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Abstract

The High Seas, lying beyond the boundaries of nations’ Exclusive Economic Zones, cover the majority of the ocean surface

and host roughly two thirds of marine primary production. Yet, only a small fraction of global wild fish catch comes from the

High Seas, despite intensifying industrial fishing efforts. The surprisingly small fish catch could reflect economic features of

the High Seas - such as the difficulty and cost of fishing in remote parts of the ocean surface - or ecological features resulting

in a small biomass of fish relative to primary production. We use the coupled biological-economic model BOATS to estimate

contributing factors, comparing observed catches with simulations where: (i) fishing cost depends on distance from shore and

seafloor depth; (ii) catchability depends on seafloor depth or vertical habitat extent; (iii) regions with micronutrient limitation

have reduced biomass production; (iv) the trophic transfer of energy from primary production to demersal food webs depends

on depth; and (v) High Seas biomass migrates to coastal regions. Our results suggest that the most important features are

ecological: demersal fish communities receive a large proportion of primary production in shallow waters, but very little in

deep waters due to respiration by small organisms throughout the water column. Other factors play a secondary role, with

migrations having a potentially large but uncertain role, and economic factors having the smallest effects. Our results stress

the importance of properly representing the High Seas biomass in future fisheries projections, and clarify their limited role in

global food provision.
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Key Points:11

• Despite their vast surface area, the High Seas provide only a small fraction of global12

wild fish catch.13

• Dispersion of trophic energy throughout deep water columns and micronutrient14

limitations leads to smaller fish biomass density in High Seas.15

• Smaller biomass density is a major contributor to the small catch; while migra-16

tion should also matter, economic factors are likely secondary.17
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Abstract18

The High Seas, lying beyond the boundaries of nations’ Exclusive Economic Zones, cover19

the majority of the ocean surface and host roughly two thirds of marine primary pro-20

duction. Yet, only a small fraction of global wild fish catch comes from the High Seas,21

despite intensifying industrial fishing efforts. The surprisingly small fish catch could re-22

flect economic features of the High Seas - such as the difficulty and cost of fishing in re-23

mote parts of the ocean surface - or ecological features resulting in a small biomass of24

fish relative to primary production. We use the coupled biological-economic model BOATS25

to estimate contributing factors, comparing observed catches with simulations where: (i)26

fishing cost depends on distance from shore and seafloor depth; (ii) catchability depends27

on seafloor depth or vertical habitat extent; (iii) regions with micronutrient limitation28

have reduced biomass production; (iv) the trophic transfer of energy from primary pro-29

duction to demersal food webs depends on depth; and (v) High Seas biomass migrates30

to coastal regions. Our results suggest that the most important features are ecological:31

demersal fish communities receive a large proportion of primary production in shallow32

waters, but very little in deep waters due to respiration by small organisms throughout33

the water column. Other factors play a secondary role, with migrations having a poten-34

tially large but uncertain role, and economic factors having the smallest effects. Our re-35

sults stress the importance of properly representing the High Seas biomass in future fish-36

eries projections, and clarify their limited role in global food provision.37

1 Introduction38

The UN High Seas Treaty, agreed upon in March 2023, has been welcomed as an39

unprecedented step towards protecting the biodiversity of the global ocean (UN Gen-40

eral Assembly, 2023). Known as the Biodiversity Beyond National Jurisdiction treaty,41

it explicitly calls for an integrated ecosystem approach in order to maintain and restore42

biodiversity and carbon cycle functioning within the 60% of the ocean area that lies be-43

yond nationally-managed Exclusive Economic Zones (EEZs). A fundamental metric of44

the biodiversity that the treaty aims to protect is the abundance or biomass of marine45

organisms. However, because of the inaccessibility of the High Seas, and the fact that46

they falls outside the purview of national research organizations, the biomass of animals47

in the High Seas is relatively poorly evaluated.48

The oceans are thought to harbour most of the remaining wild animal life on the49

planet (Bar-On et al., 2018). Since the High Seas cover the majority of the ocean sur-50

face, one could expect them to host a large fraction of marine life. Consistent with this51

expectation, roughly 67% of marine primary production is estimated to occur in the vast52

domain of the High Seas, even though the rate of primary production per unit area is53

higher in the shallow coastal waters that ring the continents (Behrenfeld & Falkowski,54

1997; Carr et al., 2006; Marra et al., 2007). Given that roughly half of global primary55

production is marine, this implies that one third of all primary production on Earth oc-56

curs in the High Seas. Yet, the most comprehensive sampling of marine animals by hu-57

mans - industrial fishing - recovers only a small fish catch from the High Seas, despite58

intensifying efforts (Rousseau et al., 2019). In fact, humans only retrieve about a twen-59
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tieth of the global wild fish capture – less than 0.1% of total human caloric supply – from60

the High Seas that cover more than half the planet (Schiller et al., 2018). We are not61

aware of a widely-recognized explanation for the fact that the High Seas provide so lit-62

tle human food.63

On one hand, the surprisingly small High Seas catch could be explained by economic64

and technological constraints. Fuel and time expenditures required to travel long dis-65

tances, greater capital requirements for High Seas vessels, or the difficulty of catching66

fish in deep waters could result in higher costs of fishing the High Seas (Lam et al., 2011;67

Sala et al., 2018). Economic constraints can be further modulated by the variable catch-68

ability of the fish resource that is influenced by habitat features such as topography, or69

vary between gears targeting pelagic or demersal species (Palomares & Pauly, 2019; Kerry70

et al., 2022). On the other hand, the small fish catch relative to primary production could71

be a result of ecological features of the High Seas. It is possible that the High Seas have72

less efficient transfer of energy from primary production to fish types of commercial in-73

terest compared to coastal systems (Eddy et al., 2020), or that primary production in74

the High Seas is consumed by fish that periodically migrate to the coastal zone, lead-75

ing to spatial redistribution of the biomass of upper trophic levels (Block et al., 2011;76

Sumaila et al., 2015). To our knowledge, these alternatives have not been investigated77

in a consistent, integrated framework.78

In recent years, a new generation of numerical marine ecosystem models offers a79

novel means to address the chronic undersampling of the High Seas. These models do80

not attempt to resolve individual species, but instead use fundamental empirical ecolog-81

ical processes to predict the growth and life history of generalized fish communities from82

features of the environment, including water temperature and resources from lower trophic83

levels, such as primary production and zooplankton biomass (Maury, 2010; Guiet et al.,84

2016; Blanchard et al., 2017; Tittensor et al., 2018; Heneghan et al., 2021). While these85

models have been designed and parameterized based on the rich observational datasets86

available for coastal fisheries (RAM Legacy Stock Assessment Database, 2020; Watson,87

2017; Pauly et al., 2020), it is possible to use their ecological principles to make predic-88

tions for fish production and biomass in the High Seas.89

Figure 1 shows predictions from the Fisheries and Ecosystem Model Intercompar-90

ison Project (FishMIP) ensemble (Tittensor et al., 2018, 2021) for the High Seas (HS)91

compared to coastal seas (CS). All of them estimate a fraction of High Seas biomass, B,92

relative to the global ocean surface area and primary production in the High Seas: around93

60% in the 1990s, the decade when global fish catches peaked (FishMIP bar in Fig. 1a,94

see also Appendix A to compare models). Among these models, the BOATS model sim-95

ulates fish catches, C, in addition to biomass by including a coupled economic module96

that allocates fishing effort dynamically based on the profitability of fishing at a given97

time in the global ocean (Carozza et al., 2016, 2017). BOATS predicts that the HS frac-98

tion of catch is less than that of biomass, but nonetheless far above observations at 35%99

of global catches in the 1990s (in blue in Fig. 1a). Furthermore, the model incorrectly100

simulates substantial growth in the High Seas catch and biomass fractions since 1950 (deep101

and light blue lines in Fig. 1b). However, both the initial High Seas catch ratio and its102
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rate of increase in BOATS greatly exceeds observations (black lines in Fig. 1a,b; catch103

reconstruction by Pauly et al., 2020, dashed line, and Watson, 2017, dotted line).104

Here, we use the BOATS model and implemented new processes to test five hypothe-105

ses that could contribute to the discrepancies between observed and modeled High Seas106

catches, indirectly shedding light on the global commercial biomass distribution (see Ta-107

ble 1). The first two hypothesis are economic, testing the degree to which lower profitabil-108

ity of High Seas fishing can reasonably explain the low catches (Lam et al., 2011; Palo-109

mares & Pauly, 2019). The inherently higher cost involved with travelling to the deep110

sea, and operating gear in deep waters is explored through the hypothesis HIGHCOST.111

It is also conceivable that a greater dispersal of fish in the vast and deep high-seas makes112

it more difficult to catch the existing biomass, tested in hypothesis UNCATCHABLE.113

Three additional hypotheses focus on ecological reasons why there may be less biomass114

available in the High Seas than would be expected from primary production and water115

temperature alone. The limitation of phytoplankton growth because of iron limitation116

in high-nutrient low-chlorophyll (HNLC) regions is widely recognized (Moore et al., 2013;117

Tagliabue et al., 2017). While micronutrient limitation of higher trophic levels, includ-118

ing fish, remains unclear, multiple lines of evidence suggest that iron limitation could also119

retard or prevent growth of fish in the High Seas (Galbraith et al., 2019). This is cap-120

tured in the IRONLIM hypothesis. The ENERGYPATHS hypothesis distinguishes be-121

tween pelagic and benthic energy pathways, to test the possibility that deep waters pro-122

duce little fish biomass because the energy of primary production is dissipated in the wa-123

ter column before reaching benthic communities, and preferentially routed to small or-124

ganisms (Stock et al., 2017; van Denderen et al., 2018). Finally, the MIGRATION hy-125

pothesis explores the possibility that seasonal migrations deplete the High Seas of biomass126

by bringing “straddling” stocks into coastal waters, where they are more accessible to127

fishers. Straddling species represent a significant fraction of total catches (White & Costello,128

2014; Sumaila et al., 2015), but the fraction of biomass of these catches produced in the129

High Seas is unknown.130

Table 1. List of hypotheses tested to explain the observed low High Seas vs. coastal catches

and their expected effect on key variables, cost, catchability and biomass (see details Material

and Methods).

Hypothesis Cost (c) Catchability (q) Biomass (f)

HIGHCOST (Scost) ↑ with distance/depth - -

UNCATCHABLE (Scatch) - ↓ with depth -

IRONLIM (Siron) - - ↓ in HNLC regions

MIGRATION (Smig) - - ↓ in HS, ↑ in CS

ENERGYPATHS (Sener) - - ↓ with depth

–4–
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Figure 1. Contribution of the High Seas to the global total. (a) The High Seas fraction (%)

of global ocean surface area, primary production, simulated biomass B and catch C, in the 1990s

for 8 models of the FishMIP ensemble (APECOSM, DBPM, EcoOcean, EcoTroph, FEISTY,

Macroecological, ZooMSS), BOATSv1, and observed catch (OBS). (b) Historical evolution of

biomass, B, and catch, C, for BOATSv1 and observations. Observations are based on catch re-

constructions from the Sea Around Us (SAU, dashed, Pauly et al., 2020) and Watson (2017)

(WAT, dotted). The gray shading panel (b) indicates the time period used for comparisons in

panel (a) and Figure 2.
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2 Material and Methods131

2.1 Mechanistic modeling framework132

To test our hypotheses (Table 1), we use the coupled ecological-economic global133

marine ecosystem model BOATS to predict fish biomass and catches in the High Seas134

and coastal waters from environmental and economic drivers (Carozza et al., 2016, 2017).135

We conducted this analysis using the original BOATSv1 model and an updated version136

that incorporates several new features, referred to as BOATSv2 (Guiet et al., 2024).137

BOATS simulates the dynamics of commercial fish biomass, dependent on avail-138

able resources at the base of the food web. Mean water temperature modulates the rate139

of biomass propagation across food webs, including production and losses. BOATS is dy-140

namically coupled with an open-access economic module that allow simulations of fish-141

ing effort and catch dynamics. Previous work with BOATSv1 showed that the model,142

forced with globally homogeneous fishing costs and catchability, is able to reproduce the143

historical development of fisheries when driven by a uniform technological creep (3 to144

8% per year, Galbraith, Carozza, & Bianchi, 2017; Guiet, Galbraith, Bianchi, & Che-145

ung, 2020). In the following sections, we discuss a series of modifications of BOATSv1146

and new simulations aimed at examining our five key hypotheses.147

2.1.1 HIGHCOST148

In BOATSv1, the cost per unit effort (c, in $/W/yr) is globally uniform by default.149

The absence of spatial dependence of cost disregards the importance of transit distance150

between fishing grounds and ports (Sala et al., 2018), which might be particularly rel-151

evant when comparing High Seas and coastal catches. In addition, costs are expected152

to rise when targeting increasingly deep fishing grounds, due to depth-dependent expenses153

associated with setting and hauling gears. Since demersal catches account for a large frac-154

tion of global catches, this might contribute to the delayed development of High Seas catches155

as deeper offshore habitats might become profitable later in time (Watson & Morato, 2013).156

We test both types of variable cost distributions independently under the HIGHCOST157

hypothesis.158

For implementation, we assume that the fishing cost per unit effort is constant in159

coastal or shallow regions (c = cCS). Beyond these regions, the cost increases linearly,160

either as a function of distance to the nearest shore (dcoast, in km), or as a function of161

seafloor depth (zbot, in m):162

c(x = dcoast, zbot) =

{
cCS when x ≤ x∗

cCS + δc(x− x∗) when x > x∗ (1)

where x represents either dcoast or zbot, x
∗ is a reference value that indirectly determines163

the boundary of coastal regions, and δc is a parameter controlling the rate of increase164

of costs beyond coastal regions (in $/km/W/yr or $/m/W/yr, for distance to coast or165

bottom, respectively). We note that calculating distance to the nearest shore to mod-166
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ulate costs is a simplification, particularly for industrial fisheries. We test multiple sets167

of parameters [x∗, δc] (see Appendix B).168

2.1.2 UNCATCHABLE169

Catchability (q, in m2/W/yr) refers to the capturability of fish biomass per unit170

effort given fish behavior (e.g. schooling, gear avoidance) and the level of technology, in-171

cluding fishing gear, navigation technologies, sonar, communications and skipper knowl-172

edge. Catchability generally grows exponentially over time through technological progress173

(Palomares & Pauly, 2019; Eigaard et al., 2014), thus driving the historical development174

of fisheries (Galbraith et al., 2017). However, the globally uniform catchability increase175

in BOATSv1 does not account for geographical variations in the marine environment,176

which could be significant. For example, pelagic fish in regions with vertically compressed177

euphotic zones might be more accessible to purse seines than in regions where produc-178

tion is spread over a larger, more diffuse vertical range (Nuno et al., 2022). Under the179

UNCATCHABLE hypothesis, we incorporate spatially varying catchability to assess how180

this might affect catches.181

First, we test the scenario in which catchability varies as a function of the euphotic182

layer depth (zeu, in m). Second, we test the scenario in which catchability varies as a183

function of seafloor depth (zbot, in m), based on the notion that shallower regions, such184

as those around seamounts or on continental shelves, promote biomass aggregation (Kvile185

et al., 2014) and enhance fisheries’ access to marine fish stocks (Kerry et al., 2022). The186

UNCATCHABLE hypothesis tests both variable catchability distributions:187

q(x = zeu, 1/zeu, zbot, 1/zbot, log10(zbot)) = qref

[
qmin + (1− qmin)

xmax − x

xmax − x

]
(2)

Here x represents a function of either euphotic zone or seafloor depth, xmax the global188

maximum of the quantity, x the global mean, and qmin is a parameter that controls the189

change of catchability as a function of depth. Note that we test formulations in which190

catchability decreases either linearly or in proportion to the inverse of either the euphotic191

zone depth or the seafloor depth (see Appendix C). In each formulation, we select qmin192

values that provide realistic spatial variations, and use 5×qmin as an upper bound to catch-193

ability, effectively limiting its variation to the observed range (Palomares & Pauly, 2019).194

The formulation in Equation 2 modulates the global reference catchability (qref ), which195

increases annually at 5% rate.196

2.1.3 IRONLIM197

To assess the influence of iron limitation on fish growth, we modulate the trophic198

efficiency α, a key parameter of BOATS that represents the fraction of organic matter199

incorporated into new tissue at each trophic step:200

α = α0

kNO−
3

kNO−
3
+NO−

3

(3)
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where surface nitrate concentrations (NO−
3 , in µM) are taken as a proxy for low iron201

conditions (Moore et al., 2013). Assuming a constant kNO−
3
= 5µM , this formulation202

smoothly decreases the trophic efficiency relative to the reference value α0 as nitrate in-203

creases (Galbraith et al., 2019).204

2.1.4 ENERGYPATH205

BOATSv1 calculates fish biomass from vertically integrated net primary produc-206

tion (NPP ) and upper water column temperature (T75). These quantities determine fish207

growth rates, and ultimately biomass accumulation, in a region. While these forcings are208

relevant for pelagic species, they do not account for the flux of organic material that reaches209

the seafloor as sinking particles, and sets the production of deep-sea ecosystems and fish-210

eries (Blanchard et al., 2011; Stock et al., 2017; Petrik et al., 2019). Moreover, cooler tem-211

peratures at the ocean bottom (Tbot < T75) result in slower metabolism and produc-212

tion rates for deep-sea species. Both factors – organic material flux and bottom temper-213

ature – must influence new fish biomass production in shallow vs. deep waters. To test214

the effect of distinct drivers of production in pelagic and demersal communities, under215

the ENERGYPATH hypothesis we expand BOATSv1 to provide a separate representa-216

tion of pelagic species, forced by NPP and T75, and demersal species, forced by the par-217

ticle flux at the bottom (PFB) and Tbot.218

We derive the PFB from surface NPP (Guiet et al., 2024), assuming a typical power-219

law attenuation of the particle flux below the euphotic zone (zeuph):220

PFB = NPP · peratio · (
zbot
zeuph

)ba (4)

where ba = −0.8 is the coefficient of attenuation of particle fluxes with depth (Martin221

et al., 1987) and zeuph = 75m the average euphotic zone depth, which, for simplicity,222

we keep constant. The term (zbot/zeuph)
b
a is computed first at a high resolution, using223

zbot values from the global topographic dataset ETOPO 1/10o (Amante & Eakins, 2009),224

and then averaged across each 1o grid cells of the model. Note that when zbot is shal-225

lower than zeuph = 75m, the seafloor depth is set to be equal to the euphotic zone depth.226

The particle export at the base of the euphotic zone is determined by an empirical es-227

timate of the particle export ratio (peratio), as a function of local surface temperature228

T75 and NPP , following prior work (Dunne et al., 2005).229

2.1.5 MIGRATION230

At the coarse resolution of the BOATS model (1o), the horizontal transport of biomass231

by currents and active movement can be assumed to play a secondary role relative to lo-232

cal biomass production for many fish. However, global catches include a significant frac-233

tion of straddling species that can travel large distances (Sumaila et al., 2015). While234

straddling stocks are caught almost exclusively in coastal waters, some fraction of this235

biomass is produced from trophic energy foraged in the High Seas. Fish migration and236

subsequent capture in coastal seas therefore represents a flux of trophic energy from the237

high seas to coastal waters that is not resolved by BOATS. This biomass flux could con-238
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tribute to the discrepancy between modelled and observed catches in the High Seas vs.239

coastal regions.240

Unfortunately, the considerable uncertainty in behavioural drivers of fish migra-241

tion prevents an explicit representation of this biomass redistribution at this time. Thus,242

unlike the mechanisms described above, we do not include migration as a mechanistic243

component of the model. Instead, we gauge the effect of fish migrations by estimating244

a plausible contribution of High Sea biomass to the total catch in each EEZ i, based on245

the simulated catch (Ci) inside the EEZ, and the fraction of total catch in the EEZ that246

can be attributed to straddling species (αstr,i), which we estimate based on observational247

catch reconstructions (see Appendix D):248

Ci = Cadj
i − δsαstr,iC

adj
i (5)

where Cadj
i is the total catch adjusted for straddling species in a given EEZ, and the ar-249

bitrary factor δs represents the proportion of the catch of straddling species coming from250

the High Seas. This factor provides an indirect measure of the coastal catch contribu-251

tion by fish biomass produced in the High Seas. Rearranging terms in Equation 5 pro-252

vides an estimate of the total catch Cadj
i from simulated catch within each EEZ Ci:253

Cadj
CS =

∑
EEZs

Cadj
i (6)

Cadj
HS = CHS −

∑
EEZs

(Cadj
i − Ci). (7)

Ultimately, we use Cadj
CS and Cadj

HS as updated coastal and High Seas catches after biomass254

redistribution by migration of straddling species, as long as Cadj
HS > 0. Given that δs255

is undetermined, we use a range of values to estimate the magnitude of biomass trans-256

fer, and add the resulting High Seas-derived straddling catch to the Coastal Catch.257

2.2 Simulations258

Our five hypotheses (Table 1) are tested with new simulations compared to the ref-259

erence simulation made with BOATSv1 (shown in blue in Fig. 1, hereafter simulation260

Sv1). In order to capture uncertainty in model parameters, we run each experiment with261

a small ensemble of 5 different parameter sets (Carozza et al., 2017). We take the en-262

semble mean as the final result, and when relevant use the spread across the 5 members263

as a measure of uncertainty.264

We first compare means and uncertainties for new simulations that update the ref-265

erence model to include economic constraints (Scost and Scatch, Table 1). Second, we com-266

pare new simulations that test the influence of ecological features (Siron and Sener). Be-267

cause simulation Sener changes the structure of the ecological model, we generated 5 new268

parameter sets by running a new optimization with a Monte-Carlo ensemble using the269

BOATSv2 code (Guiet et al., 2024). Similar to the BOATSv1 parameter ensemble, the270

BOATSv2 parameter sets were selected to best capture global observations including the271

catch peak aggregated by Large Marine Ecosystems (LMEs), and the spatial variabil-272
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ity of historical catch maxima in each LME. BOATSv1 and v2 are both tuned based on273

similar coastal observations, resulting in comparable dynamics in coastal seas. However,274

they markedly differ in their representation of the High Seas. Finally, we evaluate the275

role of straddling species by adjusting catch a posteriori from the reference simulation276

(Smig).277

Simulations are run on a 1o global grid, forced with climatological observations of278

the surface mean temperature between 0 and 75m (T75) and the temperature near the279

seafloor (Tbot) from the World Ocean Atlas (Locarnini et al., 2006). We estimated Tbot280

as the mean temperature in the water column weighted by the fraction of each depth in281

a model grid cell as reported by ETOPO 1/10o (Amante & Eakins, 2009). For net pri-282

mary production, we take the average of three satellite-based estimates to capture some283

of the variability inherent to primary production models (Behrenfeld & Falkowski, 1997;284

Carr et al., 2006; Marra et al., 2007). To parameterize iron limitation in HNLC regions285

we take the monthly minimum surface nitrate in the World Ocean Atlas climatology (Locarnini286

et al., 2006).287

2.3 Observational constraints288

To evaluate our hypotheses against observations, we use two spatially explicit re-289

constructions of global catches: SAU, the Sea Around Us from Pauly et al. (2020); WAT,290

from Watson (2017). Both provide global catches at 1o resolution from 1950 to 2014, and291

are corrected for unreported catches. We focus on the following two indicators:292

• (i) The fraction of catch occurring in the High Seas relative to the total catch. We293

compare this ratio around the global catch peak of the 1990s (+/− 5 years around294

1996, gray shading in Fig. 1), for which observations suggest a mean value of 3-295

4% (OBS in Fig. 1a). For each simulation, we average the 11 years of catch around296

the peak of catch summed across EEZ, and report the mean and spread (10th to297

90th percentiles) of the 5 ensemble members.298

• (ii) The historical deepening of the global catch. The deepening of catches over299

time serves as an indicator of the rate at which fisheries develop in deep vs. shal-300

low regions. The mean observed seafloor depth weighted by the local catch in the301

1990s is 372m in SAU and 154m in WAT. We compare these estimates with the302

mean depth for the 11-year period around the catch peak across EEZs in the model303

simulations, reporting the ensemble mean and spread.304

Once the relevant hypotheses are identified, we further evaluate their contribution305

to global fisheries’ development by independently comparing simulated catches with pelagic306

and demersal catch reconstructions from the SAU (see Appendix E for the definition of307

demersal and pelagic groups). We also compare regional catch variations across LMEs308

and 11 High Seas ecosystems when sequentially including new processes (HSEs, Appendix309

F).310
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Figure 2. Influence of the hypothesized mechanisms (Table 1) on High Seas fisheries develop-

ment. (a) Observed and simulated High Seas catch fraction. (b) Observed and simulated mean

depth of catches. Values reflect the global catch peak of the 1990s. Simulations are compared

with reconstructions from the SAU (black squares and dashed horizontal lines, Pauly et al., 2020)

and WAT databases (black diamonds and solid horizontal lines, Watson, 2017). Both panels show

the model’s ensemble mean and 10-90th percentile range, for each simulation set. In both panels,

solid and dotted ranges indicate model variants with distinct parameterizations, i.e., distance- or

depth-dependent costs for Scost, euphotic layer- or seafloor- dependent catchability for Scatch. In

panel (a), for Smig, each range corresponds to a distinct value of the factor δs, as reported on the

figure.

3 Results and discussion311

3.1 Small effect of economic constraints312

Both hypotheses related to economic mechanisms (HIGHCOST and UNCATCH-313

ABLE) are unable to correct the excessive High Seas catches of the reference simulation314

Sv1 when keeping realistic parameterizations (see Scost in green and Scatch in light blue,315

Fig. 2a). Higher fishing costs in the High Seas within the range of observations (i.e., [6.94-316

8.87]$/W/yr, Sala et al. (2018)) only decrease the fraction of High Seas catches to, on317

average, 29% (from 35%), while delayed development of fisheries in offshore regions for318

spatially variable catchability (with deeper euphotic zones and bottom depths) decreases319

the fraction to 23%. Both remain high compared to the observed 3-4% (see Appendices320

B,C).321

The shift of global catches to shallower fishing grounds is also insufficient for both322

economic hypotheses (Fig. 2b). But, improvements are substantial, especially when ap-323

plying depth-dependent fishing costs and catchabilities (Appendices B,C). Access to deep324

demersal stocks or aggregation of pelagic biomass around seamounts and in shallow re-325

gions can contribute to the slow deepening of fishing through time.326
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3.2 Large effect of energy pathways327

Among hypotheses related to ecological mechanisms (IRONLIM and ENERGY-328

PATH), iron limitation of fish partially reduces the mean High Seas catch ratio (down329

to 28% on average, see Siron, brown line in Fig. 2a). The magnitude is comparable to330

other economic hypotheses. While allowing the pelagic and demersal communities to de-331

velop independently from separate food resources at low trophic levels significantly cor-332

rects the fraction (down to 13%, see Sener, orange line in Fig. 2a). These improvements333

are consistent with a reduced High Seas catch fraction attributable to lower fish biomass334

production in the High Seas compared to coastal waters.335

Similar to other economic constraints, with iron limitation the mean depth of catch336

remains much deeper than observed (brown line in Fig. 2b). Iron limitation might in-337

fluence biomass production and thus fisheries yields in the High Seas, yet a link with seafloor338

depth is lacking. In contrast, having independent pelagic and demersal communities al-339

lows a more abundant demersal biomass in shallow waters, which support larger coastal340

fisheries and ultimately reduces the historical deepening of global catches (orange line341

in Fig. 2b). Our simulations of the ENERGYPATH hypothesis indicate that it is a fun-342

damental mechanism leading to relatively low catches in the High Seas.343

3.3 Combined economic and ecological effects344

Taken in isolation, ecological features limiting biomass production in High Seas best345

explain the smaller High Sea catches (IRONLIM and ENERGYPATH), while economic346

constraints are insufficient (HIGHCOST and UNCATCHABLE). However, the inclusion347

of economic constraints could still influence spatio-temporal dynamics.348

Historically, observed demersal catches are largely coastal (60 times larger inside349

EEZ than High Seas in 2000s, compare black solid and dotted lines in Fig. 3a), while pelagic350

catches are more evenly distributed between coastal waters and the High Seas (20 to 1351

in 2000s, Fig. 3b). When the ecological features are implemented in BOATS, they largely352

capture the historical variation of catch for each functional type, with slight overestima-353

tion of High Seas catches (orange lines in Fig. 3). Yet, development of High Seas fish-354

eries still occurs in the model and becomes increasingly over-estimated after 1990. The355

selected economic constraints mitigate this bias by reducing catch on the more homo-356

geneously distributed pelagic biomass (red lines in Fig. 3). For instance, with depth-dependent357

demersal fishing costs and depth-dependent pelagic catchabilities, the fraction of High358

Seas catch reaches 8% for a mean depth of catch of 400m, close to observation (see Sbest359

Fig. 2).360

Spatially (Fig. 4), the addition of ecological features corrects the simulated catch361

densities across LMEs and HSEs (from R=0.73 to 0.83, while RMSE is halved, Figs. 4a,b).362

The correction is especially important in regions over deeper seafloors (compare color363

shadings in Figs. 4a,b). In shallower coastal regions, yields remain comparable, as pelagic364

and demersal communities experience similar environmental forcing (compare circles in365

Figs. 4a,b). In deeper regions, especially in the High Seas, yields drop markedly, in agree-366

ment with a lower biomass production (compare darker markers and triangles). Economic367
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Figure 3. Historical evolution of pelagic and demersal catch. (a) Historical demersal fish

catch. (b) Historical pelagic fish catch. In each panel, the solid lines indicate catches inside

EEZs, while dotted lines indicate catches in the High Seas. Simulations including ecological cor-

rections (Sener+iron in orange), ecological and economic corrections (Sbest in red), and correction

for straddling biomass (Sbest+mig in yellow).

features have a smaller effect (correlation from R=0.83 to 0.84, RMSE decreases from368

0.16 to 0.11, Figs. 4b,c). The influence of depth on costs and catchability further delays369

the development of fisheries in High Seas, ultimately reducing yields at the peak in the370

1990s (compare triangles in Figs. 4b,c). Economic constraints must have impacted the371

development of High Seas fisheries, yet their effect on the small High Seas catch fraction372

is secondary compared to the mechanisms that govern the global fish biomass distribu-373

tion.374

Together, the selected economic and ecological hypotheses explain the variability375

of global catch with high fidelity (compare spatial distributions in the 1990s, Figs. 4d376

and e). Notable mismatches remain in the Western Equatorial Pacific, which supports377

larger fisheries than simulated by the model, and in Arctic waters, where the model over-378

estimates catches. Our definition of economic constraints could influence the mismatches,379

or these indicate missing processes. New observational metrics will be necessary to weigh380

the effect of these mechanisms. While fisheries management must also influence regional381

dynamics (K. Scherrer & Galbraith, 2020), smaller High Seas catches primarily results382

from lower biomass densities in these regions.383

3.4 Migration redistributes biomass384

Thus far, we have not addressed the role of migrating fish biomass from High Seas385

to the coast. Our analysis shows that straddling species, migrating between coastal wa-386

ters and the High Seas, are caught in many high latitude and subtropical insular EEZs,387

where they often contribute more than 80% of local catches (see Appendix D). This could388

represent a large biomass transfer from the High Seas to the coast, if the fish are ener-389

getically supported by High Seas primary production through a significant part of their390

–13–



manuscript submitted to Earth’s Future

-3 -2 -1 0 1 2
Observed catch (log10(g/m2/y)) 

-3

-2

-1

0

1

2

Si
m

ul
at

ed
 c

at
ch

 (i
n 

lo
g1

0(
g/

m
/y

))

1.5

2

2.5

3

3.5

4

-3 -2 -1 0 1 2
Observed catch (log10(g/m2/y)) 

-3

-2

-1

0

1

2

Si
m

ul
at

ed
 c

at
ch

 (i
n 

lo
g1

0(
g/

m
/y

))

1.5

2

2.5

3

3.5

4

-3 -2 -1 0 1 2
Observed catch (log10(g/m2/y)) 

-3

-2

-1

0

1

2

Si
m

ul
at

ed
 c

at
ch

 (l
og

10
(g

/m
2 /y

))

1.5

2

2.5

3

3.5

4

(e)
Simulated catches in Sbest (in t/km2/y) Observed catches (in t/km2/y)

log10(MT/km2/y)

(d)

Sv1

R = 0.73
RMSE = 0.36

(b)(a)

0.01 0.1 1

(c)

Sener+iron

R = 0.83
RMSE = 0.16

Sbest

R = 0.84
RMSE = 0.11

102

103

M
ean depth

Figure 4. Regional catch variation at the global peak in the 1990s. Observed vs. simulated

mean catch densities by regions of the global ocean for: (a) the reference simulations Sv1; (b)

simulations including ecological features that limit production in the High Seas (HS) Sener+iron;

(c) simulations including ecological features and economic constraints Sbest. (d) Map of simulated

global catches at peak for the best simulations including ecological and economic features influ-

encing catch in the HS, at global peak. (e) Map of observed global catches at peak. Panel (a-c),

the circular markers indicates LMEs, the triangles HSEs (see Appendix F), the lines show linear

fits across data, and the shadings indicate variations in the mean depth of each region, on a log10

scale (in m).
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life cycle. Assuming that, for example, 50% of straddling catch is derived from High Sea391

production (i.e., 40% of total catch, where 80% of the catch is straddling) would bring392

the modelled High Seas to coastal seas catch ratio closer to observations (see Smig Fig. 2a,393

yellow line). However, to maintain realistic High Seas catches (i.e., about 4 Mt/y), the394

adjustment of the reference simulation (Sv1) would require a migration of more than 60%,395

which would imply a catch fraction much smaller than observed (1< %, Fig. 2a). Thus,396

migration could be a very important contributor, but is insufficient alone to explain the397

small catches in the High Seas.398

This analysis highlights the potential for migration of straddling species to natu-399

rally extract biomass from the High Seas, since, as long as High Seas biomass density400

remains lower than coastal seas, migrating biomass will be caught more profitably in coastal401

regions. When High Seas catches are reduced by lower High Seas biomass (best simu-402

lation, Sbest), correction or remaining discrepancies between the model and observations403

would require setting 5% of demersal and 10% of pelagic coastal catches on straddling404

species to come from the High Seas (compare red and yellow lines in Fig. 3). These val-405

ues modulate the excessive development of High Seas fishing, while allowing realistic High406

Seas catches (4 Mt/y) and are, therefore, plausible. But migration is hard to constrain,407

and more work is required to link regions of biomass production to biomass extraction408

that goes beyond the scope of this study.409

3.5 Small High Seas fish biomass and implications410

The small High Seas catch fraction requires that, for the same level of primary pro-411

duction, High Seas produce less biomass of commercially targeted fish (see Sbest Fig. 2).412

Based on our results, the dominant mechanism behind this small production is the sep-413

aration of prey resources for pelagic and demersal communities (ENERGYPATH).414

Both prey resources, NPP and PFB, are available at distinct relative abundances415

in High Seas and coastal seas (see PFB/NPP ratios in Fig. 5a). In coastal seas, dem-416

ersal resources from particle fluxes are on average 10× less abundant than NPP . This417

proportion decreases to 100× less abundant in the High Seas, because of the increased418

dissipation of energy of primary production over deeper water columns. Within each re-419

gion, other mechanisms must compensate for less abundant demersal resources to allow420

comparable pelagic and demersal biomass densities (Fig. 5b), ultimately explaining the421

similar magnitude of demersal and pelagic catches in observations (Fig. 3).422

A likely candidate mechanism is that, in demersal communities, the processing of423

detritus by large detritivores in benthic ecosystems shortens the length of food chains424

before energy reaches the exploitable demersal fish biomass. In BOATS, food chains are,425

on average, shorter by 1 to 1.4 trophic levels in coastal and High Seas respectively (Fig. 5c).426

For an average trophic efficiency of 0.1, such compensation can correct the factor-of-10427

discrepancy in coastal seas, but is insufficient to correct the factor-of-100 discrepancy428

in High Seas. In summary, shorter demersal food chains support larger demersal biomass429

than pelagic biomass in coastal areas. In the High Seas, a larger proportion of the en-430
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(a) (b) (c)

ΔTLPFB/NPP Bdem/Bpel

Figure 5. Drivers of the difference in pelagic and demersal biomass. (a) Ratio of low trophic

level resources (PFB/NPP ) for demersal vs. pelagic communities. (b) Demersal vs. pelagic

biomass ratio (Bdem/Bpel). (c) Trophic distance of fish recruits relative to the representative

size of the low trophic level prey. Each unit indicates one additional trophic level for the pelagic

community relative to the demersal community. Green and blue bars show coastal (CS) and High

Seas (HS) respectively. The ratios are means for the global ocean, weighted by fish biomass and

with masked HNLC regions.

ergy available from photosynthesis is lost, leading to a smaller biomass density per unit431

of NPP .432

Our best simulation shows a notable contrast in the change of biomass over time433

between High Seas and coastal waters. In the early 20th century, the total biomass of434

commercially-targeted fish in coastal waters is 1.8 Gt, 2-3 times larger than that of the435

High Seas. The subsequent extraction of commercial fish in coastal regions causes coastal436

biomass to decline to only 0.8 Gt by 2013 (Fig. 6), a rate of decline comparable to a pre-437

vious analysis (Worm & Branch, 2012; Bianchi et al., 2021). As a result, the model sug-438

gests that the High Seas presently harbor a similar amount of biomass as coastal regions,439

but spread over a much larger area, and that the fraction of global fish biomass in the440

High Seas has increased from 30% to 50%. We note that our simulations do not include441

migrations, which would have caused the High Seas biomass to decrease by a larger amount.442

Without effective fisheries management (i.e., under open-access dynamics), economic the-443

ory suggests that fishing will eventually even out the biomass distribution across High444

Seas and coastal regions, and continual increases in price and/or technological progress445

will render previously unprofitable regions suitable for exploitation (compare High Seas446

and coastal seas biomass in Fig. 6).447

4 Conclusion448

We shed light on why so few fish are caught in the High Seas by testing a suite of449

hypotheses using a global fisheries model constrained by global catch observations. Our450
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Figure 6. Historical evolution of global biomass under fishing. The green and blue colors

show coastal and High Seas respectively, the envelopes the 10-90th percentile ranges for each sim-

ulation set, and the gray lines the observed change in biomass based on stock assessments (Worm

& Branch, 2012).

results indicate that the primary factor is simply that the biomass of commercially tar-451

geted fish in the High Seas is small compared to that of coastal waters. This is an im-452

portant insight for global marine ecosystem modeling efforts (Lotze et al., 2019; Titten-453

sor et al., 2021) as many models predict large High Seas biomass fraction (see the mean454

of FishMIP ensemble in Fig. 1a). Our simulations provide ecologically feasible mecha-455

nisms to explain this discrepancy, including the dependence of trophic pathways on wa-456

ter depth, and micronutrient limitation. Economic constraints alone cannot explain the457

low fish catches in the High Seas, but likely modulate the rate of development of High458

Seas fisheries. Finally, migration of straddling species from the High Seas to coastal re-459

gions is difficult to represent and quantify, but is likely to play a significant role in de-460

pleting High Seas fish populations by exposing them to fishing effort in coastal waters.461

In essence, a significant fraction of High Seas fish may be caught when they migrate to462

coastal waters, without the need to fish far from port.463

We suggest that the most important ecological factor explaining the low High Seas464

catches is the impact of water depth on organic matter consumption (Buesseler & Boyd,465

2009). In coastal seas, the concentration of organic production in a thin layer, with fewer466

trophic steps between primary producers and commercial fish, allows a much larger por-467

tion of the energy to be channeled to the large organisms humans prefer to eat, and sup-468

ports demersal species that dominate on upper shelf slopes (Haedrich & Merrett, 1992;469

Stasko et al., 2016). In the High Seas, the outputs of primary production are volumet-470

rically diluted, and are consequently consumed by microbes and filter feeders over an ex-471

tended vertical range of the water column, without accumulating in sufficiently high den-472

sity to support abundant populations of large fish. Note that mechanisms that couple473

pelagic and demersal communities could modulate this difference, such as vertical mi-474

grations that enable predator-prey interactions across overlapping vertical habitats (Sutton475

et al., 2008; Trueman et al., 2014). The lack of trace nutrients may also contribute to476

the sparsity of the pelagic community, for example the low availability of the essential477

element iron in waters far from shore (Galbraith et al., 2019). As a result, there are fewer478
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commercially valuable fish to be found in the High Seas. We note that small mesopelagic479

fish may be abundant in the High Seas, particularly where primary production is ele-480

vated (Irigoien et al., 2014; Proud et al., 2018). The relatively high abundances of mesopelagic481

fish can be attributed to their ability to intercept dispersed sinking fluxes, and a lower482

susceptibility to iron limitation (Le Mézo & Galbraith, 2021). We have not attempted483

to explicitly quantify mesopelagic fish here given that they are not commercially exploited484

at present and therefore cannot be constrained by catch records, a key part of our method-485

ology.486

Our results support prior work emphasizing that the High Seas cannot provide a487

significant amount of wild fish for direct human consumption (Sumaila et al., 2015; Schiller488

et al., 2018). Although wild fish are relatively nutrient-rich (Golden et al., 2021; Heilpern489

et al., 2021), the rate at which they are produced is small compared to the overall hu-490

man food system, which is dominated by terrestrial agriculture (K. J. Scherrer et al., 2023),491

and the potential of the High Seas to provide additional food is minimal. This is also492

consistent with historical evidence showing that fisheries in the High Seas have decimated493

populations of top predators (Cullis-Suzuki & Pauly, 2010; Pacoureau et al., 2021; Juan-494

Jordá et al., 2022), altering the size structure of the overall community (Hatton et al.,495

2021), despite providing limited food to humans. Instead of food provision, closing the496

High Seas to fishing would have the potential benefits of increasing High Seas biodiver-497

sity (Gjerde et al., 2016; Sala et al., 2021), reducing fishing gear waste (Helm, 2022), and498

eliminating costly subsidies and fuel-inefficient fishing practices (White & Costello, 2014;499

Sala et al., 2018). Timely protection of High Seas ecosystems may help buttress them500

against increasing pressures to intensify fishing as technological innovations cause them501

to become financially more attractive despite their low fish biomass density.502
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Figure A1. Mean contribution of the High Seas biomass to the global total per FishMIP

model of the ISIMIP3b simulations forced with IPSL-CM6A-LR (Tittensor et al., 2021).

Appendix A High seas biomass fraction in FishMIP models503

Despite large differences in model structure, global fish biomass models suggest a504

comparable fraction of High Seas to coastal seas biomass.505

Appendix B Variable fishing costs506

The cost of fishing varies per fishing gear, per fish community targeted (Lam et al.,507

2011). To best constrain spatially variable costs we use estimates of these separate fish-508

ing costs in the high-seas (HS) for the main gear types (98% of total effort) following data509

reported by Sala et al. (2018). Table B1 summarizes these estimated costs. These com-510

pare with BOATS’s default fishing cost of 5.85$/W/yr (Carozza et al., 2017; Galbraith511

et al., 2017).512

Figure B1 summarizes the effect of spatially heterogeneous fishing costs on the ra-513

tio HS vs. CS catch, on the variations of the mean depths above which catch occur, as514

well as the global mean HS fishing cost, once weighted by effort.515

First, increasing the cost of fishing with distance to nearest shore [x∗ = 370,δd]516

can partly correct the ratio of catches between HS and CS (Fig. B1a). But most catch517

remain over deep seafloor, unlike suggested by observation (mean depth of catch ¡1000m518

Fig. B1b).519

Second, increasing the cost of fishing with seafloor depth [x∗ = 200,δz] can cor-520

rect both the ratio of catches between HS and CS, and contributes to the shallowing of521

the mean seafloor depth of catches Figs. B1a,b). But, this correction corresponds to un-522

realistic high HS fishing costs (¿8.87$/W/yr, upper range of observed costs Fig. B1c),523

inconsistent with observation (Tab. B1).524

In both cases, spatially variable fishing costs within the range of observation can525

not account for the small fraction of HS vs. CS catches. We tested the effect of separate526

costs δd,zbot , adjustment of the parameter x∗ only slightly modify the results. For a re-527
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Figure B1. Effect of spatially heterogeneous costs. (a) Observed and simulated fraction of

HS vs. CS catches at global peak for multiple model variants. (b) Observed and simulated mean

depth of catches at global peak for multiple model variants. (c) Observed and simulated mean

HS fishing costs once weighted by local fishing effort, around 2010. Panels (a,b) show the ensem-

ble mean as well as the 25-75th percentile ranges per simulation set compared to observation,

black dot and horizontal dotted line. Panel (c) shows mean simulated costs and how they com-

pare to the range of observation Tab. B1 (grey shading).

alistic cost of fishing the high seas the correction of HS vs. CS ratio seems impossible.528

We conclude that cost alone does not explain the smaller exploitation of the high-seas.529

Table B1. Cost of fishing the high-seas based on estimates from Sala et al. (2018) for year

2016.

Gear type Effort in kWh (fraction of total) Cost range in $ Cost per unit effort in $/W/yr

Trawlers 979 106 (15%) [750 106-1030 106] [6.7-9.2]

Long liners 3719 106 (55%) [2523 106-3023 106] [6.0-7.1]

Purse seiners 394 106s (6%) [702 106-1188 106] [15.7-26.0]

Squid jiggers 1490 106 (22%) [1308 106-1616 106] [7.7-9.5]

Range all gears (98%) - [6.94-8.87]

BOATS default - - 5.85

Appendix C Variable biomass catchabilities530

The catchability of fish biomass per unit effort can vary between species (e.g. school-531

ing or dispersed species), depending on the preferred depth inhabited by these species,532

from the surface to the limit of the euphotic layer depth and to the seafloor. To constrain533

the spatially variable catchabilities, we compare with estimates of the variability of tech-534

nology coefficients per fishing gears as detailed in Palomares and Pauly (2019). Table C1535
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summarizes these estimated coefficients and how they vary. In BOATS the coefficients536

are spatially homogeneous (value of 1) by default.537

Figure C1 summarizes the effect of spatially variable catchabilities on the ratio HS538

vs. CS catch, and on variations of the mean depths above which catch occur.539

The spatial variation of catchability as a function of the depth of the euphotic layer540

(zeu, 1/zeu, log10(zeu)) or seafloor depth (zbot, log10(zbot)) only allows a limited redis-541

tribution of catches from the high seas to the coast (Fig. C1a). The mean depth over542

which fishing occurs is also partially corrected with each profile (Fig. C1b).543

Allowing spatially variable catchabilities while keeping the range within observa-544

tional ranges (Table C1) does not allow correction of the delayed development of high545

seas fisheries compared to coastal ones. We conclude that catchability alone can not ex-546

plain the smaller exploitation of the high-seas. However, slight variations of the catch-547

ability could contribute to explain the overall shallow depth of catch, especially when548

catchability varies with log10(zbot) (Fig. C1b).549

Table C1. Technology coefficients per fishing gear based on estimates from Palomares and

Pauly (2019) for year 1995 (relative to mean).

Gear type Technology coefficient

Super trawler 1.19

Freeze trawler 0.95

Stern trawler 0.90

Trawlers 0.86

Shrimp trawler 1.05

Tuna seiner 0.76

Tuna longliner 1.10

Purse seiner 0.95

Longliner 1.33

Gillnetter 0.71

Multipurpose 1.19

Range all gears [0.71-1.33]

BOATS default 1

Appendix D Straddling fraction per EEZ550

The migration of fish biomass can influence the spatial correlation of regions where551

biomass is produced and where it is caught by fisheries. While the straddling fraction552

of catch in an EEZ does not necessarily reflect the fraction of biomass produced outside553

this region, it provides an estimate of the plausible range of redistribution. We inferred554

the straddling catch fraction from Sea Around Us (SAU) reported catch per species within555

each EEZ, separately summing catch on species solely caught inside EEZs (Cloc
EEZ), and556

catch on species caught both in EEZs and highseas (Cstr
EEZ , αstr = Cstr

EEZ/(C
str
EEZ +557

Cloc
EEZ)). We use the list of species in Sumaila et al. (2015) for this distinction. Figure D1a558
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Figure C1. Effect of spatially heterogeneous catchabilities. (a) Observed and simulated frac-

tion of HS vs. CS catches at global peak for multiple model variants. (b) Observed and simulated

mean depth of catches at global peak for multiple model variants. Panels (a,b) show the ensem-

ble mean as well as the 25-75th percentile ranges per simulation set compared to observation,

black dot and horizontal dotted line.

(b)(a)

Figure D1. Straddling fraction of catches across EEZs during the 1990s (in %). (a) Fraction

of catch on straddling species compared to catch on non straddling species αstr. (b) Fraction of

catch on species for which the identity is not provided (in %).

shows the estimated mean fraction of straddling catch per LME around the global peak559

harvest of the 1990s. Note that for each region, a fraction of catch could not be linked560

to species Coth
EEZ , but this fraction is minimal in most EEZs (see Fig. D1b), and thus dis-561

regarded in our analysis of the straddling catch fraction.562

Figure D2 summarizes the effect of redistributing an increasing ratio δs of catch563

from the HS to the CS, in proportion to the fraction of simulated catch on straddling564

species αstr in each EEZ. It also shows the corresponding annual HS catches.565

Increasing δs has the expected effect of strongly reducing the HS vs. CS catch frac-566

tion (Fig. D2a), up to matching observation for δs = 0.5. Despite the improvement, re-567

maining catches in the HS are significantly larger than what is observed (¿4 106MT/y,568

observation around peak of the 1990s, see Fig. D2b). We conclude that the biomass re-569

distribution by migrating species alone does not explain the smaller exploitation of the570

high seas, nevertheless it must have a significant impact.571
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Figure D2. Effect of catch redistribution. (a) Observed and simulated fraction of HS vs. CS

catches at global peak for multiple model variants. (b) Annual HS catch around the catch peak

of the 1990s. Panels (a,b) show the ensemble mean as well as the 25-75th percentile ranges per

simulation set compared to observation, black dot and horizontal dotted line.

Appendix E Pelagic and Demersal catches in SAU572

We compare simulated pelagic and demersal catches with global catch reconstruc-573

tion from Sea Around Us (SAU) (Pauly et al., 2020). Table E1 lists how we distribute574

the functional types of SAU to generate aggregated maps of pelagic and demersal catches.575

Table E1. Association of SAU functional types to pelagic and demersal catches.

Catch type SAU functional types

Pelagic pelagic s/m/l

bathypelagic s/m/l

cephalopods

Demersal demersal s/m/l

reef-associated s/m/l

benthopelagic s/m/l

bathydemersal s/l

shark s/l

flatfish s/l

ray s/l

shrimp

lobster and crab

other demersal invertebrates
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(b)(a) LMEs mask HSEs mask

Figure F1. Regional masks to compare observation and simulation. (a) Large Marine Ecosys-

tems. (b) High Seas Ecosystems adapted from Weber et al. (2016).

Appendix F Large Marine Ecosystems and High Seas Ecosystems576

Catch are compared across Large Marine Ecosystems (LMEs) for coastal regions,577

and 11 High Seas Ecosystems (HSEs). Figure F1a, b illustrate respectively the LME and578

HSE masks.579

Open Research Section580

All data and the model used in this study are publicly available. Catch observa-581

tion used for comparison of simulations can be obtained from the links https://www.seaaroundus582

.org and http://dx.doi.org/10.4226/77/58293083b0515. Biomass simulations from583

FishMIP can be obtained from the link https://www.isimip.org/outputdata/. Other584

processed data, as well as the code of the model BOATS used for this analysis, are avail-585

able at the link https://zenodo.org/records/10662929.586
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Key Points:11

• Despite their vast surface area, the High Seas provide only a small fraction of global12

wild fish catch.13

• Dispersion of trophic energy throughout deep water columns and micronutrient14

limitations leads to smaller fish biomass density in High Seas.15

• Smaller biomass density is a major contributor to the small catch; while migra-16

tion should also matter, economic factors are likely secondary.17
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Abstract18

The High Seas, lying beyond the boundaries of nations’ Exclusive Economic Zones, cover19

the majority of the ocean surface and host roughly two thirds of marine primary pro-20

duction. Yet, only a small fraction of global wild fish catch comes from the High Seas,21

despite intensifying industrial fishing efforts. The surprisingly small fish catch could re-22

flect economic features of the High Seas - such as the difficulty and cost of fishing in re-23

mote parts of the ocean surface - or ecological features resulting in a small biomass of24

fish relative to primary production. We use the coupled biological-economic model BOATS25

to estimate contributing factors, comparing observed catches with simulations where: (i)26

fishing cost depends on distance from shore and seafloor depth; (ii) catchability depends27

on seafloor depth or vertical habitat extent; (iii) regions with micronutrient limitation28

have reduced biomass production; (iv) the trophic transfer of energy from primary pro-29

duction to demersal food webs depends on depth; and (v) High Seas biomass migrates30

to coastal regions. Our results suggest that the most important features are ecological:31

demersal fish communities receive a large proportion of primary production in shallow32

waters, but very little in deep waters due to respiration by small organisms throughout33

the water column. Other factors play a secondary role, with migrations having a poten-34

tially large but uncertain role, and economic factors having the smallest effects. Our re-35

sults stress the importance of properly representing the High Seas biomass in future fish-36

eries projections, and clarify their limited role in global food provision.37

1 Introduction38

The UN High Seas Treaty, agreed upon in March 2023, has been welcomed as an39

unprecedented step towards protecting the biodiversity of the global ocean (UN Gen-40

eral Assembly, 2023). Known as the Biodiversity Beyond National Jurisdiction treaty,41

it explicitly calls for an integrated ecosystem approach in order to maintain and restore42

biodiversity and carbon cycle functioning within the 60% of the ocean area that lies be-43

yond nationally-managed Exclusive Economic Zones (EEZs). A fundamental metric of44

the biodiversity that the treaty aims to protect is the abundance or biomass of marine45

organisms. However, because of the inaccessibility of the High Seas, and the fact that46

they falls outside the purview of national research organizations, the biomass of animals47

in the High Seas is relatively poorly evaluated.48

The oceans are thought to harbour most of the remaining wild animal life on the49

planet (Bar-On et al., 2018). Since the High Seas cover the majority of the ocean sur-50

face, one could expect them to host a large fraction of marine life. Consistent with this51

expectation, roughly 67% of marine primary production is estimated to occur in the vast52

domain of the High Seas, even though the rate of primary production per unit area is53

higher in the shallow coastal waters that ring the continents (Behrenfeld & Falkowski,54

1997; Carr et al., 2006; Marra et al., 2007). Given that roughly half of global primary55

production is marine, this implies that one third of all primary production on Earth oc-56

curs in the High Seas. Yet, the most comprehensive sampling of marine animals by hu-57

mans - industrial fishing - recovers only a small fish catch from the High Seas, despite58

intensifying efforts (Rousseau et al., 2019). In fact, humans only retrieve about a twen-59
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tieth of the global wild fish capture – less than 0.1% of total human caloric supply – from60

the High Seas that cover more than half the planet (Schiller et al., 2018). We are not61

aware of a widely-recognized explanation for the fact that the High Seas provide so lit-62

tle human food.63

On one hand, the surprisingly small High Seas catch could be explained by economic64

and technological constraints. Fuel and time expenditures required to travel long dis-65

tances, greater capital requirements for High Seas vessels, or the difficulty of catching66

fish in deep waters could result in higher costs of fishing the High Seas (Lam et al., 2011;67

Sala et al., 2018). Economic constraints can be further modulated by the variable catch-68

ability of the fish resource that is influenced by habitat features such as topography, or69

vary between gears targeting pelagic or demersal species (Palomares & Pauly, 2019; Kerry70

et al., 2022). On the other hand, the small fish catch relative to primary production could71

be a result of ecological features of the High Seas. It is possible that the High Seas have72

less efficient transfer of energy from primary production to fish types of commercial in-73

terest compared to coastal systems (Eddy et al., 2020), or that primary production in74

the High Seas is consumed by fish that periodically migrate to the coastal zone, lead-75

ing to spatial redistribution of the biomass of upper trophic levels (Block et al., 2011;76

Sumaila et al., 2015). To our knowledge, these alternatives have not been investigated77

in a consistent, integrated framework.78

In recent years, a new generation of numerical marine ecosystem models offers a79

novel means to address the chronic undersampling of the High Seas. These models do80

not attempt to resolve individual species, but instead use fundamental empirical ecolog-81

ical processes to predict the growth and life history of generalized fish communities from82

features of the environment, including water temperature and resources from lower trophic83

levels, such as primary production and zooplankton biomass (Maury, 2010; Guiet et al.,84

2016; Blanchard et al., 2017; Tittensor et al., 2018; Heneghan et al., 2021). While these85

models have been designed and parameterized based on the rich observational datasets86

available for coastal fisheries (RAM Legacy Stock Assessment Database, 2020; Watson,87

2017; Pauly et al., 2020), it is possible to use their ecological principles to make predic-88

tions for fish production and biomass in the High Seas.89

Figure 1 shows predictions from the Fisheries and Ecosystem Model Intercompar-90

ison Project (FishMIP) ensemble (Tittensor et al., 2018, 2021) for the High Seas (HS)91

compared to coastal seas (CS). All of them estimate a fraction of High Seas biomass, B,92

relative to the global ocean surface area and primary production in the High Seas: around93

60% in the 1990s, the decade when global fish catches peaked (FishMIP bar in Fig. 1a,94

see also Appendix A to compare models). Among these models, the BOATS model sim-95

ulates fish catches, C, in addition to biomass by including a coupled economic module96

that allocates fishing effort dynamically based on the profitability of fishing at a given97

time in the global ocean (Carozza et al., 2016, 2017). BOATS predicts that the HS frac-98

tion of catch is less than that of biomass, but nonetheless far above observations at 35%99

of global catches in the 1990s (in blue in Fig. 1a). Furthermore, the model incorrectly100

simulates substantial growth in the High Seas catch and biomass fractions since 1950 (deep101

and light blue lines in Fig. 1b). However, both the initial High Seas catch ratio and its102
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rate of increase in BOATS greatly exceeds observations (black lines in Fig. 1a,b; catch103

reconstruction by Pauly et al., 2020, dashed line, and Watson, 2017, dotted line).104

Here, we use the BOATS model and implemented new processes to test five hypothe-105

ses that could contribute to the discrepancies between observed and modeled High Seas106

catches, indirectly shedding light on the global commercial biomass distribution (see Ta-107

ble 1). The first two hypothesis are economic, testing the degree to which lower profitabil-108

ity of High Seas fishing can reasonably explain the low catches (Lam et al., 2011; Palo-109

mares & Pauly, 2019). The inherently higher cost involved with travelling to the deep110

sea, and operating gear in deep waters is explored through the hypothesis HIGHCOST.111

It is also conceivable that a greater dispersal of fish in the vast and deep high-seas makes112

it more difficult to catch the existing biomass, tested in hypothesis UNCATCHABLE.113

Three additional hypotheses focus on ecological reasons why there may be less biomass114

available in the High Seas than would be expected from primary production and water115

temperature alone. The limitation of phytoplankton growth because of iron limitation116

in high-nutrient low-chlorophyll (HNLC) regions is widely recognized (Moore et al., 2013;117

Tagliabue et al., 2017). While micronutrient limitation of higher trophic levels, includ-118

ing fish, remains unclear, multiple lines of evidence suggest that iron limitation could also119

retard or prevent growth of fish in the High Seas (Galbraith et al., 2019). This is cap-120

tured in the IRONLIM hypothesis. The ENERGYPATHS hypothesis distinguishes be-121

tween pelagic and benthic energy pathways, to test the possibility that deep waters pro-122

duce little fish biomass because the energy of primary production is dissipated in the wa-123

ter column before reaching benthic communities, and preferentially routed to small or-124

ganisms (Stock et al., 2017; van Denderen et al., 2018). Finally, the MIGRATION hy-125

pothesis explores the possibility that seasonal migrations deplete the High Seas of biomass126

by bringing “straddling” stocks into coastal waters, where they are more accessible to127

fishers. Straddling species represent a significant fraction of total catches (White & Costello,128

2014; Sumaila et al., 2015), but the fraction of biomass of these catches produced in the129

High Seas is unknown.130

Table 1. List of hypotheses tested to explain the observed low High Seas vs. coastal catches

and their expected effect on key variables, cost, catchability and biomass (see details Material

and Methods).

Hypothesis Cost (c) Catchability (q) Biomass (f)

HIGHCOST (Scost) ↑ with distance/depth - -

UNCATCHABLE (Scatch) - ↓ with depth -

IRONLIM (Siron) - - ↓ in HNLC regions

MIGRATION (Smig) - - ↓ in HS, ↑ in CS

ENERGYPATHS (Sener) - - ↓ with depth
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Figure 1. Contribution of the High Seas to the global total. (a) The High Seas fraction (%)

of global ocean surface area, primary production, simulated biomass B and catch C, in the 1990s

for 8 models of the FishMIP ensemble (APECOSM, DBPM, EcoOcean, EcoTroph, FEISTY,

Macroecological, ZooMSS), BOATSv1, and observed catch (OBS). (b) Historical evolution of

biomass, B, and catch, C, for BOATSv1 and observations. Observations are based on catch re-

constructions from the Sea Around Us (SAU, dashed, Pauly et al., 2020) and Watson (2017)

(WAT, dotted). The gray shading panel (b) indicates the time period used for comparisons in

panel (a) and Figure 2.
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2 Material and Methods131

2.1 Mechanistic modeling framework132

To test our hypotheses (Table 1), we use the coupled ecological-economic global133

marine ecosystem model BOATS to predict fish biomass and catches in the High Seas134

and coastal waters from environmental and economic drivers (Carozza et al., 2016, 2017).135

We conducted this analysis using the original BOATSv1 model and an updated version136

that incorporates several new features, referred to as BOATSv2 (Guiet et al., 2024).137

BOATS simulates the dynamics of commercial fish biomass, dependent on avail-138

able resources at the base of the food web. Mean water temperature modulates the rate139

of biomass propagation across food webs, including production and losses. BOATS is dy-140

namically coupled with an open-access economic module that allow simulations of fish-141

ing effort and catch dynamics. Previous work with BOATSv1 showed that the model,142

forced with globally homogeneous fishing costs and catchability, is able to reproduce the143

historical development of fisheries when driven by a uniform technological creep (3 to144

8% per year, Galbraith, Carozza, & Bianchi, 2017; Guiet, Galbraith, Bianchi, & Che-145

ung, 2020). In the following sections, we discuss a series of modifications of BOATSv1146

and new simulations aimed at examining our five key hypotheses.147

2.1.1 HIGHCOST148

In BOATSv1, the cost per unit effort (c, in $/W/yr) is globally uniform by default.149

The absence of spatial dependence of cost disregards the importance of transit distance150

between fishing grounds and ports (Sala et al., 2018), which might be particularly rel-151

evant when comparing High Seas and coastal catches. In addition, costs are expected152

to rise when targeting increasingly deep fishing grounds, due to depth-dependent expenses153

associated with setting and hauling gears. Since demersal catches account for a large frac-154

tion of global catches, this might contribute to the delayed development of High Seas catches155

as deeper offshore habitats might become profitable later in time (Watson & Morato, 2013).156

We test both types of variable cost distributions independently under the HIGHCOST157

hypothesis.158

For implementation, we assume that the fishing cost per unit effort is constant in159

coastal or shallow regions (c = cCS). Beyond these regions, the cost increases linearly,160

either as a function of distance to the nearest shore (dcoast, in km), or as a function of161

seafloor depth (zbot, in m):162

c(x = dcoast, zbot) =

{
cCS when x ≤ x∗

cCS + δc(x− x∗) when x > x∗ (1)

where x represents either dcoast or zbot, x
∗ is a reference value that indirectly determines163

the boundary of coastal regions, and δc is a parameter controlling the rate of increase164

of costs beyond coastal regions (in $/km/W/yr or $/m/W/yr, for distance to coast or165

bottom, respectively). We note that calculating distance to the nearest shore to mod-166
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ulate costs is a simplification, particularly for industrial fisheries. We test multiple sets167

of parameters [x∗, δc] (see Appendix B).168

2.1.2 UNCATCHABLE169

Catchability (q, in m2/W/yr) refers to the capturability of fish biomass per unit170

effort given fish behavior (e.g. schooling, gear avoidance) and the level of technology, in-171

cluding fishing gear, navigation technologies, sonar, communications and skipper knowl-172

edge. Catchability generally grows exponentially over time through technological progress173

(Palomares & Pauly, 2019; Eigaard et al., 2014), thus driving the historical development174

of fisheries (Galbraith et al., 2017). However, the globally uniform catchability increase175

in BOATSv1 does not account for geographical variations in the marine environment,176

which could be significant. For example, pelagic fish in regions with vertically compressed177

euphotic zones might be more accessible to purse seines than in regions where produc-178

tion is spread over a larger, more diffuse vertical range (Nuno et al., 2022). Under the179

UNCATCHABLE hypothesis, we incorporate spatially varying catchability to assess how180

this might affect catches.181

First, we test the scenario in which catchability varies as a function of the euphotic182

layer depth (zeu, in m). Second, we test the scenario in which catchability varies as a183

function of seafloor depth (zbot, in m), based on the notion that shallower regions, such184

as those around seamounts or on continental shelves, promote biomass aggregation (Kvile185

et al., 2014) and enhance fisheries’ access to marine fish stocks (Kerry et al., 2022). The186

UNCATCHABLE hypothesis tests both variable catchability distributions:187

q(x = zeu, 1/zeu, zbot, 1/zbot, log10(zbot)) = qref

[
qmin + (1− qmin)

xmax − x

xmax − x

]
(2)

Here x represents a function of either euphotic zone or seafloor depth, xmax the global188

maximum of the quantity, x the global mean, and qmin is a parameter that controls the189

change of catchability as a function of depth. Note that we test formulations in which190

catchability decreases either linearly or in proportion to the inverse of either the euphotic191

zone depth or the seafloor depth (see Appendix C). In each formulation, we select qmin192

values that provide realistic spatial variations, and use 5×qmin as an upper bound to catch-193

ability, effectively limiting its variation to the observed range (Palomares & Pauly, 2019).194

The formulation in Equation 2 modulates the global reference catchability (qref ), which195

increases annually at 5% rate.196

2.1.3 IRONLIM197

To assess the influence of iron limitation on fish growth, we modulate the trophic198

efficiency α, a key parameter of BOATS that represents the fraction of organic matter199

incorporated into new tissue at each trophic step:200

α = α0

kNO−
3

kNO−
3
+NO−

3

(3)
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where surface nitrate concentrations (NO−
3 , in µM) are taken as a proxy for low iron201

conditions (Moore et al., 2013). Assuming a constant kNO−
3
= 5µM , this formulation202

smoothly decreases the trophic efficiency relative to the reference value α0 as nitrate in-203

creases (Galbraith et al., 2019).204

2.1.4 ENERGYPATH205

BOATSv1 calculates fish biomass from vertically integrated net primary produc-206

tion (NPP ) and upper water column temperature (T75). These quantities determine fish207

growth rates, and ultimately biomass accumulation, in a region. While these forcings are208

relevant for pelagic species, they do not account for the flux of organic material that reaches209

the seafloor as sinking particles, and sets the production of deep-sea ecosystems and fish-210

eries (Blanchard et al., 2011; Stock et al., 2017; Petrik et al., 2019). Moreover, cooler tem-211

peratures at the ocean bottom (Tbot < T75) result in slower metabolism and produc-212

tion rates for deep-sea species. Both factors – organic material flux and bottom temper-213

ature – must influence new fish biomass production in shallow vs. deep waters. To test214

the effect of distinct drivers of production in pelagic and demersal communities, under215

the ENERGYPATH hypothesis we expand BOATSv1 to provide a separate representa-216

tion of pelagic species, forced by NPP and T75, and demersal species, forced by the par-217

ticle flux at the bottom (PFB) and Tbot.218

We derive the PFB from surface NPP (Guiet et al., 2024), assuming a typical power-219

law attenuation of the particle flux below the euphotic zone (zeuph):220

PFB = NPP · peratio · (
zbot
zeuph

)ba (4)

where ba = −0.8 is the coefficient of attenuation of particle fluxes with depth (Martin221

et al., 1987) and zeuph = 75m the average euphotic zone depth, which, for simplicity,222

we keep constant. The term (zbot/zeuph)
b
a is computed first at a high resolution, using223

zbot values from the global topographic dataset ETOPO 1/10o (Amante & Eakins, 2009),224

and then averaged across each 1o grid cells of the model. Note that when zbot is shal-225

lower than zeuph = 75m, the seafloor depth is set to be equal to the euphotic zone depth.226

The particle export at the base of the euphotic zone is determined by an empirical es-227

timate of the particle export ratio (peratio), as a function of local surface temperature228

T75 and NPP , following prior work (Dunne et al., 2005).229

2.1.5 MIGRATION230

At the coarse resolution of the BOATS model (1o), the horizontal transport of biomass231

by currents and active movement can be assumed to play a secondary role relative to lo-232

cal biomass production for many fish. However, global catches include a significant frac-233

tion of straddling species that can travel large distances (Sumaila et al., 2015). While234

straddling stocks are caught almost exclusively in coastal waters, some fraction of this235

biomass is produced from trophic energy foraged in the High Seas. Fish migration and236

subsequent capture in coastal seas therefore represents a flux of trophic energy from the237

high seas to coastal waters that is not resolved by BOATS. This biomass flux could con-238
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tribute to the discrepancy between modelled and observed catches in the High Seas vs.239

coastal regions.240

Unfortunately, the considerable uncertainty in behavioural drivers of fish migra-241

tion prevents an explicit representation of this biomass redistribution at this time. Thus,242

unlike the mechanisms described above, we do not include migration as a mechanistic243

component of the model. Instead, we gauge the effect of fish migrations by estimating244

a plausible contribution of High Sea biomass to the total catch in each EEZ i, based on245

the simulated catch (Ci) inside the EEZ, and the fraction of total catch in the EEZ that246

can be attributed to straddling species (αstr,i), which we estimate based on observational247

catch reconstructions (see Appendix D):248

Ci = Cadj
i − δsαstr,iC

adj
i (5)

where Cadj
i is the total catch adjusted for straddling species in a given EEZ, and the ar-249

bitrary factor δs represents the proportion of the catch of straddling species coming from250

the High Seas. This factor provides an indirect measure of the coastal catch contribu-251

tion by fish biomass produced in the High Seas. Rearranging terms in Equation 5 pro-252

vides an estimate of the total catch Cadj
i from simulated catch within each EEZ Ci:253

Cadj
CS =

∑
EEZs

Cadj
i (6)

Cadj
HS = CHS −

∑
EEZs

(Cadj
i − Ci). (7)

Ultimately, we use Cadj
CS and Cadj

HS as updated coastal and High Seas catches after biomass254

redistribution by migration of straddling species, as long as Cadj
HS > 0. Given that δs255

is undetermined, we use a range of values to estimate the magnitude of biomass trans-256

fer, and add the resulting High Seas-derived straddling catch to the Coastal Catch.257

2.2 Simulations258

Our five hypotheses (Table 1) are tested with new simulations compared to the ref-259

erence simulation made with BOATSv1 (shown in blue in Fig. 1, hereafter simulation260

Sv1). In order to capture uncertainty in model parameters, we run each experiment with261

a small ensemble of 5 different parameter sets (Carozza et al., 2017). We take the en-262

semble mean as the final result, and when relevant use the spread across the 5 members263

as a measure of uncertainty.264

We first compare means and uncertainties for new simulations that update the ref-265

erence model to include economic constraints (Scost and Scatch, Table 1). Second, we com-266

pare new simulations that test the influence of ecological features (Siron and Sener). Be-267

cause simulation Sener changes the structure of the ecological model, we generated 5 new268

parameter sets by running a new optimization with a Monte-Carlo ensemble using the269

BOATSv2 code (Guiet et al., 2024). Similar to the BOATSv1 parameter ensemble, the270

BOATSv2 parameter sets were selected to best capture global observations including the271

catch peak aggregated by Large Marine Ecosystems (LMEs), and the spatial variabil-272
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ity of historical catch maxima in each LME. BOATSv1 and v2 are both tuned based on273

similar coastal observations, resulting in comparable dynamics in coastal seas. However,274

they markedly differ in their representation of the High Seas. Finally, we evaluate the275

role of straddling species by adjusting catch a posteriori from the reference simulation276

(Smig).277

Simulations are run on a 1o global grid, forced with climatological observations of278

the surface mean temperature between 0 and 75m (T75) and the temperature near the279

seafloor (Tbot) from the World Ocean Atlas (Locarnini et al., 2006). We estimated Tbot280

as the mean temperature in the water column weighted by the fraction of each depth in281

a model grid cell as reported by ETOPO 1/10o (Amante & Eakins, 2009). For net pri-282

mary production, we take the average of three satellite-based estimates to capture some283

of the variability inherent to primary production models (Behrenfeld & Falkowski, 1997;284

Carr et al., 2006; Marra et al., 2007). To parameterize iron limitation in HNLC regions285

we take the monthly minimum surface nitrate in the World Ocean Atlas climatology (Locarnini286

et al., 2006).287

2.3 Observational constraints288

To evaluate our hypotheses against observations, we use two spatially explicit re-289

constructions of global catches: SAU, the Sea Around Us from Pauly et al. (2020); WAT,290

from Watson (2017). Both provide global catches at 1o resolution from 1950 to 2014, and291

are corrected for unreported catches. We focus on the following two indicators:292

• (i) The fraction of catch occurring in the High Seas relative to the total catch. We293

compare this ratio around the global catch peak of the 1990s (+/− 5 years around294

1996, gray shading in Fig. 1), for which observations suggest a mean value of 3-295

4% (OBS in Fig. 1a). For each simulation, we average the 11 years of catch around296

the peak of catch summed across EEZ, and report the mean and spread (10th to297

90th percentiles) of the 5 ensemble members.298

• (ii) The historical deepening of the global catch. The deepening of catches over299

time serves as an indicator of the rate at which fisheries develop in deep vs. shal-300

low regions. The mean observed seafloor depth weighted by the local catch in the301

1990s is 372m in SAU and 154m in WAT. We compare these estimates with the302

mean depth for the 11-year period around the catch peak across EEZs in the model303

simulations, reporting the ensemble mean and spread.304

Once the relevant hypotheses are identified, we further evaluate their contribution305

to global fisheries’ development by independently comparing simulated catches with pelagic306

and demersal catch reconstructions from the SAU (see Appendix E for the definition of307

demersal and pelagic groups). We also compare regional catch variations across LMEs308

and 11 High Seas ecosystems when sequentially including new processes (HSEs, Appendix309

F).310
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Figure 2. Influence of the hypothesized mechanisms (Table 1) on High Seas fisheries develop-

ment. (a) Observed and simulated High Seas catch fraction. (b) Observed and simulated mean

depth of catches. Values reflect the global catch peak of the 1990s. Simulations are compared

with reconstructions from the SAU (black squares and dashed horizontal lines, Pauly et al., 2020)

and WAT databases (black diamonds and solid horizontal lines, Watson, 2017). Both panels show

the model’s ensemble mean and 10-90th percentile range, for each simulation set. In both panels,

solid and dotted ranges indicate model variants with distinct parameterizations, i.e., distance- or

depth-dependent costs for Scost, euphotic layer- or seafloor- dependent catchability for Scatch. In

panel (a), for Smig, each range corresponds to a distinct value of the factor δs, as reported on the

figure.

3 Results and discussion311

3.1 Small effect of economic constraints312

Both hypotheses related to economic mechanisms (HIGHCOST and UNCATCH-313

ABLE) are unable to correct the excessive High Seas catches of the reference simulation314

Sv1 when keeping realistic parameterizations (see Scost in green and Scatch in light blue,315

Fig. 2a). Higher fishing costs in the High Seas within the range of observations (i.e., [6.94-316

8.87]$/W/yr, Sala et al. (2018)) only decrease the fraction of High Seas catches to, on317

average, 29% (from 35%), while delayed development of fisheries in offshore regions for318

spatially variable catchability (with deeper euphotic zones and bottom depths) decreases319

the fraction to 23%. Both remain high compared to the observed 3-4% (see Appendices320

B,C).321

The shift of global catches to shallower fishing grounds is also insufficient for both322

economic hypotheses (Fig. 2b). But, improvements are substantial, especially when ap-323

plying depth-dependent fishing costs and catchabilities (Appendices B,C). Access to deep324

demersal stocks or aggregation of pelagic biomass around seamounts and in shallow re-325

gions can contribute to the slow deepening of fishing through time.326
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3.2 Large effect of energy pathways327

Among hypotheses related to ecological mechanisms (IRONLIM and ENERGY-328

PATH), iron limitation of fish partially reduces the mean High Seas catch ratio (down329

to 28% on average, see Siron, brown line in Fig. 2a). The magnitude is comparable to330

other economic hypotheses. While allowing the pelagic and demersal communities to de-331

velop independently from separate food resources at low trophic levels significantly cor-332

rects the fraction (down to 13%, see Sener, orange line in Fig. 2a). These improvements333

are consistent with a reduced High Seas catch fraction attributable to lower fish biomass334

production in the High Seas compared to coastal waters.335

Similar to other economic constraints, with iron limitation the mean depth of catch336

remains much deeper than observed (brown line in Fig. 2b). Iron limitation might in-337

fluence biomass production and thus fisheries yields in the High Seas, yet a link with seafloor338

depth is lacking. In contrast, having independent pelagic and demersal communities al-339

lows a more abundant demersal biomass in shallow waters, which support larger coastal340

fisheries and ultimately reduces the historical deepening of global catches (orange line341

in Fig. 2b). Our simulations of the ENERGYPATH hypothesis indicate that it is a fun-342

damental mechanism leading to relatively low catches in the High Seas.343

3.3 Combined economic and ecological effects344

Taken in isolation, ecological features limiting biomass production in High Seas best345

explain the smaller High Sea catches (IRONLIM and ENERGYPATH), while economic346

constraints are insufficient (HIGHCOST and UNCATCHABLE). However, the inclusion347

of economic constraints could still influence spatio-temporal dynamics.348

Historically, observed demersal catches are largely coastal (60 times larger inside349

EEZ than High Seas in 2000s, compare black solid and dotted lines in Fig. 3a), while pelagic350

catches are more evenly distributed between coastal waters and the High Seas (20 to 1351

in 2000s, Fig. 3b). When the ecological features are implemented in BOATS, they largely352

capture the historical variation of catch for each functional type, with slight overestima-353

tion of High Seas catches (orange lines in Fig. 3). Yet, development of High Seas fish-354

eries still occurs in the model and becomes increasingly over-estimated after 1990. The355

selected economic constraints mitigate this bias by reducing catch on the more homo-356

geneously distributed pelagic biomass (red lines in Fig. 3). For instance, with depth-dependent357

demersal fishing costs and depth-dependent pelagic catchabilities, the fraction of High358

Seas catch reaches 8% for a mean depth of catch of 400m, close to observation (see Sbest359

Fig. 2).360

Spatially (Fig. 4), the addition of ecological features corrects the simulated catch361

densities across LMEs and HSEs (from R=0.73 to 0.83, while RMSE is halved, Figs. 4a,b).362

The correction is especially important in regions over deeper seafloors (compare color363

shadings in Figs. 4a,b). In shallower coastal regions, yields remain comparable, as pelagic364

and demersal communities experience similar environmental forcing (compare circles in365

Figs. 4a,b). In deeper regions, especially in the High Seas, yields drop markedly, in agree-366

ment with a lower biomass production (compare darker markers and triangles). Economic367
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Figure 3. Historical evolution of pelagic and demersal catch. (a) Historical demersal fish

catch. (b) Historical pelagic fish catch. In each panel, the solid lines indicate catches inside

EEZs, while dotted lines indicate catches in the High Seas. Simulations including ecological cor-

rections (Sener+iron in orange), ecological and economic corrections (Sbest in red), and correction

for straddling biomass (Sbest+mig in yellow).

features have a smaller effect (correlation from R=0.83 to 0.84, RMSE decreases from368

0.16 to 0.11, Figs. 4b,c). The influence of depth on costs and catchability further delays369

the development of fisheries in High Seas, ultimately reducing yields at the peak in the370

1990s (compare triangles in Figs. 4b,c). Economic constraints must have impacted the371

development of High Seas fisheries, yet their effect on the small High Seas catch fraction372

is secondary compared to the mechanisms that govern the global fish biomass distribu-373

tion.374

Together, the selected economic and ecological hypotheses explain the variability375

of global catch with high fidelity (compare spatial distributions in the 1990s, Figs. 4d376

and e). Notable mismatches remain in the Western Equatorial Pacific, which supports377

larger fisheries than simulated by the model, and in Arctic waters, where the model over-378

estimates catches. Our definition of economic constraints could influence the mismatches,379

or these indicate missing processes. New observational metrics will be necessary to weigh380

the effect of these mechanisms. While fisheries management must also influence regional381

dynamics (K. Scherrer & Galbraith, 2020), smaller High Seas catches primarily results382

from lower biomass densities in these regions.383

3.4 Migration redistributes biomass384

Thus far, we have not addressed the role of migrating fish biomass from High Seas385

to the coast. Our analysis shows that straddling species, migrating between coastal wa-386

ters and the High Seas, are caught in many high latitude and subtropical insular EEZs,387

where they often contribute more than 80% of local catches (see Appendix D). This could388

represent a large biomass transfer from the High Seas to the coast, if the fish are ener-389

getically supported by High Seas primary production through a significant part of their390
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Figure 4. Regional catch variation at the global peak in the 1990s. Observed vs. simulated

mean catch densities by regions of the global ocean for: (a) the reference simulations Sv1; (b)

simulations including ecological features that limit production in the High Seas (HS) Sener+iron;

(c) simulations including ecological features and economic constraints Sbest. (d) Map of simulated

global catches at peak for the best simulations including ecological and economic features influ-

encing catch in the HS, at global peak. (e) Map of observed global catches at peak. Panel (a-c),

the circular markers indicates LMEs, the triangles HSEs (see Appendix F), the lines show linear

fits across data, and the shadings indicate variations in the mean depth of each region, on a log10

scale (in m).
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life cycle. Assuming that, for example, 50% of straddling catch is derived from High Sea391

production (i.e., 40% of total catch, where 80% of the catch is straddling) would bring392

the modelled High Seas to coastal seas catch ratio closer to observations (see Smig Fig. 2a,393

yellow line). However, to maintain realistic High Seas catches (i.e., about 4 Mt/y), the394

adjustment of the reference simulation (Sv1) would require a migration of more than 60%,395

which would imply a catch fraction much smaller than observed (1< %, Fig. 2a). Thus,396

migration could be a very important contributor, but is insufficient alone to explain the397

small catches in the High Seas.398

This analysis highlights the potential for migration of straddling species to natu-399

rally extract biomass from the High Seas, since, as long as High Seas biomass density400

remains lower than coastal seas, migrating biomass will be caught more profitably in coastal401

regions. When High Seas catches are reduced by lower High Seas biomass (best simu-402

lation, Sbest), correction or remaining discrepancies between the model and observations403

would require setting 5% of demersal and 10% of pelagic coastal catches on straddling404

species to come from the High Seas (compare red and yellow lines in Fig. 3). These val-405

ues modulate the excessive development of High Seas fishing, while allowing realistic High406

Seas catches (4 Mt/y) and are, therefore, plausible. But migration is hard to constrain,407

and more work is required to link regions of biomass production to biomass extraction408

that goes beyond the scope of this study.409

3.5 Small High Seas fish biomass and implications410

The small High Seas catch fraction requires that, for the same level of primary pro-411

duction, High Seas produce less biomass of commercially targeted fish (see Sbest Fig. 2).412

Based on our results, the dominant mechanism behind this small production is the sep-413

aration of prey resources for pelagic and demersal communities (ENERGYPATH).414

Both prey resources, NPP and PFB, are available at distinct relative abundances415

in High Seas and coastal seas (see PFB/NPP ratios in Fig. 5a). In coastal seas, dem-416

ersal resources from particle fluxes are on average 10× less abundant than NPP . This417

proportion decreases to 100× less abundant in the High Seas, because of the increased418

dissipation of energy of primary production over deeper water columns. Within each re-419

gion, other mechanisms must compensate for less abundant demersal resources to allow420

comparable pelagic and demersal biomass densities (Fig. 5b), ultimately explaining the421

similar magnitude of demersal and pelagic catches in observations (Fig. 3).422

A likely candidate mechanism is that, in demersal communities, the processing of423

detritus by large detritivores in benthic ecosystems shortens the length of food chains424

before energy reaches the exploitable demersal fish biomass. In BOATS, food chains are,425

on average, shorter by 1 to 1.4 trophic levels in coastal and High Seas respectively (Fig. 5c).426

For an average trophic efficiency of 0.1, such compensation can correct the factor-of-10427

discrepancy in coastal seas, but is insufficient to correct the factor-of-100 discrepancy428

in High Seas. In summary, shorter demersal food chains support larger demersal biomass429

than pelagic biomass in coastal areas. In the High Seas, a larger proportion of the en-430
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(a) (b) (c)

ΔTLPFB/NPP Bdem/Bpel

Figure 5. Drivers of the difference in pelagic and demersal biomass. (a) Ratio of low trophic

level resources (PFB/NPP ) for demersal vs. pelagic communities. (b) Demersal vs. pelagic

biomass ratio (Bdem/Bpel). (c) Trophic distance of fish recruits relative to the representative

size of the low trophic level prey. Each unit indicates one additional trophic level for the pelagic

community relative to the demersal community. Green and blue bars show coastal (CS) and High

Seas (HS) respectively. The ratios are means for the global ocean, weighted by fish biomass and

with masked HNLC regions.

ergy available from photosynthesis is lost, leading to a smaller biomass density per unit431

of NPP .432

Our best simulation shows a notable contrast in the change of biomass over time433

between High Seas and coastal waters. In the early 20th century, the total biomass of434

commercially-targeted fish in coastal waters is 1.8 Gt, 2-3 times larger than that of the435

High Seas. The subsequent extraction of commercial fish in coastal regions causes coastal436

biomass to decline to only 0.8 Gt by 2013 (Fig. 6), a rate of decline comparable to a pre-437

vious analysis (Worm & Branch, 2012; Bianchi et al., 2021). As a result, the model sug-438

gests that the High Seas presently harbor a similar amount of biomass as coastal regions,439

but spread over a much larger area, and that the fraction of global fish biomass in the440

High Seas has increased from 30% to 50%. We note that our simulations do not include441

migrations, which would have caused the High Seas biomass to decrease by a larger amount.442

Without effective fisheries management (i.e., under open-access dynamics), economic the-443

ory suggests that fishing will eventually even out the biomass distribution across High444

Seas and coastal regions, and continual increases in price and/or technological progress445

will render previously unprofitable regions suitable for exploitation (compare High Seas446

and coastal seas biomass in Fig. 6).447

4 Conclusion448

We shed light on why so few fish are caught in the High Seas by testing a suite of449

hypotheses using a global fisheries model constrained by global catch observations. Our450
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Figure 6. Historical evolution of global biomass under fishing. The green and blue colors

show coastal and High Seas respectively, the envelopes the 10-90th percentile ranges for each sim-

ulation set, and the gray lines the observed change in biomass based on stock assessments (Worm

& Branch, 2012).

results indicate that the primary factor is simply that the biomass of commercially tar-451

geted fish in the High Seas is small compared to that of coastal waters. This is an im-452

portant insight for global marine ecosystem modeling efforts (Lotze et al., 2019; Titten-453

sor et al., 2021) as many models predict large High Seas biomass fraction (see the mean454

of FishMIP ensemble in Fig. 1a). Our simulations provide ecologically feasible mecha-455

nisms to explain this discrepancy, including the dependence of trophic pathways on wa-456

ter depth, and micronutrient limitation. Economic constraints alone cannot explain the457

low fish catches in the High Seas, but likely modulate the rate of development of High458

Seas fisheries. Finally, migration of straddling species from the High Seas to coastal re-459

gions is difficult to represent and quantify, but is likely to play a significant role in de-460

pleting High Seas fish populations by exposing them to fishing effort in coastal waters.461

In essence, a significant fraction of High Seas fish may be caught when they migrate to462

coastal waters, without the need to fish far from port.463

We suggest that the most important ecological factor explaining the low High Seas464

catches is the impact of water depth on organic matter consumption (Buesseler & Boyd,465

2009). In coastal seas, the concentration of organic production in a thin layer, with fewer466

trophic steps between primary producers and commercial fish, allows a much larger por-467

tion of the energy to be channeled to the large organisms humans prefer to eat, and sup-468

ports demersal species that dominate on upper shelf slopes (Haedrich & Merrett, 1992;469

Stasko et al., 2016). In the High Seas, the outputs of primary production are volumet-470

rically diluted, and are consequently consumed by microbes and filter feeders over an ex-471

tended vertical range of the water column, without accumulating in sufficiently high den-472

sity to support abundant populations of large fish. Note that mechanisms that couple473

pelagic and demersal communities could modulate this difference, such as vertical mi-474

grations that enable predator-prey interactions across overlapping vertical habitats (Sutton475

et al., 2008; Trueman et al., 2014). The lack of trace nutrients may also contribute to476

the sparsity of the pelagic community, for example the low availability of the essential477

element iron in waters far from shore (Galbraith et al., 2019). As a result, there are fewer478
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commercially valuable fish to be found in the High Seas. We note that small mesopelagic479

fish may be abundant in the High Seas, particularly where primary production is ele-480

vated (Irigoien et al., 2014; Proud et al., 2018). The relatively high abundances of mesopelagic481

fish can be attributed to their ability to intercept dispersed sinking fluxes, and a lower482

susceptibility to iron limitation (Le Mézo & Galbraith, 2021). We have not attempted483

to explicitly quantify mesopelagic fish here given that they are not commercially exploited484

at present and therefore cannot be constrained by catch records, a key part of our method-485

ology.486

Our results support prior work emphasizing that the High Seas cannot provide a487

significant amount of wild fish for direct human consumption (Sumaila et al., 2015; Schiller488

et al., 2018). Although wild fish are relatively nutrient-rich (Golden et al., 2021; Heilpern489

et al., 2021), the rate at which they are produced is small compared to the overall hu-490

man food system, which is dominated by terrestrial agriculture (K. J. Scherrer et al., 2023),491

and the potential of the High Seas to provide additional food is minimal. This is also492

consistent with historical evidence showing that fisheries in the High Seas have decimated493

populations of top predators (Cullis-Suzuki & Pauly, 2010; Pacoureau et al., 2021; Juan-494

Jordá et al., 2022), altering the size structure of the overall community (Hatton et al.,495

2021), despite providing limited food to humans. Instead of food provision, closing the496

High Seas to fishing would have the potential benefits of increasing High Seas biodiver-497

sity (Gjerde et al., 2016; Sala et al., 2021), reducing fishing gear waste (Helm, 2022), and498

eliminating costly subsidies and fuel-inefficient fishing practices (White & Costello, 2014;499

Sala et al., 2018). Timely protection of High Seas ecosystems may help buttress them500

against increasing pressures to intensify fishing as technological innovations cause them501

to become financially more attractive despite their low fish biomass density.502
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Figure A1. Mean contribution of the High Seas biomass to the global total per FishMIP

model of the ISIMIP3b simulations forced with IPSL-CM6A-LR (Tittensor et al., 2021).

Appendix A High seas biomass fraction in FishMIP models503

Despite large differences in model structure, global fish biomass models suggest a504

comparable fraction of High Seas to coastal seas biomass.505

Appendix B Variable fishing costs506

The cost of fishing varies per fishing gear, per fish community targeted (Lam et al.,507

2011). To best constrain spatially variable costs we use estimates of these separate fish-508

ing costs in the high-seas (HS) for the main gear types (98% of total effort) following data509

reported by Sala et al. (2018). Table B1 summarizes these estimated costs. These com-510

pare with BOATS’s default fishing cost of 5.85$/W/yr (Carozza et al., 2017; Galbraith511

et al., 2017).512

Figure B1 summarizes the effect of spatially heterogeneous fishing costs on the ra-513

tio HS vs. CS catch, on the variations of the mean depths above which catch occur, as514

well as the global mean HS fishing cost, once weighted by effort.515

First, increasing the cost of fishing with distance to nearest shore [x∗ = 370,δd]516

can partly correct the ratio of catches between HS and CS (Fig. B1a). But most catch517

remain over deep seafloor, unlike suggested by observation (mean depth of catch ¡1000m518

Fig. B1b).519

Second, increasing the cost of fishing with seafloor depth [x∗ = 200,δz] can cor-520

rect both the ratio of catches between HS and CS, and contributes to the shallowing of521

the mean seafloor depth of catches Figs. B1a,b). But, this correction corresponds to un-522

realistic high HS fishing costs (¿8.87$/W/yr, upper range of observed costs Fig. B1c),523

inconsistent with observation (Tab. B1).524

In both cases, spatially variable fishing costs within the range of observation can525

not account for the small fraction of HS vs. CS catches. We tested the effect of separate526

costs δd,zbot , adjustment of the parameter x∗ only slightly modify the results. For a re-527
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Figure B1. Effect of spatially heterogeneous costs. (a) Observed and simulated fraction of

HS vs. CS catches at global peak for multiple model variants. (b) Observed and simulated mean

depth of catches at global peak for multiple model variants. (c) Observed and simulated mean

HS fishing costs once weighted by local fishing effort, around 2010. Panels (a,b) show the ensem-

ble mean as well as the 25-75th percentile ranges per simulation set compared to observation,

black dot and horizontal dotted line. Panel (c) shows mean simulated costs and how they com-

pare to the range of observation Tab. B1 (grey shading).

alistic cost of fishing the high seas the correction of HS vs. CS ratio seems impossible.528

We conclude that cost alone does not explain the smaller exploitation of the high-seas.529

Table B1. Cost of fishing the high-seas based on estimates from Sala et al. (2018) for year

2016.

Gear type Effort in kWh (fraction of total) Cost range in $ Cost per unit effort in $/W/yr

Trawlers 979 106 (15%) [750 106-1030 106] [6.7-9.2]

Long liners 3719 106 (55%) [2523 106-3023 106] [6.0-7.1]

Purse seiners 394 106s (6%) [702 106-1188 106] [15.7-26.0]

Squid jiggers 1490 106 (22%) [1308 106-1616 106] [7.7-9.5]

Range all gears (98%) - [6.94-8.87]

BOATS default - - 5.85

Appendix C Variable biomass catchabilities530

The catchability of fish biomass per unit effort can vary between species (e.g. school-531

ing or dispersed species), depending on the preferred depth inhabited by these species,532

from the surface to the limit of the euphotic layer depth and to the seafloor. To constrain533

the spatially variable catchabilities, we compare with estimates of the variability of tech-534

nology coefficients per fishing gears as detailed in Palomares and Pauly (2019). Table C1535
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summarizes these estimated coefficients and how they vary. In BOATS the coefficients536

are spatially homogeneous (value of 1) by default.537

Figure C1 summarizes the effect of spatially variable catchabilities on the ratio HS538

vs. CS catch, and on variations of the mean depths above which catch occur.539

The spatial variation of catchability as a function of the depth of the euphotic layer540

(zeu, 1/zeu, log10(zeu)) or seafloor depth (zbot, log10(zbot)) only allows a limited redis-541

tribution of catches from the high seas to the coast (Fig. C1a). The mean depth over542

which fishing occurs is also partially corrected with each profile (Fig. C1b).543

Allowing spatially variable catchabilities while keeping the range within observa-544

tional ranges (Table C1) does not allow correction of the delayed development of high545

seas fisheries compared to coastal ones. We conclude that catchability alone can not ex-546

plain the smaller exploitation of the high-seas. However, slight variations of the catch-547

ability could contribute to explain the overall shallow depth of catch, especially when548

catchability varies with log10(zbot) (Fig. C1b).549

Table C1. Technology coefficients per fishing gear based on estimates from Palomares and

Pauly (2019) for year 1995 (relative to mean).

Gear type Technology coefficient

Super trawler 1.19

Freeze trawler 0.95

Stern trawler 0.90

Trawlers 0.86

Shrimp trawler 1.05

Tuna seiner 0.76

Tuna longliner 1.10

Purse seiner 0.95

Longliner 1.33

Gillnetter 0.71

Multipurpose 1.19

Range all gears [0.71-1.33]

BOATS default 1

Appendix D Straddling fraction per EEZ550

The migration of fish biomass can influence the spatial correlation of regions where551

biomass is produced and where it is caught by fisheries. While the straddling fraction552

of catch in an EEZ does not necessarily reflect the fraction of biomass produced outside553

this region, it provides an estimate of the plausible range of redistribution. We inferred554

the straddling catch fraction from Sea Around Us (SAU) reported catch per species within555

each EEZ, separately summing catch on species solely caught inside EEZs (Cloc
EEZ), and556

catch on species caught both in EEZs and highseas (Cstr
EEZ , αstr = Cstr

EEZ/(C
str
EEZ +557

Cloc
EEZ)). We use the list of species in Sumaila et al. (2015) for this distinction. Figure D1a558
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Figure C1. Effect of spatially heterogeneous catchabilities. (a) Observed and simulated frac-

tion of HS vs. CS catches at global peak for multiple model variants. (b) Observed and simulated

mean depth of catches at global peak for multiple model variants. Panels (a,b) show the ensem-

ble mean as well as the 25-75th percentile ranges per simulation set compared to observation,

black dot and horizontal dotted line.

(b)(a)

Figure D1. Straddling fraction of catches across EEZs during the 1990s (in %). (a) Fraction

of catch on straddling species compared to catch on non straddling species αstr. (b) Fraction of

catch on species for which the identity is not provided (in %).

shows the estimated mean fraction of straddling catch per LME around the global peak559

harvest of the 1990s. Note that for each region, a fraction of catch could not be linked560

to species Coth
EEZ , but this fraction is minimal in most EEZs (see Fig. D1b), and thus dis-561

regarded in our analysis of the straddling catch fraction.562

Figure D2 summarizes the effect of redistributing an increasing ratio δs of catch563

from the HS to the CS, in proportion to the fraction of simulated catch on straddling564

species αstr in each EEZ. It also shows the corresponding annual HS catches.565

Increasing δs has the expected effect of strongly reducing the HS vs. CS catch frac-566

tion (Fig. D2a), up to matching observation for δs = 0.5. Despite the improvement, re-567

maining catches in the HS are significantly larger than what is observed (¿4 106MT/y,568

observation around peak of the 1990s, see Fig. D2b). We conclude that the biomass re-569

distribution by migrating species alone does not explain the smaller exploitation of the570

high seas, nevertheless it must have a significant impact.571
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Figure D2. Effect of catch redistribution. (a) Observed and simulated fraction of HS vs. CS

catches at global peak for multiple model variants. (b) Annual HS catch around the catch peak

of the 1990s. Panels (a,b) show the ensemble mean as well as the 25-75th percentile ranges per

simulation set compared to observation, black dot and horizontal dotted line.

Appendix E Pelagic and Demersal catches in SAU572

We compare simulated pelagic and demersal catches with global catch reconstruc-573

tion from Sea Around Us (SAU) (Pauly et al., 2020). Table E1 lists how we distribute574

the functional types of SAU to generate aggregated maps of pelagic and demersal catches.575

Table E1. Association of SAU functional types to pelagic and demersal catches.

Catch type SAU functional types

Pelagic pelagic s/m/l

bathypelagic s/m/l

cephalopods

Demersal demersal s/m/l

reef-associated s/m/l

benthopelagic s/m/l

bathydemersal s/l

shark s/l

flatfish s/l

ray s/l

shrimp

lobster and crab

other demersal invertebrates
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(b)(a) LMEs mask HSEs mask

Figure F1. Regional masks to compare observation and simulation. (a) Large Marine Ecosys-

tems. (b) High Seas Ecosystems adapted from Weber et al. (2016).

Appendix F Large Marine Ecosystems and High Seas Ecosystems576

Catch are compared across Large Marine Ecosystems (LMEs) for coastal regions,577

and 11 High Seas Ecosystems (HSEs). Figure F1a, b illustrate respectively the LME and578

HSE masks.579

Open Research Section580

All data and the model used in this study are publicly available. Catch observa-581

tion used for comparison of simulations can be obtained from the links https://www.seaaroundus582

.org and http://dx.doi.org/10.4226/77/58293083b0515. Biomass simulations from583

FishMIP can be obtained from the link https://www.isimip.org/outputdata/. Other584

processed data, as well as the code of the model BOATS used for this analysis, are avail-585

able at the link https://zenodo.org/records/10662929.586
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