counts from 10,000 replicates of an agent-based model simu-
lating various drone flight patterns across a landscape. Dotted lines show a count of 1, which represents the
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1 animal placed on the landscape. Animal movement patterns include Random (no directional persistence),
Correlated Random Walk (CRW), and Biased Random Walk (BRW).

Figure 3. Total number of simulations from an agent-based model that either returned the correct number
of animals (one animal; Correct), omitted the animal (Omissions), or had multiple counts (Multiple) among
various drone flight patterns, animal movement speeds, and animal movement patterns (Random = Random
Walk, CRW = Correlated Random Walk; BRW = Biased Random Walk).

Discussion

This research represents the first work investigating the interactions of multiple drone flight patterns and
animal movement behaviors during simulated surveys. We demonstrate that drone flight patterns can greatly
influence animal count accuracy even over relatively small areas (herein ˜22-24 ha) and provide support for
use of a rarely considered drone flight pattern (a lawnmower pattern with 0% image overlap) for animal mon-
itoring. While lawnmower patterns with large overlaps allow for development of image mosaics for landscape
mapping (Frazier and Singh, 2021), we found that these flight patterns increasingly lead to overestimated
counts of mobile animals as percent overlap increased, even when accounting for mosaicking. Our results
have important and often overlooked implications for drone surveys compared to more commonly applied
practices.

Easily programmed drone lawnmower pattern surveys typically use 60-80% overlapping imagery (Lyons et
al. , 2019; Aubert et al. , 2021), but our results indicate this may have major implications for multiple count
concerns during drone surveys if the animal of interest is mobile. While it is acknowledged that animals
move during surveys (Brack, Kindel and Oliveira, 2018), many drone surveys assume animals are stationary
(Sudholz et al. , 2022) and create a mosaic image to more easily count animals and understand distributions
(Ezat, Fritsch and Downs, 2018; De Kock et al. , 2021) without quantifying the effect of animal movement
on counting accuracy. A few field drone studies have attempted to address animal movement issues post
data collection (Linchant et al. , 2018) and with manual image searches for clones, partial, or blurred
animals after mosaicking (Barbedo and Vieira Koenigkan, 2018; Lenzi et al. , 2023). Another approach
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reviews individual overlapping images, comparing animal shapes, sizes, and positions to reduce the number of
multiple counted animals (Witczuket al. , 2018; Cleguer et al. , 2021; Sudholz et al. , 2022). This additional
post-processing of imagery can be helpful, but uncertainty remains in their effectiveness considering most
animals are unmarked or indistinguishable from other individuals. These image reviews are also very labor
intensive, time-consuming, and do not address animal omissions due to their movements (Brack, Kindel and
Oliveira, 2018). Automated image classification approaches are being developed (Gonzalez et al. , 2016;
Dujon et al. , 2021; Chabot, Stapleton and Francis, 2022; Krishnan et al. , 2023), but the development
of accurate algorithms for aerial animal imagery is still in its infancy and has many challenges to overcome
(Corcoranet al. , 2021; Sudholz et al. , 2022). Addressing the issue of multiple counting during data
collection, as opposed to during post processing could reduce the likelihood of the multiple-count problem.
Incorporating lawnmower patterns with minimal image overlap may be key, as noted in the increase in count
accuracy of our simulations as overlap percentage decreased.

Subsampling the landscape or spreading sampling intervals has been suggested as a means to avoid issues
of multiple counts of the same animal (Witczuk et al. , 2018). However, we found that animal movement
can still influence counts of an individual in these scenarios. The average count and variation of the transect
flight pattern both doubled when the animal was moving, as opposed to when the animal was stationary
on the landscape. Similarly, for the systematic points flight pattern, the average count increased 1.5 times,
with a slight increase in count variation as well. However, we also found that during the systematic points
flight (Fig. 1f), an animal moving with directional persistence resulted in a large percentage of accurate
surveys, which was consistent with other drone flight patterns. Thus, surveys at systematic points for animals
behaving this way may be accurate and would result in less imagery for post-processing, sequentially leading
to additional time-savings during data preparation and image evaluation. Ultimately, subsampling the
landscape, compared to a full census, will require correction of counts (Buckland et al. , 2001), but as we
have shown, these corrections should vary depending on if the animals of interest are anticipated to be mobile
during the survey period.

Our simulations confirm that animal movement patterns and speeds influence whether an animal is correctly
counted in drone imagery. The random and biased random walking animal movement patterns often resulted
in overestimates from multiple counts of an animal traveling back into the path of the drone after its initial
“capture.” An increase in the animal speed lowered the precision for most flight patterns and animal
walks, with an exception for the correlated walking animal. Therefore, researchers need to consider animal
movement behaviors to avoid count bias and consequential incorrect management prescriptions (Guerrasioet
al. , 2022). Overall, our results emphasize that knowledge of animal movement patterns can help identify the
optimal survey periods and drone flight patterns to minimize sampling error. To minimize count error, one
might survey using a systematic points flight pattern during crepuscular periods when certain species, such
as white-tailed deer, are most active (Kammermeyer and Marchinton, 1977). Or depending on the research
question, 0% overlap lawnmower pattern surveys during other times of day or year when individuals are
more stationary, such as when juveniles have not yet dispersed from natal areas, may also be appropriate.

Even on our simplified landscape, we observed large amounts of bias among animal counts during scenario
simulations with one mobile animal. While our assumptions of 100% availability and detectability are highly
unlikely in real-world applications (Gilbert et al. , 2021), for example, due to visual obstructions above
the animals or the ability of the animal to dive underwater or move under cover (Hodgson, Peel and Kelly,
2017; Brunton, Leon and Burnett, 2020), this assumption allowed us to simplify our scenarios and better
understand how flight patterns and animal movements may create counting errors. Typically, surveyors are
concerned with omission rates associated with conventional animal survey methods (i.e., occupied aircraft
and ground surveys) due to detectability issues, and there are means of addressing some of these problems
(Steinhorst and Samuel, 1989; Samuel et al. , 1992; Hamilton et al. , 2018; Brack, Kindel, de Oliveira, et al.
, 2023). For example, the inclusion of detection probabilities in statistical models has greatly improved our
ability to estimate animal populations (Martin et al. , 2012; Corcoran, Denman and Hamilton, 2021), and
incorporating detection probabilities into drone-based estimates would be a helpful advancement (Hodgson,
Peel and Kelly, 2017; Brack, Kindel, de Oliveira, et al. , 2023; Hodgson, Kelly and Peel, 2023). It is also
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notable that false positives (i.e., multiple counts) are less frequent during ground-based and occupied aircraft
surveys, something that researchers using drones need to carefully consider moving forward (Brack, Kindel
and Oliveira, 2018).

We acknowledge other tradeoffs must be considered for drone surveys such as balancing battery life and
line-of-sight limitations during survey planning (Linchant et al. , 2015; Baxter and Hamilton, 2018). Hence,
trade-offs between the area sampled and survey accuracy may need to be considered for larger sampling
areas. There may also be potential for increased accuracy with alternative flight patterns that we did not
consider. For example, sea turtle density estimates were calculated using a modified strip-transect approach
with 35-45% frontal overlap and sequential images used in counts to reduce multiple counting potential
(Sykora-Bodie et al. , 2017; Brack, Kindel, Berto,et al. , 2023), and point count drone surveys with 360-
degree rotations were found to be a promising approach for mesocarnivore abundance estimates (Bushaw,
Ringelman and Rohwer, 2019). In either case, the method was not thoroughly vetted for accuracy, although
this could be explored in future work. Barbedo and Vieira Koenigkan (2018) suggest flying multiple drones
in formation to collect accurate counts, acknowledging that animals could otherwise move between survey
efforts. However, they also note that this would greatly increase survey cost, and that formation flights
have many technical challenges. In any case, researchers should not assume mosaics composed of overlapped
images can be used for both vegetation mapping and animal surveying simultaneously. Instead, careful
thought is needed for drone flight patterns with objectives related to animal monitoring.

Conclusions

As the use of drones in animal monitoring continues to grow, consideration of how these survey platforms
can be appropriately incorporated into animal survey techniques is vital. Based on our results, when using
a drone to survey areas similar to our simulations (˜22-24 ha), we recommend that, researchers interested
in animal counts should consider a lawnmower flight pattern with 0% overlap as an alternative to other
more easily programmed, overlapping patterns. We also recommend that animal life history knowledge
be incorporated in survey design, aligning with stages and times of day when animals may exhibit more
sedentary or more directional movements. This will allow for the most accurate counts as well as maximize
overall ground coverage area when accounting for limited battery capabilities (Linchant et al. , 2015). The
simulated approach we utilized also allows for robust inference to investigate a myriad of animal behaviors
and population processes that can be broadly applied across many taxa and provide guidance of drone
applications in a variety of wildlife management applications. Future efforts with our agent-based modeling
approach can help assess the influence of animal density, distributions, and detection probabilities to better
simulate real-world environments.
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