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Abstract

Topography is a key control on runoff generation, as topographic slope affects hydraulic gradients and curvature affects water

flow paths. At the same time, runoff generation shapes topography through erosion, which affects landscape morphology over

long timescales. Previous modeling efforts suggest that subsurface hydrological properties, relative to climate, are key mediators

of this relationship. Specifically, when subsurface transmissivity and water storage capacity are low, (1) saturated areas and

storm runoff should be larger and more variable, and (2) hillslopes shorter and with less relief, assuming other geomorphic

factors are held constant. While these patterns appear in simulations, it remains uncertain whether subsurface properties can

exert such a strong control on emergent properties in the field. We compared emergent hydrological function and topography in

two watersheds that have very similar climatic and geologic history, but very different subsurface properties due to contrasting

bedrock lithology. We found that hillslopes were systematically shorter and saturated areas more dynamic at the site with lower

transmissivity. To confirm that these differences were due to subsurface hydrology rather than differences in geomorphic process

rates, we estimated all parameters of a coupled groundwater-landscape evolution model without calibration. We showed that

the difference in subsurface properties has a profound effect on topography and hydrological function that cannot be explained

by differences in geomorphic process rates alone. The comparison to field data also exposed model limitations, which we discuss

in the context of future efforts to understand the role of hydrology in the long-term evolution of Earth’s critical zone.
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Abstract14

Topography is a key control on runoff generation, as topographic slope affects hydraulic15

gradients and curvature affects water flow paths. At the same time, runoff generation16

shapes topography through erosion, which affects landscape morphology over long timescales.17

Previous modeling efforts suggest that subsurface hydrological properties, relative to cli-18

mate, are key mediators of this relationship. Specifically, when subsurface transmissiv-19

ity and water storage capacity are low, (1) saturated areas and storm runoff should be20

larger and more variable, and (2) hillslopes shorter and with less relief, assuming other21

geomorphic factors are held constant. While these patterns appear in simulations, it re-22

mains uncertain whether subsurface properties can exert such a strong control on emer-23

gent properties in the field. We compared emergent hydrological function and topogra-24

phy in two watersheds that have very similar climatic and geologic history, but very dif-25

ferent subsurface properties due to contrasting bedrock lithology. We found that hill-26

slopes were systematically shorter and saturated areas more dynamic at the site with27

lower transmissivity. To confirm that these differences were due to subsurface hydrol-28

ogy rather than differences in geomorphic process rates, we estimated all parameters of29

a coupled groundwater-landscape evolution model without calibration. We showed that30

the difference in subsurface properties has a profound effect on topography and hydro-31

logical function that cannot be explained by differences in geomorphic process rates alone.32

The comparison to field data also exposed model limitations, which we discuss in the con-33

text of future efforts to understand the role of hydrology in the long-term evolution of34

Earth’s critical zone.35

Plain Language Summary36

In many humid landscapes, runoff is generated by water that flows through the shal-37

low subsurface from ridges to valleys, eventually emerging and draining to rivers. The38

greater the capacity of the subsurface to move water, the more water can collect before39

surface runoff begins. Surface water may cause erosion, which shapes ridges and valleys40

over millions of years. We previously developed a computer model based on these prin-41

ciples and showed that the subsurface capacity to store and transmit water affects both42

runoff generation and topographic evolution. Lower capacity results in more surface runoff43

and shorter, lower relief hillslopes, when all other factors are held constant. Here we tested44

this by comparing two watersheds that differ primarily in their bedrock composition, which45

affects subsurface water storage and transmissivity. We found that the low transmissiv-46

ity site had more dynamic surface runoff and shorter hillslopes, supporting our predic-47

tions. We set up computer models for both sites, which suggested that subsurface dif-48

ferences are necessary to explain observed differences in runoff and topography. Finally,49

we discuss some key limitations of the model that could be improved upon in future at-50

tempts to understand how hydrology affects the long-term evolution of Earth’s surface.51

1 Introduction52

1.1 Background53

It has long been understood that there is a close, two-way connection between runoff54

and the topographic form of landscapes. Topography influences flow paths of water over55

the surface and through the subsurface and supplies the elevation component of hydraulic56

head, while erosion by water shapes landscapes over long timescales. Horton (1945) first57

suggested that there is something valuable to learn about how places work hydrologi-58

cally by considering this coupling. While Horton’s work focused on the role of infiltra-59

tion excess overland flow in determining contributing areas and drainage network topol-60

ogy, Carlston (1963) suggested that we should also be able to learn something about groundwater-61

driven runoff based on channel spacing. However, the vastly different timescales of runoff62

and evolution of channel networks via erosion has made it challenging to study the co-63

–2–



manuscript submitted to Water Resources Research

evolution of hydrological and geomorphic states and fluxes. As a result, hydrologists study-64

ing runoff generation usually assume that landscape form is fixed, while geomorpholo-65

gists studying landscape evolution usually assume hydrology can be reduced to a few pa-66

rameters that capture how hydroclimate affects the efficiency of bedrock erosion and sed-67

iment transport.68

Recent advances in modeling and the availability of high performance computers69

have allowed the coupling of hydrologic and geomorphic models that consider the evo-70

lution of hydrologic and geomorphic states together. Litwin et al. (2022) used a shallow71

aquifer model to generate saturation excess runoff from steady recharge, and used the72

runoff to drive fluvial incision in a streampower-plus-diffusion landscape evolution model.73

They showed that the thickness and permeability of the subsurface were important con-74

trols on runoff, and as a consequence, the degree of drainage dissection and length of hill-75

slopes. Litwin, Tucker, et al. (2023) extended this model to examine the emergence of76

variable source area hydrology, adding stochastic precipitation and a simple represen-77

tation of the vadose zone to the prior model to capture more realistic hydrologic dynam-78

ics. Again, the thickness and permeability were key controls on both the morphology and79

hydrological function of the coevolved landscapes. They showed that landscapes with80

efficient subsurface drainage and large water storage capacity had less variable and smaller81

saturated areas than those that had poor subsurface drainage, and therefore generated82

less storm runoff. This difference in runoff response has implications for geomorphology83

as well. Decreasing the spatial extent of runoff decreases the extent of fluvial erosion,84

which decreases the degree of drainage dissection. Litwin, Tucker, et al. (2023) also found85

an emergent relationship between runoff and morphology. Specifically, the fraction of quick-86

flow relative to total discharge scaled inversely with the dimensionless hillslope relief in87

the watershed. This relationship supported prior predictions (Dunne, 1978) that steeper88

landscapes (with more transmissive soils) generated more runoff via subsurface flow, while89

landscapes with gentle topography (and thinner less transmissive soils) generated more90

runoff via saturation excess.91

While these numerical results indicate that the subsurface is a key link between to-92

pography and runoff generation, it is unclear whether these relationships appear outside93

idealized models. While field studies have shown that subsurface properties and topog-94

raphy have effects on hydrologic function (e.g., Prancevic & Kirchner, 2019; Jencso &95

McGlynn, 2011), relationships between subsurface properties and topography remain elu-96

sive (Luo et al., 2016; Sangireddy et al., 2016), let alone unambiguous evidence that the97

link between them is the result of coevolution (Yoshida & Troch, 2016). This lack of clear98

relationships is to be expected because hydrology, conditioned by climate, is only one99

connection between the subsurface and topography. Other controls include lithology and100

tectonic setting, which affect the styles and efficiencies of weathering and sediment trans-101

port, and vegetation, which alters subsurface properties and sediment transport efficiency102

through root growth, and hydrologic partitioning through evapotranspiration (Brantley103

et al., 2017; Collins & Bras, 2010). If the subsurface connects topography and runoff gen-104

eration despite all of this complexity, catchment coevolution may be a useful tool for un-105

derstanding and predicting hydrological function (Troch et al., 2015).106

1.2 Approach107

If a signature of coevolution between topography and hydrological function exists,108

we will be most likely to find it where we can isolate the hydrological effects from other109

influences. We selected two sites where contrasting lithology results in a strong contrast110

in subsurface properties, but climatic and tectonic histories are similar because of their111

proximity. Our first site, Druids Run, is underlain by serpentine bedrock that forms thin112

rocky soil, while the second site, Baisman Run, is underlain by schist that weathers to113

form deep, permeable soil and saprolite. Assuming that the present hydrological func-114
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tion is adjusted to the watershed geomorphology, we drew on insights from Litwin, Tucker,115

et al. (2023) to hypothesize that:116

1. Saturated areas and storm runoff are larger and more variable at Druids Run than117

Baisman Run, and118

2. Hillslopes are shorter and have less relief at Druids Run than Baisman Run.119

First, we characterized the hydrological function and morphology of the two sites and120

evaluated whether they support these hypotheses. To determine whether these differ-121

ences could be the result of coevolution, we fully parameterized the landscape evolution122

model used in Litwin, Tucker, et al. (2023) without calibration. We determined the im-123

portance of subsurface hydrological differences by performing a simple sensitivity anal-124

ysis in which we swapped the geomorphic process variables between the two sites and125

observed whether geomorphic process rates could explain differences in emergent mor-126

phology and hydrologic function.127

2 Materials and Methods128

2.1 Site descriptions129

Our study sites are located in the Piedmont physiographic province, north of Bal-130

timore, Maryland. The climate is humid, with a mean annual precipitation of approx-131

imately 1150 mm and mean annual potential evapotranspiration of approximately 750132

mm. There is no pronounced seasonality in precipitation, less than 5% falls of which falls133

as snow. Baisman Run is a 381 ha watershed in Oregon Ridge Park, defined by an out-134

let at (39.4795 N, 76.6779 W). Druids Run is a 107 ha watershed located in Soldiers De-135

light Natural Environment Area, and is defined by an outlet at (39.4171 N, 76.8523 W).136

The watersheds are 16 km apart, and are at approximately the same elevation (52 m and137

56 m above sea level respectively). Both watersheds drain to the Chesapeake Bay; Bais-138

man Run drains via the Gunpowder River and Druids Run via the Patapsco River. Bais-139

man Run has been monitored extensively as part of the Baltimore Ecosystem Study, and140

more recently as part of several projects aimed at improving understanding of deeply weath-141

ered critical zones (Putnam, 2018; Cosans, 2022). Druids Run has no prior description142

or study. It is unnamed in the National Hydrography Dataset, so we unofficially named143

it in honor of a local group of druids that meet in the watershed.144

Baisman Run is underlain by the Loch Raven Schist (Crowley et al., 1975), a Cambrian-145

Devonian mica schist that has weathered to form deep, permeable soil and saprolite. Depth146

to weathered bedrock is greater than 200 cm in most of the watershed, below saprolite147

tens of meters thick at the ridge crests (Cosans, 2022). Above the saprolite, primary soils148

include Manor loam and channery loam, Glenelg loam and channery loam, and Manor-149

Brinklow complex in steeper slopes. Agriculture was historically present in the eastern150

headwaters, where there is now suburban development, and a homestead and tree farm151

were historically present in the Pond Branch sub-watershed (Cleaves et al., 1970). The152

remainder of the watershed has been relatively undisturbed since the 1950s and today153

supports a mature deciduous forest.154

Druids Run is primarily underlain by the Soldiers Delight Ultramafite (Guice et155

al., 2021). Soils are primarily classified as chrome silt loam, and are generally thin with156

a strong permeability contrast at the base of the A horizon (at an average depth of 46157

cm). Ridgetop soil is rocky and can be as thin as 5 cm, and exposed bedrock is common158

near channel heads. In valley bottoms, alluvium and organic material accumulate to thick-159

nesses around 1 m. The Soldiers Delight Ultramafite is host to a “serpentine barrens”160

ecosystem, which consists primarily of grasses and shrubs with some areas supporting161

hardwood and conifer trees. The Soldiers Delight area was mined for chromite in the 19th162

and 20th century. Several small pits are present near ridge crests in Druids Run, and placer163
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Baisman Run Druids Run

Watershed Boundary
Channels
Saturation Surveys

Figure 1. Hillshades of Baisman Run and Druids Run with the watershed boundary and
channel network delineated with the DrEICH algorithm. Areas where we conducted saturation
surveys (see Figure 4) are shown in dashed black boxes. The two sites are to scale, revealing the
difference in their size and drainage dissection.

mining may have occurred in the valley bottoms, but the effects of this appear to be min-164

imal in this watershed. Some structures and two small ponds are present in the upper165

portion of Druids Run, but most of the watershed is free from development.166

2.2 Hydrological data167

We combined existing hydrological data with new measurements of precipitation,168

streamflow, and saturated areas. Instantaneous precipitation rates were measured from169

June 2022 to February 2023 at a weather station located in an open field approximately170

0.8 km north of Baisman Run. An identical unit was installed in an open area in Druids171

Run, which recorded instantaneous precipitation from April 2022 to February 2023. The172

stream gage at Baisman Run is operated and maintained by the U.S. Geological Survey173

(Gage 01583580). We established a new stream gage at Druids Run for this project.174

The Druids Run stream gage is located at an existing concrete culvert crossing the175

stream channel. In April 2022 we installed a PVC housing on the concrete structure ap-176

proximately 2 m from the culvert inlet. We measured water stage with a Solinist Lev-177

elogger pressure transducer within that housing, and corrected for atmospheric pressure178

with a Solinst Barologger. The pressure transducer operated until the device failed in179

October 2022. Periodic discharge measurements were made to construct a rating curve.180

Low flows were measured with salt dilution gaging recorded with a HOBO conductiv-181

ity logger, and high flows were measured using an OTT MF Pro electromagnetic cur-182

rent profiler. A power law model fit the stage-discharge data well, as shown in Figure183

S1.184

We surveyed limited areas of both watersheds manually for saturation conditions185

between April 2022 and March 2023. At Baisman Run, the surveys were conducted in186

the headwaters of the Pond Branch sub-watershed. At Druids Run, they were conducted187

in a headwater catchment near the eastern watershed boundary. We measured satura-188

tion at points along predefined transects, and returned to the approximate (but not ex-189
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act) positions for each survey. We selected transects to balance capturing a range of hill-190

slopes, zero- and first-order channels, while covering a small enough area to avoiding sig-191

nificant changes in saturation over the course of a measurement campaign. Saturation192

was measured by walking the transects, and pushing a rebar rod approximately 2 cm into193

the ground and moving the rod up and down in the shallow hole. Points along these tran-194

sects were recorded as not saturated if no squishing sound was heard (N), soil-saturated195

if a squishing sound was heard (Ys), ponded (Yp), or flowing (Yf) if water was observed196

on the surface. Three close locations were measured at each point on the transect, and197

the highest category in this hierarchy was recorded as the value (e.g., if two points did198

not squish, but one did, the recorded class would still be Ys). This procedure was repeated199

under different discharge and moisture conditions.200

2.3 Hydrological analysis201

Valuable information about contributing areas can be extracted from rainfall and202

runoff timeseries. The event runoff ratio, defined as the ratio of the total event runoff203

to event precipitation, is an indicator of the proportion of the watershed that is contribut-204

ing runoff during storms (e.g., O’Loughlin, 1986). To calculate event runoff, we first sep-205

arated the discharge timeseries into baseflow and quickflow using the graphical approach206

described by Hewlett and Hibbert (1967). Baseflow is equal to discharge and quickflow207

is zero until discharge increases at a rate faster than 0.000546 m3 s−1 km−2 h−1 (Hewlett208

& Hibbert, 1967). Baseflow continues to increase at this rate until discharge declines and209

is equal to baseflow. Storm events are periods where quickflow is greater than zero and210

the rise is associated with precipitation. We defined event precipitation as the total pre-211

cipitation falling between a fixed time t0 before the runoff event begins and a fixed time212

t1 before the runoff event ends. By inspection of the timeseries, we found that t0 = 2213

hours and t1 = 1 hour were appropriate for Druids Run, and t0 = 6 hours and t1 = 2214

hours were appropriate for Baisman Run. We excluded runoff events shorter than 6 hours215

because these generally had small discharge responses relative to noise in the timeseries.216

While the runoff ratio provides a signature of contributing area, the saturation dataset
provides a direct means to assess the variability of saturated areas. The saturation sur-
veys yielded categorical data that vary with topographic position and catchment discharge.
To develop quantitative insights from the dataset, we first created a binary classification
of whether points were not saturated (N) or saturated (Ys, Yp, Yf). We then used lo-
gistic regression to generalize our discrete measurements to predictions of how satura-
tion probability varies with topographic (wetness) index (Beven & Kirkby, 1979) and
discharge:

log

(
p

1− p

)
= α0 + α1 log

(
A

v0|∇z|

)
+ α2 log

(
Qb

Atot

)
(1)

where p is the probability of saturation, TI = A
v0|∇z| is the topographic index (note that217

here we do not include the log transform in the definition), Q is the discharge at the start218

of the saturation measurement campaign, Atot is the watershed area, and α0, α1, and219

α2 are model parameters.220

2.4 Hillslope length and relief221

We conducted geomorphic analyses using a lidar-derived digital elevation model222

with 0.76 m resolution, which was collected in 2015 and is publicly available from Bal-223

timore County. We conducted all topographic analyses using LSDTopoTools (S. Mudd224

et al., 2022). To determine hillslope length and relief, we began by identifying the chan-225

nel networks at both sites using the DrEICH algorithm (Clubb et al., 2014). DrEICH226

uses χ-analysis (Perron & Royden, 2013) to locate channel heads at the transition point227

from linear channel segments to nonlinear hillslope segments in χ-elevation space. χ-analysis228

is discussed in more detail in Section 2.7.2. We adjusted the DrEICH model parameters229

such that the predicted channel network matched the observed network in the subwa-230
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tersheds where we surveyed saturated areas. We then used the channel network to iden-231

tify hilltops, which are defined as edges shared by watersheds with the same Strahler stream232

order (Hurst et al., 2012). Finally, we calculated hillslope length as the steepest descent233

distance from each hilltop point to the nearest channel point, and hillslope relief as the234

hilltop elevation above the nearest channel point (Grieve et al., 2016).235

2.5 Landscape evolution model236

To test the link between hydrological and geomorphic features, we used the land-237

scape evolution model described in Litwin, Tucker, et al. (2023). The model accounts238

for topographic evolution due to baselevel change, water-driven erosion using the stream-239

power erosion equation, and hillslope sediment transport using a nonlinear hillslope dif-240

fusion equation. We decided to use a linear diffusion formulation, as the hillslopes at Bais-241

man Run and Druids Run generally remain convex until they reach valley bottoms, and242

the topography shows no evidence of shallow landsliding or other mass movements. The243

subsurface maintains constant and spatially uniform properties through evolution, im-244

plicitly assuming that the production of permeable material keeps pace with surface ero-245

sion. The overland flow that drives fluvial erosion is generated by exfiltration and pre-246

cipitation on saturated areas in places where the shallow aquifer reaches the land sur-247

face. The shallow aquifer model uses the Dupuit-Forcheimer assumptions to calculate248

flow over a sloping impermeable base. The aquifer receives recharge from the vadose zone,249

which is represented as a single 1-dimensional profile in which discrete depth increments250

fill and drain by the plant-available water capacity in the increment. Recharge is calcu-251

lated by determining the amount of water in the vadose profile that infiltrates below the252

water table depth at each point in the aquifer. The climate is treated as a simple ran-253

dom process, following Eagleson (1978), with exponentially distributed storm depth, du-254

ration, and interstorm duration, and constant evapotranspiration at the climatological255

mean rate during the interstorm periods.256

We ran the model under the same initial and boundary conditions used in Litwin,257

Tucker, et al. (2023). The domain is square, and the bottom boundary is fixed to base-258

level, while the remaining three side boundaries are zero-flux. This allows for the estab-259

lishment of a drainage network with higher order streams than the same size domain where260

all boundaries are set to a fixed baselevel. In the absence of a known initial condition,261

we begin with a flat surface at baselevel. We ran the model for 50 Ma to approach dy-262

namic equilibrium between erosion and uplift. While this timescale is long relative to263

periodic changes in climate and baselevel in the Eastern Piedmont (e.g., Cleaves, 1989),264

we know that both sites have experienced the same forcings through their evolution, such265

that a single climate and baselevel change rate should still provide insights into their evo-266

lution.267

2.6 Hydrological parameters268

2.6.1 Transmissivity, hydraulic conductivity, and permeable thickness269

The maximum transmissivity, which we will just call the transmissivity, is defined270

as the depth-integrated saturated hydraulic conductivity. It appears in our model as the271

product of the effective saturated hydraulic conductivity ks and permeable thickness b.272

We developed a novel method to use the saturation survey data to estimate a catchment-273

averaged transmissivity, building on an existing approach. We then divided that value274

into estimates of ks and b.275

Our method of estimating transmissivity is similar to that described by O’Loughlin
(1986), as it is built on a steady state hillslope water balance and the assumption that
places with the same topographic index TI saturate at the same time (Beven & Kirkby,
1979). The approach begins by considering recharge that is supplied at a rate r(x, y) to
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the saturated zone. At hydrologic steady state, the total water outflow along a topographic
contour segment with length v0 is equal to the integral of recharge over the area upslope
of the contour Ac. The maximum amount of recharge that can be moved through the
subsurface before saturation occurs depends on the transmissivity T and the local hy-
draulic gradient, which is assumed to be equal to the topographic gradient ∇z. As a re-
sult, the criterion for saturation is:∫

Ac

r(x, y)dA ≥ T |∇z|v0. (2)

At saturation, any additional recharge will become overland flow. Because in general the
recharge is not known, O’Loughlin (1986) equated the total watershed recharge with the
watershed baseflow Qb: ∫

Atot

r(x, y)dA = Qb, (3)

where Atot is the watershed area. From this expression, we derived an average recharge
rate r̄ = Qb/Atot. Dividing Equation 2 by the average recharge rate equation and re-
arranging the terms, we derived an expression for the discharge-normalized transmissiv-
ity:

1

|∇z|v0

∫
Ac

(r
r̄

)
dA ≥ T

Qb/Atot
. (4)

By further assuming that the integral in the above expression is approximately unity,
we found an expression that relates the topographic index to transmissivity and base-
flow discharge:

A

|∇z|v0
≥ T

Qb/Atot
. (5)

We will call the topographic index where saturation begins to occur TI∗, which is a func-
tion of discharge Qb. Using a log transform, we derived an expression for the log of trans-
missivity:

log(T ) = log (TI∗) + log

(
Qb

Atot

)
. (6)

To find T using this expression and our saturation surveys, consider a logistic regression
model with the form:

ρ(p) = log

(
p

1− p

)
= β0 + β1 log

(
A

v0|∇z|
Qb

Atot

)
(7)

where β0 and β1 are parameters of the regression model. This logistic regression model
is very similar to that in Equation 1, but has one fewer parameter, and consequently en-
forces that the odds of saturation are log-linearly dependent on the product of Qb and
TI. At the critical value of topographic index TI∗, we will call the odds of saturation
ρ∗:

ρ∗ = β0 + β1 log

(
TI∗

Qb

Atot

)
. (8)

Finally, we rearranged Equation 8 to match the form of Equation 6, and solved for the
transmissivity:

T = e(ρ
∗−β0)/β1 . (9)

The main difference between this approach and that described by O’Loughlin (1986) is276

that their approach equates the event runoff ratio with the proportion of the watershed277

that is saturated, while we have direct estimates of the saturated area. This should make278

our approach more robust, though it is still limited to the steady-state theory from which279

it was derived. Finally, we partitioned transmissivity between permeable thickness b and280

an effective saturated hydraulic conductivity ks based on permeable thickness values taken281

from the USDA Soil Survey (Staff & Natural Resources Conservation Service, United282

States Department of Agriculture., 2023) and insights gained from prior subsurface in-283

vestigations of Baisman Run.284
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2.6.2 Drainable porosity and plant available water content285

Drainable porosity ne relates the depth of water stored or released to the change286

in hydraulic head. Estimates usually require either hydraulic well tests or laboratory anal-287

yses. In the absence of hydraulic test data or permission to take soil samples from Druids288

Run, we assumed that the drainable porosity was the same at both sites. Plant avail-289

able water content (na) is the amount of water, below the field capacity, that is avail-290

able for plant use. The values were estimated based on the USDA Soil Survey data for291

the dominant soil types at the two sites.292

2.6.3 Climatological parameters293

We fit three independent exponential distributions for storm depth ds, duration tr,
and interstorm duration tb by calculating the mean values of these quantities from a pre-
cipitation dataset previously collected from 2014-2018 at the weather station at Bais-
man Run (Cosans, 2022). Because the two sites are very close together, this one time-
series was used to calculate storm statistics at both sites. The distributions are:

f(ds) =
1

⟨ds⟩
exp

(
− ds

⟨ds⟩

)
(10)

f(tr) =
1

⟨tr⟩
exp

(
− tr

⟨tr⟩

)
(11)

f(tb) =
1

⟨tb⟩
exp

(
− tb

⟨tb⟩

)
(12)

(13)

where the angled braces indicate the temporal mean of the quantity. Potential evapo-294

transpiration (ET) was estimated based on the average annual value in Baltimore be-295

tween 1981 and 2010, as reported by the Northeast Regional Climate Center at Cornell296

University. In our model, ET only occurs during interstorm periods, so the interstorm297

potential ET rate pet was estimated by rescaling the average potential ET rate with the298

interstorm time fraction. Our climatological approach is simplistic, neglecting covariance299

of storm depth, duration, and interstorm duration, seasonality, paleoclimatic variabil-300

ity, and so on. However, we do not expect any large differences in the climate between301

the two sites, so even a simple approach should allow us to make comparisons of how land-302

scapes with different geomorphic and subsurface hydrologic properties respond to climatic303

conditions similar to those observed at our sites.304

2.7 Estimating geomorphic parameters305

The topographic parameters of our model are the uplift or baselevel change rate306

U , hillslope diffusivity D, streampower incision coefficient K, characteristic contour width307

v0, and the streampower exponents m and n, as discussed below. The Piedmont is thought308

to be in geomorphic steady state (Pavich, 1989; Bazilevskaya et al., 2013), so the regional309

rate of baselevel change was estimated the long-term erosion rate estimated with cos-310

mogenic 10Be. The remaining parameters were identified using topographic analysis.311

2.7.1 Hillslope diffusivity312

Hillslope diffusivity can be derived from the rate of baselevel change U and hill-
top curvature CHT (Roering et al., 2007; Hurst et al., 2012):

D = − U

CHT
. (14)

In hillslope evolution contexts, it is typical to account for the ratio of the bulk densities313

of regolith (on which the diffusion process occurs) and parent material (on which base-314

level change occurs) (Roering et al., 2007). Because we are working with an integrated315
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channel and hillslope model, and we do not have good estimates for the bulk density of316

fluvially-eroded material, we will neglect the bulk density terms. In this context, D is317

an effective diffusivity that will match the simulated hilltop curvature with that from318

our topographic measurements. We calculated the hilltop curvature by taking the sec-319

ond derivative of a polynomial surface fit to a 10 m footprint around each hilltop point.320

Hilltop points are the same as those used for the hillslope length analysis. The footprint321

size was selected by calculating the hilltop curvature for footprints of varying sizes and322

selecting the size at which there is a break in the standard deviation of curvature, fol-323

lowing the procedure described by Hurst et al. (2012).324

2.7.2 Streampower parameters325

We estimated the streampower law parameters using an integral approach called
χ-analysis (Perron & Royden, 2013). While the parameters can be derived from slope-
area analysis, slope estimates often have significant noise that can result in poor param-
eter estimates (Perron & Royden, 2013). The integral approach is more stable, as it only
requires the elevation and the upslope area to calculate the model parameters. The typ-
ical χ-analysis needed slight modification to accommodate our landscape evolution model.
Litwin et al. (2022) derived the fluvial incision term of the landscape evolution model
with assumptions that yielded linear dependence on the dimensionless discharge Q∗, a
slope exponent n = 1, and area exponent m = 1/2. We derived a more general form
by assuming that the exponent that determines the channel width from area and the ex-
ponent that determines erosion rate from shear stress were free parameters:

Ef = KQ∗n (v0a)
m |∇z|n (15)

where Ef is the fluvial incision rate, K is the erodibility, v0 is the characteristic contour
width, a is the area per contour width, and ∇z is the elevation gradient. For simplic-
ity, we will use the variable Q∗ to refer to the temporally-averaged dimensionless discharge
which is called ⟨Q∗⟩ in Litwin, Tucker, et al. (2023). Because χ-analysis is usually only
applied to river channels, it is typical to neglect the hillslope diffusion term, and write
the solution at equilibrium between uplift and fluvial incision along a channel distance
coordinate x:

U = KQ∗n (v0a)
m

∣∣∣∣∂z∂x
∣∣∣∣n . (16)

We then solved for |∂z/∂x|, and substituted area for area per contour width times the
characteristic contour width A = v0a:∣∣∣∣∂z∂x

∣∣∣∣ = (
U

KQ∗n

)1/n

A−m/n. (17)

Next we normalized upslope area to a reference drainage area A0, and integrate the equa-
tion above with respect to x:

z(x) = z(xb) +

∫ x

xb

(
U

KQ∗nAm
0

)1/n (
A0

A(x)

)m/n

dx (18)

where z(xb) is the elevation at a specified baselevel location xb. In general, Q∗ varies with
position, so we cannot remove it from the integral. However, in our model Q∗ generally
approaches a constant value with distance downstream equal to one minus the actual
evapotranspiration relative to precipitation 1−⟨AET ⟩/⟨P ⟩, which is approximately the
mean runoff ratio ⟨Q⟩/⟨P ⟩. We will call this value Q∗

max. Then we can write:

z(x) = z(xb) +

(
U

KQ∗n
maxA

m
0

)1/n

χ, (19)

where

χ =

∫ x

xb

(
A(x)

A0

)m/n

dx. (20)
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These equations show that the elevation of a stream channel in dynamic equilibrium should
be linear with respect to χ if U , K, and Q∗

max are uniform, and that the slope of that
relationship should be:

ksn =

(
U

KQ∗n
maxA

m
0

)1/n

, (21)

which is often called the normalized channel steepness index. Note that this is related326

to but distinct from our use of “steepness” in Litwin et al. (2022).327

We calculated the slopes of channel segments in χ-elevation space for the channel
networks we extracted previously. Because the reference drainage area A0 is introduced
for dimensional purposes only, we can set it equal to unity, and solve for the streampower
incision coefficient K:

K =
U

(ksnQ∗
max)

n . (22)

3 Results328

3.1 Hydrologic and geomorphic observations329

3.1.1 Discharge, baseflow, and runoff ratio330

Figure 2 shows the timeseries of discharge and precipitation for both sites. Base-331

flow (in dark blue) at Baisman Run shows a strong annual signal, with drydown from332

early summer continuing until October, when a small persistent increase is combined with333

episodic increases in response to large storms. Unfortunately the discharge timeseries avail-334

able to us at Druids Run is too short to look at annual trends, though there does ap-335

pear to be a significant drydown from spring into summer, leading to low flows by late336

June. We did not observe no-flow conditions at the gage location, but we do know that337

flows were often close to or below the pressure transducer detection limit during the sum-338

mer.339

The storm runoff ratio is substantially more variable at Druids Run than Baisman340

Run. We identified 21 storm events at Druids Run and 43 storm events at Baisman Run,341

and found that the total event precipitation explained most of the variation in total event342

quickflow Qf,event (Figure 3). Events are colored by the antecedent baseflow, which shows343

that some of the variation in event runoff that cannot be explained by event precipita-344

tion may be explained by antecedent conditions. To quantify the sensitivity of event runoff345

to event precipitation, we fit the curve Qf,event = a2P
a1
event, where the log-space slope346

corresponds to the fitted exponent a1. The exponent and standard error are 3.17±0.40347

and 1.89±0.13 at Druid Run and Baisman Run, respectively. An exponent a1 = 1 would348

indicate that the storm runoff is a constant proportion of the event precipitation. When349

the event runoff ratio is interpreted as the effective proportion of the watershed contribut-350

ing runoff (O’Loughlin, 1986), an exponent closer to one indicates that the contribut-351

ing area does not vary with storm size. This interpretation suggests that contributing352

areas vary with precipitation at both sites, but they are more variable at Druids Run353

than Baisman Run. This interpretation also suggests that as storm events approach 100354

mm, nearly all of Druids Run contributes storm runoff (3A). These events are fairly fre-355

quent; the annual maximum recurrence interval of 100 mm of precipitation in 24 hours356

is approximately two years at our sites (NOAA, 2024).357

3.1.2 Saturated areas358

At Druids Run, observed saturation was highly variable in time and correlated with359

discharge. We measured saturation five times along nine transects, seven of which run360

along first order drainages or the interfluves between them, and two of which run par-361

allel to the valley bottom (Figure 4A–E). The surveys conducted under the two high-362

est flow conditions (C, E) had the greatest number of saturated points. Saturation was363
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Figure 2. Timeseries of discharge Q (black), baseflow Qb (dark blue), and precipitation P

(light blue) at Druids Run (A) and Baisman Run (B). Storm events that we identified based
upon the baseflow separation and precipitation begin with green dots and end with red dots,
which are placed at the corresponding times on both the precipitation and discharge timeseries.
Note that the timeseries for Baisman Run and Druids Run are not aligned in time.

often discontinuous with distance downstream in first order channels. Upslope areas some-364

times saturated and flowed first, while downslope reaches remained dry, as flow passed365

through the subsurface. First order channels tend to have exposed bedrock or thin al-366

luvial cover near their headwaters, while closer to the valley bottom they become sub-367

merged in alluvium that has sufficient capacity to move the water from upslope through368

the subsurface. Bedrock fractures may also play a role in redistributing surface flow to369

subsurface pathways.370

In contrast, saturated areas were more static at Baisman Run. We measured sat-371

uration four times along six transects, four of which run perpendicular to the valley bot-372

tom, and two run parallel to it (Figure 4F–I). Regardless of discharge, we found that sat-373

uration was confined to locations at or below the distinct break in slope where the hill-374

slopes meet the valley bottom. Within the valley bottom, saturation was not present ev-375

erywhere, as the stream channel is incised into the valley bottom alluvium in some places.376

Flow emerges at distinct springs and seeps at the break in slope (Putnam, 2018). The377

springs are further evidence that subsurface pathways support baseflow, while the rel-378

atively static nature of saturated areas support our observation that event quickflow is379

less sensitive to event precipitation at Baisman Run than it is at Druids Run.380
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Figure 3. Event runoff characteristics for Druids Run (A) and Baisman Run (B). Event totals
are calculated by summing the 15-minute precipitation and quickflow timeseries over the event
durations. The points are colored by the initial baseflow Qb. The dotted line is a 1:1 line, which
represents the case where event runoff is equal to event precipitation. The blue line is a power
law regression with the form Qf,event = a2P

a1
event, and the shaded area is the 95% confidence

interval on the regression. The range on the coefficient a1 is given as the standard error.

We generalized our point observations to whole-watershed predictions of satura-381

tion frequency using logistic regression. Specifically, we predicted the presence of sat-382

uration (flowing water, ponded water, or soil saturation) using topographic index and383

discharge using Equation 1. The parameters of the fitted model are shown in Table 1.384

To calculate topographic index, we first resampled the DEM to 5 m resolution to smooth385

over roughness in the high resolution DEM and to reflect the uncertainty in the posi-386

tioning data of our saturation surveys. The resampling approach is also consistent with387

our measurement scheme, in which we labeled locations based upon the highest satura-388

tion class observed in a small vicinity. We calculated upslope area using the D∞ algo-389

rithm, and slope using the same 10 m footprint used to calculate hilltop curvature. While390

our regression model calls for the use of baseflow discharge, we used the total discharge,391

as all of our samples were taken during baseflow or recession periods. This was also nec-392

essary because the timeseries of discharge at Druids Run does not overlap all the sat-393

uration surveys. For consistency, we used instantaneous discharge measurements from394

immediately before the surveys began. At Druids Run, we made these measurements us-395

ing dilution gaging; Baisman Run, we used instantaneous discharge from the USGS gage.396

α0 α1 α2

Druids Run 4.609 ± 0.637 0.174 ± 0.040 1.000 ± 0.097
Baisman Run -7.487 ± 3.922 0.703 ± 0.103 0.081 ± 0.540
Table 1. Estimated parameter values of the logistic regression models for saturation (Equation
1), where α0 is the intercept, α1 is the coefficient on topographic index, and α2 is the coefficient
on the area-normalized discharge. Parameter ranges are given as standard errors.

We used the logistic model to predict the odds of saturation for the range of to-397

pographic index values in each watershed and the range of discharge values at which sat-398
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Figure 4. Observations of saturation made on transects at Druids Run (A–E) and Baisman
Run (F–I). The latter plots have been rotated 90 degrees such that north is in the direction of
the positive x-axis. In both figures, flow in the valley bottom is from right to left. The classifica-
tion and sampling approaches are described in Section 2.2.
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uration surveys were conducted (Figure 5). In Figure 5, the topographic index value at399

which the black dashed line intersects the odds ratio curves is the critical value of TI400

where saturation becomes more likely than not for a given value of discharge. We plot-401

ted this together with the probability density of watershed topographic index (orange)402

to show how the critical TI relates to the distribution of TI for the watershed.403

The regression model for Druids Run in Figure 5A shows that the predicted odds404

of saturation varies substantially with discharge. When discharge is small, the critical405

TI value confines likely saturation to a very small portion of the total watershed area,406

while for large discharge the critical value of TI is low enough that most of the water-407

shed is likely to be saturated. This supports the high variability of saturation in space408

and time that we inferred from the pointwise measurements.409

The logistic regression model predicts very different behavior for Baisman Run (Fig-410

ure 5B). First, we notice that the saturation odds curve does not vary with discharge,411

such that all curves overlap. This is reflected in the regression parameter alpha2 on dis-412

charge (Table 1), which is much smaller and more uncertain for Baisman Run than Druids413

Run. As a result, the critical value of topographic index is nearly constant with time.414

Second, we notice that the curves are narrower and steeper than those estimated for Druids415

Run, such that the odds of saturation increases more abruptly around the critical value416

of TI. This is reflected in the regression parameter α1 on topographic index, which is417

much larger at Baisman Run than Druids Run. This supports our observation that sat-418

uration emerges abruptly at the transition from hillslopes to valley bottoms.419

The logistic regression models also allowed us to generalize the saturation predic-420

tions to the entire watersheds. We predicted saturation through time for the discharge421

timeseries in Figure 2 and for all raster points based upon their topographic index. We422

then classified whether each point was “wet” (exceeded criteria for saturation greater than423

95% of the time), “dry” (exceeded criteria for saturation less than 5% of the time), or424

variably saturated if it met neither of those criteria.425

Figure 6 shows a dramatic difference in the hydrological function of the two sites426

based on the logistic regression model predictions. The predicted channel network at Druids427

Run was ephemeral until close to the watershed outlet. Saturation occurred occasion-428

ally in zero-order basins and up onto the hillslopes. Some of the hillslopes we sampled429

that appear as “dry” may in fact saturate occasionally, but less than 5% of the time. In430

contrast, the regression model predicted that Baisman Run had a continually wet stream431

channel over the course of our observation period, and did not experience saturation on432

the hillslopes.433

Analysis of rainfall-runoff and saturation data reveal the dramatic difference be-434

tween hydrological function of the two sites. When the permeable subsurface is thin, as435

at Druids Run, much of the landscape saturates and desaturates relatively easily in re-436

sponse to precipitation, and the effective proportion of the watershed contributing runoff437

varies substantially. In contrast, when the permeable subsurface is thick, as at Baisman438

Run, the same precipitation causes modest or no change in saturated areas, though new439

subsurface flow paths may still be activated with increasing storm size, such that the ef-440

fective contributing area increases with increasing wetness.441

3.1.3 Hillslope length and relief442

Both hillslope length and relief are greater at Baisman Run than Druids Run. The443

channel networks and hilltop points from which hillslope length and relief were defined444

are shown in Figure 1. Totals of 5.3×104 and 7.0×104 hilltop points with unique length445

and relief were identified at Druids Run and Baisman Run, respectively. The median hill-446

slope length is 88.3 m at Druids Run and 177.3 m at Baisman Run, while median relief447

was 2.9 m at Druids Run and 6.7 m at Baisman Run. Figure 7A shows that there is no448
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Figure 5. Regression results for Druids Run (A) and Baisman Run (B). The regression model
has the form given in Equation 1. The modeled probability of saturation is given in terms of
topographic index and discharge, where discharge varies logarithmically across the range of sat-
uration survey discharge values. There is a dashed line at the 50% probability mark, and where
this intersects each one of the probability curves, there is a dotted line dropped to the x-axis.
This indicates the critical value of topographic index at which saturation is more likely than not
to occur given that value of discharge. On the opposing axis is the probability density of topo-
graphic index, estimated with a kernel density approach. The lighter shaded region indicates the
range of TI values sampled in our surveys, which indicates good topographic index coverage of
our samples.

–16–



manuscript submitted to Water Resources Research

500 m

dry

variable

wet

250 m

dry

variable

wet

Baisman RunDruids Run

A B

Figure 6. Classified saturated areas for Druids Run (A) and Baisman Run (B), based on
the logistic regression model in Equation 1 and shown in Figure 5, and the runoff timeseries
shown in Figure 2. The modeled probability necessary for saturation was set at 50%. A loca-
tion was classified as “wet” if it exceeded criteria for saturation greater than 95% of the time,
“dry” if it exceeded criteria for saturation less than 5% of the time, or variably saturated if it
was in between. At Druids Run we predicted persistent saturation near the watershed outlet, an
ephemeral channel network above that, and occasional saturation on some flat and concave hill-
slopes, and generally dry convex hillslopes. At Baisman Run, we predicted persistent saturation
in the channel network, and dry conditions everywhere else.

overlap in the interquartile range (IQR) of hillslope length or relief for the two sites. The449

strength and sign of this difference supports our hypothesis that the site with a thick per-450

meable subsurface will have greater hillslope length and relief than that with a thin per-451

meable subsurface.452

3.2 Landscape evolution parameterization453

While both the hydrological and geomorphic differences between Druids Run and454

Baisman Run support our hypotheses, we have not yet established that the subsurface455

is the link between the emergent hydrological function and morphology. To do so, we es-456

timated the parameters for DupuitLEM, and ran the model under conditions that ap-457

proximate those found at our sites. Using the approaches described in Sections 2.6 and458

2.7, we estimated all the parameters needed to run the model without calibration.459

3.2.1 Hydrologic parameters460

We first estimated the transmissivity using Equation 9. We estimated the param-461

eters β0 and β1 by fitting Equation 7 using topographic index, discharge, and saturation462

survey data. With the fitted model, we determined the optimal threshold probability p∗463

at which saturation was likely to occur. While we could have chosen 50% as we did in464

the regression model for saturated area, we found that this performed poorly on the sim-465

pler two-parameter formulation used to calculate transmissivity. The selected value of466

p∗ should balance correctly classifying points as saturated (high true positive ratio (TPR))467

and minimizing the number of points that are misclassified as saturated (low false pos-468

itive ratio (FPR)). Plotting TPR against FPR gives the receiver operating character-469
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Figure 7. Violin plots of hillslope length and relief for Druids Run (A) and Baisman Run (B).
Hillslope length is the length along a flow path from a hilltop point to the nearest channel point
along a flowpath. Hillslope relief is the drop in elevation over that distance. Violin plots show
the median, minimum, and maximum (horizontal lines) values and the interquartile range (wider
vertical bar).

istic curve, from which we selected the optimal threshold probability by maximizing the470

difference TPR-FPR. The results of this process are shown in Figure 8. Using the op-471

timal p∗, we estimated the transmissivity from Equation 9 10,000 times using Monte Carlo472

simulations to determine the uncertainty due to the variance and covariance of the lo-473

gistic regression parameters. The median and quartiles of transmissivity are reported in474

Table 2. This approach predicts that the transmissivity at Baisman Run is nearly 8 times475

higher than at Druids Run. There is no overlap between the IQRs of the estimated trans-476

missivities, which suggests a robust difference between the two sites. While the true un-477

certainty is likely much larger as a result of methodological choices (raster resolution,478

flow routing method, threshold selection method), experimentation suggested that the479

median transmissivity is always larger at Baisman Run than Druids Run when the same480

methodology is applied to both sites.481

Transmissivity (m2/d) Regression Parameters

Med LQ UQ β0 β1 ρ∗ p∗

Druids Run 1.12 0.88 1.40 -0.691 0.268 -0.660 0.341
Baisman Run 8.46 7.07 10.23 -3.113 0.676 -1.668 0.159
Table 2. Median (Med), lower and upper quartiles (LQ, UQ) of transmissivity estimated from
the logistic regression model, and the associated regression model parameters. The bar over a
variable indicates the mean value.

To estimate the effective hydraulic conductivity from transmissivity, we first esti-482

mated the permeable thickness. At Druids Run, data from the USDA Soil Survey sug-483
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Figure 8. Results of the TPR-FPR analysis. (A–B) The receiver operating characteristic
curve for Druids Run and Baisman Run, respectively, colored by the threshold value p∗ used to
obtain each combination of quantities. (C–D) The difference TPR-FPR, which we seek to maxi-
mize, plotted against the transmissivity value associated with each threshold p∗. We selected the
transmissivity associated with the largest value of TPR-FPR.

gested a strong permeability contrast at the base of the A horizon, so we used the char-484

acteristic A horizon thickness as our permeable thickness (Staff & Natural Resources Con-485

servation Service, United States Department of Agriculture., 2023). At Baisman Run,486

there is no strong permeability contrast within the soil profile, so we used the entire soil487

profile thickness, weighted for the different soil types found in the watershed. We added488

2 m to this value to account for the importance of flow through the shallow saprolite (Cosans,489

2022), which is below the maximum depth considered by the USDA Soil Survey. We di-490

vided transmissivity by the permeable thickness, and found that the effective hydraulic491

conductivity is similar between the two sites (2.83× 10−5 and 2.43× 10−5 for Druids492

Run and Baisman Run, respectively); the majority of the difference in transmissivity is493

due to the difference in permeable thickness. The values are shown in Table 3.494

We estimated drainable porosity and plant-available water content from literature495

values. We assumed drainable porosity was constant and equal to 0.25 at both sites, which496

is typical for materials with medium sand to medium gravel texture (Johnson, 1967). While497

drainable porosity is an important variable for regulating the degree to which the wa-498

ter table rises and falls in response to recharge, it has a relatively narrow range of pos-499

sible values in comparison to other parameters, so a possible difference between the sites500

should not have a strong effect on our results. We estimated plant-available water con-501

tent as 0.19 and 0.14 for Druids Run and Baisman Run respectively using characteris-502

tic values for our sites from the USDA Soil Survey.503
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Lastly, climatological variables were estimated using the approaches described in504

the methods section with weather station data and literature values. The relevant val-505

ues are shown in Table 3.506

Overall, our characterization of hydrological properties is a rather coarse simpli-507

fication of reality. Exponential distributions for precipitation do not capture the impor-508

tance of extreme events (Rossi et al., 2016), while subsurface properties are often dynamic509

in time and vary both with depth and landscape position (e.g., St. Clair et al., 2015; Pe-510

drazas et al., 2021). Still, our prior modeling work showed that even with these simpli-511

fications the model can produce rich and complex emergent hydrologic behavior (Litwin,512

Tucker, et al., 2023). Our approach here can serve as a starting place for future work that513

accounts for higher-order controls on runoff generation.514

Name Symbol Units Druids Run Baisman Run

Hydraulic conductivity ks m/s 2.84e−5 2.43e−5
Permeable thickness b m 0.46 4.03
Plant-available water content na - 0.19 0.14
Drainable porosity ne - 0.25 0.25
Mean storm duration ⟨tr⟩ s 1.02e4 1.02e4
Mean interstorm duration ⟨tb⟩ s 1.11e5 1.11e5
Mean storm depth ⟨ds⟩ m 4.50e−3 4.50e−3
Interstorm potential ET rate pet m/s 2.58e−8 2.58e−8

Table 3. All hydrological parameters needed to run DupuitLEM. The values for ne, ⟨tr⟩, ⟨tb⟩,
⟨ds⟩, and pet are identical at the two sites.

3.2.2 Geomorphic parameters515

The uplift or baselevel change rate U is an important model parameter and is needed516

to obtain estimates of both the hillslope diffusivity D and the streampower incision co-517

efficient K. We equated U with the denudation rate estimated from in-situ 10Be„ assum-518

ing that the Piedmont physiographic province is near dynamic equilibrium between base-519

level change and denudation. Portenga et al. (2019) estimated the mean denudation rate520

of the Piedmont in the nearby Potomac River basin as 11.4 m/Myr (IQR 7.6 – 15.0) as-521

suming an average rock density of 2700 kg/m3. To quantify the uncertainty in U , and522

its contribution to the uncertainty in D and K, we estimated a probability distribution523

for U based on the box plot in Figure 4 of Portenga et al. (2019). The data did not ap-524

pear particularly skewed, so we modeled denudation with a normal distribution, which525

we truncated to permit only positive values.526

We estimated the diffusivity based on hilltop curvature, as presented in Equation527

14. All the parameter values needed are shown in Table 4, and the distributions of the528

log of hilltop curvature are shown in Figure 9A. Hilltop curvature is quite similar at both529

sites. This is surprising since different processes likely contribute to diffusive transport530

at Druids Run versus Baisman Run. For example, freeze-thaw effects may be more im-531

portant in the exposed, rocky soils at Druids Run, while treethrow may be more impor-532

tant in the forest-covered soils at Baisman Run. We estimated the diffusivity and its un-533

certainty by Monte Carlo simulation, sampling the distribution of U 10,000 times, and534

selecting 10,000 values from the hilltop curvature dataset independently with replace-535

ment. The distributions of diffusivity from the Monte Carlo simulation are shown in Fig-536

ure 9B. The median diffusivity is 8.6e−3 m2/yr (IQR 4.4e−3 – 1.7e−2) at Druids Run,537

and 9.3e−3 m2/yr (IQR 4.3e−3 – 1.9e−2) at Baisman Run.538
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CHT (m−1) U (m/yr)
Med LQ UQ Med LQ UQ

Druids Run −1.272e−3 −2.084e−3 −7.053e−4 1.193e−5 7.561e−6 1.495e−5
Baisman Run −1.125e−3 −2.123e−3 −6.571e−4 1.193e−5 7.561e−6 1.495e−5

Table 4. Hilltop curvature CHT and uplift U for Baisman Run and Druids Run. Negative
curvature indicates convexity. Uplift values are the same for both sites.
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Figure 9. Violin plots of the log of hilltop curvature and log of hillslope diffusivity for Druids
Run (A) and Baisman Run (B). Violin plots show the median, minimum, and maximum (hor-
izontal lines) values and the interquartile range (wider vertical bar). Both distributions are
similar, though Druids Run has slightly higher curvature, and therefore slightly lower diffusivity.

We calculated the streampower incision coefficient K using Equation 22 by esti-539

mating n, ksn, and Q∗
max. We first conducted a χ-analysis of the channel networks of540

both sites to determine the streampower exponent n and then the appropriate steepness541

index ksn. Lastly, we estimated the maximum dimensionless discharge Q∗
max based on542

available hydrologic data.543

To calculate the optimal coordinate χ, we need to estimate the concavity index m/n544

(see Equation 20) for which the channel network collapses to a single line in χ-elevation545

space (Perron & Royden, 2013). We tried a range of values for the concavity index and546

determined that m/n = 1/2 produced a satisfactory collinearity of channels for both547

of the sites. Independently estimating the exponents m and n is challenging (Harel et548

al., 2016), so we chose the combination m = 1/2 and n = 1 for consistency with our549

prior modeling studies.550

We determined ksn from the slope of the relationship between χ and elevation for551

individual channel segments using the method described by S. M. Mudd et al. (2014).552

We estimated K using the segments that are above the 40th percentile of channel net-553

work drainage area, which are colored by ksn in Figure 10A–B. We selected this drainage554

area cutoff to isolate channel segments where Q∗ is less likely to vary with distance down-555

stream. We found that channel segments with smaller upslope areas were often less lin-556

ear in χ-elevation space, which may indicate a change in Q∗ with area. Figure 10C shows557

the distribution of ksn values that meet these criteria. We found that ksn was nearly twice558
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as high at Druids Run, with a median of 2.774 (IQR 2.163 – 3.284), as Baisman Run,559

with a median of 5.23 (IQR 4.747 – 7.017).560

ksn (m) Exponents (-) Runoff (-)
Median LQ UQ m n Q∗

max

Druids Run 2.774 2.163 3.284 0.5 1 0.3
Baisman Run 5.230 4.747 7.017 0.5 1 0.3
Table 5. Channel steepness index ksn, streampower exponents, and maximum runoff rate
Q∗

max for Baisman Run and Druids Run.

We estimated the maximum dimensionless discharge Q∗
max at Baisman Run as the561

long-term average runoff ratio ⟨Q⟩/⟨P ⟩ = 0.3 (Cosans, 2022). From our short timeseries562

at Druids Run, we calculated a runoff ratio of 0.57. Because ksn depends on the prod-563

uct of K and Q∗
max (Equation 21) in our model, these data suggest that the factor of564

two difference in ksn between our sites could be due to the difference in the hydrology,565

expressed in Q∗
max, rather than a difference in material and geomorphic properties, ex-566

pressed in K. While that would support our hypothesis, we will conservatively set Q∗
max =567

0.3 for Druids Run as a first estimate, matching Baisman Run.568

With all components of Equation 22 estimated, we used the same Monte Carlo pro-569

cedure to calculate K and its uncertainty. Figure 10D shows that K is substantially higher570

at Druids Run than at Baisman Run when Q∗
max is set equal. The median at Druids Run571

is 1.34e−5 yr−1 (IQR 8.24e−6–1.98e−5), while at Baisman Run it is 6.49e−6 yr−1 (IQR572

3.83e−6 – 9.66e−6). The full table of geomorphic parameters are shown in Table 6.573

Name Symbol Units Druids Run Baisman Run

Uplift rate U m/yr 1.143e−5 1.143e−5
Hillslope diffusivity D m2/yr 8.611e−3 9.285e−3
Streampower incision coefficient K 1/yr 1.334e−5 6.546e−6
Contour length v0 m 30 30

Table 6. Geomorphic parameters needed to run DupuitLEM. We used the median value from
the estimated parameter distributions for U , D, and K. The values for U and the characteristic
contour length v0 are identical at the two sites.

The difference in streampower incision coefficient between the two sites potentially574

confounds our interpretation of subsurface hydrologic controls on emergent hillslope length575

and hydrological function, assuming the difference is due to a contrast in material prop-576

erties rather than hydrology. Our estimated subsurface hydrological variables support577

our perceptual model of how the sites should be different if they have coevolved with their578

hydrology; lower transmissivity at Druids Run should lead to more surface runoff and579

channel incision, and greater extent of variably saturated areas than the high transmis-580

sivity conditions at Baisman Run. However, a higher streampower incision coefficient581

may indicate that runoff is more effective at detaching and transporting sediment out582

of the watershed at Druids Run, which could also lead to closer spacing of channels and583

shorter hillslopes (Perron et al., 2008).584

To test whether subsurface hydrology is necessary and sufficient for explaining the585

difference in variable source areas and hillslope length at the two sites, we ran four sim-586

ulations, shown in Figure 11: two that represent our best estimates of hydrological and587
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Figure 10. χ-elevation plots for Druids Run (A) and Baisman Run (B) for a concavity index
m/n = 0.5. Channel segments are colored by their steepness index ksn where the upslope area
is greater than the 40th watershed area percentile, and are otherwise gray. (C) the distributions
of ksn for the segments colored in (A) and (B), showing generally higher channel steepness at
Baisman Run than Druids Run. (D) distributions of the streampower incision coefficient K from
Monte Carlo simulations. ksn scales inversely with the erodibility, such that the streampower
incision coefficient is lower at Baisman Run than Druids Run.
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geomorphic parameters as described above (DR-DR, BR-BR), and two where we swapped588

the geomorphic parameters (DR-BR, BR-DR). Our best estimate cases helped discrim-589

inate how well DupuitLEM can capture landscape geomorphic and hydrologic dynam-590

ics at our sites. By comparing the best estimate simulations with simulations that have591

the same hydrological parameters but swapped geomorphic parameters, we determined592

whether geomorphic process rates alone explained the differences in morphology when593

the landscape coevolves with hydrology. Because we started with a randomized rough594

surface as an initial condition, we did not expect the simulation results to look exactly595

like Druids Run or Baisman Run. Instead, we compared them on the basis of aggregate596

properties including the hillslope length and relief, and saturation behavior.597

Baisman Run (BR)Druids Run (DR)

BR-DRDR-DRDR

BR-BRDR-BRBR

Hydrologic Variables
(ks , b, na)

Geomorphic
Variables (K, D)

Figure 11. Four boxes indicating the four simulations we conducted. Colored boxes indicate
the correctly matched hydrologic and geomorphic parameters, while white boxes indicate the ones
in which the geomorphic variables are swapped. The listed hydrological and geomorphic variables
are those that are varied, while all others are kept the same.

Lastly, we considered what happens when the differences in observed channel steep-598

ness were due to differences in runoff ratio (Q∗
max) rather than material properties (K).599

In our model formulation, determining the right value of Q∗
max should be an iterative600

process, in which the value of Q∗
max is estimated in order to determine erodibility, the601

model is run forward, the discharge and precipitation from the simulated landscape are602

used to recalculate Q∗
max, and then the streampower incision coefficient is adjusted ac-603

cordingly. This would be repeated until the estimated Q∗
max value matches the value pro-604

duced by the simulation. If there is a mismatch, the channel steepness of the modeled605

topography will be offset from that measured at the site. While we did not do a com-606

plete iterative solution, we did adjust Q∗
max and K according to the results of our first607

simulation.608

3.3 Landscape evolution results609

The landscape evolution model results showed the important effect of subsurface610

hydrology on the emergent landscapes, and revealed the complexity of interactions be-611

tween hydrologic and geomorphic processes. We first simulated topography for the four612

cases presented in Figure 11, and analyzed the hillslope properties and persistence of sat-613

urated areas using the same criteria as we used for the field sites. The only necessary614

difference was that we identified channel heads using a threshold on topographic curva-615

ture (∇2z > 0.001), because the DrEICH algorithm performed poorly on our model sim-616

ulations, which are much lower resolution than the lidar-derived DEMs. Because the trans-617

missivity is the primary difference in hydrological variables, we call the cases with hy-618

drology like Druids Run (DR-DR and DR-BR) the low transmissivity cases, and cases619

with hydrology like Baisman Run (BR-BR and BR-DR) the high transmissivity cases.620
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The most striking pattern in the hillshades shown in Figure 12A is that the low621

transmissivity cases were substantially more dissected than the high transmissivity cases.622

DR-DR and DR-BR have extensive fluvial dissection that extends onto hillslopes, which623

appears more extensive than we observed at Druids Run. However, the broad undissected624

hillslopes in BR-BR and BR-DR are similar to what we observed at Baisman Run. De-625

spite some visual similarities, Figure 12B–C shows that BR-BR and BR-DR cases tended626

to overpredict hillslope length and relief. Also, contrary to our expectations, in the low627

transmissivity cases where the geomorphic properties have been swapped (DR-DR ver-628

sus DR-BR), the difference in hillslope length and relief appeared to be comparable to629

the difference between Baisman Run and Druids Run (for a better view of length and630

relief at the field sites, see Figure 7). However, the presence of fluvial dissection broadly631

across these modeled topographies makes direct comparison with our field sites more dif-632

ficult. When the transmissivity is large, the channel network is very well defined, and633

we found less apparent effect of the difference in geomorphic parameters. While the 25th
634

and 75th percentiles of hillslope length at BR-DR are smaller than those at BR-BR, their635

medians are approximately the same (Figure 12B).636

Swapping geomorphic parameters had a relatively minor effect on hydrological func-637

tion. Figure 13A shows that simulations with swapped geomorphic parameters but the638

same hydrologic parameters have very similar saturated area patterns, whereas there is639

a substantial difference between simulations that have different hydrologic parameters.640

The low transmissivity cases have large variably saturated areas that extend onto hill-641

tops, as at Druids Run, though there are no hilltops that are classified as dry in the low642

transmissivity cases. They also show more persistent saturation in valley bottoms and643

zero-order basins than observed in Druids Run (Figure 13A–B). The saturated areas mod-644

eled in the high transmissivity cases look very similar to those observed at Baisman Run,645

where there is persistent saturation in valley bottoms and dry hilltops. The fractional646

saturated areas are similar to those observed at the sites as well (Figure 13B).647

Next we examined the emergent runoff ratio and adjusted the fluvial parameters648

to account for the difference between the runoff ratio and the initial estimate of Q∗
max.649

The emergent runoff ratio for the high transmissivity cases were 0.33 and 0.32 for BR-650

BR and BR-DR respectively, which were very close to our initial estimate of 0.3, which651

was the observed runoff ratio at Baisman Run. The difference in geomorphic parame-652

ters had little effect on emergent runoff ratio in these cases. In the low transmissivity653

cases, the runoff ratio was significantly higher than our initial estimate of 0.3. We found654

runoff ratios of 0.86 and 0.81 for DR-DR and DR-BR respectively. These values are again655

not highly sensitive to the difference in geomorphic parameters, but both are substan-656

tially higher than our initial estimate, and higher than our field estimate of 0.57 for Druid657

Run. However, this is consistent with our observation that DR-DR and DR-BR have much658

more extensive saturated areas than Druids Run. These higher runoff ratios suggest that659

we should increase estimated Q∗
max, and therefore decrease the estimated K at Druids660

Run. If we increase Q∗
max to 0.6, the corresponding K values is 6.68e−6 yr−1, which is661

within 3% of the K value we estimated for Baisman Run. The geomorphic results of this662

increase are shown in Figure 14. The hydrologic effect of this increase is minimal, as shown663

in Figure S2.664

Adjusting the streampower incision coefficient for differences in Q∗
max nearly elim-665

inates the difference in emergent morphology and hydrology between cases with swapped666

geomorphic parameters. The hydrological function of the landscapes is very similar when667

geomorphic parameters are swapped, which is expected given that there was little dif-668

ference in hydrological function between the original cases with swapped geomorphic pa-669

rameters. The emergent runoff ratio for DR-DR is now 0.78, which is slightly lower than670

we calculated previously. The emergent topography looks very similar when geomorphic671

parameters are swapped, and distributions of hillslope length and relief are nearly iden-672

tical (Figure 14). This suggests that the differences in the geomorphic parameters, and673
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Figure 12. (A) Hillshades of model results in the same configuration as shown in Figure 11.
Dissection is substantially higher in cases with Druids Run hydrological variables than Baisman
Run hydrological variables. (B, C) Log-scaled violin plots of hillslope length and relief, comparing
the field data (labelled “Druids Run” and “Baisman Run”) to the four modeled cases. Horizontal
lines represent the maximum and minim values, while the vertical bar represents the interquartile
range.
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Figure 13. (A) Map view of saturated area classes for model results in the same configuration
as shown in Figure 11 and Figure 12A. Saturated area behavior is not highly sensitive to swap-
ping geomorphic variables, while it is sensitive to swapping hydrological variables. (B) Fractional
area that is classified as wet, variable, and saturated based on field data (labelled “Druids Run”
and “Baisman Run”) and the four modeled cases. Cases that have the hydrological variables asso-
ciated with Baisman Run appear similar to the field characteristics of Baisman Run. Cases that
have the hydrological variables associated with Druids Run show more persistent saturation than
the field characteristics of Druids Run.
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in particular the intrinsic erodibility of the rock and regolith, are not responsible for the674

differences in emergent morphology. Instead, what we see in the difference in morphol-675

ogy between Druids Run and Baisman Run is more likely a combination of effects driven676

by the difference in their subsurface hydrology, as (1) the difference in transmissivity changes677

the extent of saturated areas and surface water on the landscape, which changes the pro-678

portion of the landscape that experiences fluvial erosion, and (2) higher runoff ratios in-679

crease the efficiency of water-driven sediment transport in areas where there is satura-680

tion, which further incises the landscape.681

Our results also showed that there is more work to do to understand the controls682

on the geomorphic evolution of our sites. For instance, adjusting Q∗
max did not bring us683

closer to the true hillslope length and relief. Figure 15 shows how the true cases DR-DR684

and BR-BR compare to the hillslope length and relief of Druids Run and Baisman Run,685

respectively. The number in parentheses following the model label is the estimated value686

of Q∗
max. The values of hillslope length and relief from simulation DR-DR (0.6) were far-687

ther from the true values at Druids Run than those from simulation DR-DR (0.3). At688

the same time, we know that the channel steepness ksn from the simulation DR-DR (0.3)689

will not match ksn of Druids Run, because we overestimated the streampower incision690

coefficient K relative to the emergent value of Q∗
max. More work is needed to understand691

both the possible difference in other parameters (e.g., the denudation rate) and limita-692

tions of model structure for capturing our sites, but it is clear that the difference in the693

hydrology of the sites is an important component of their geomorphic evolution.694

4 Discussion695

4.1 The expression of subsurface hydrology in landscape evolution696

It is well known that transmissivity affects the hydrological function of landscapes.697

All distributed hydrological models built on Darcy’s law will show a similar effect; the698

transmissivity, or more generally the depth-integrated hydraulic conductivity, affects the699

aquifer thickness and hydraulic gradient needed to convey a given water flux. This in700

turn determines how the water table will interact with the surface and produce overland701

flow (e.g., Beven & Kirkby, 1979; Li et al., 2014; Nippgen et al., 2015; Marçais et al., 2017).702

While there are limits to the Darcian approach for landscape scale runoff generation (e.g.,703

Uchida et al., 2005), it has proved useful for understanding and predicting runoff, sub-704

surface transport, and saturated areas.705

Previous work toward understanding the role of transmissivity in topographic evo-706

lution (Luijendijk, 2022; Litwin et al., 2022; Litwin, Tucker, et al., 2023) is a logical ex-707

tension of the hydrological study of runoff generation, as sediment transport is an im-708

portant consequence of runoff generation. It has only recently received attention, in part709

because considering the long-term effects of this coevolution is computationally inten-710

sive, and in part because it relies on subsurface properties that are hard to estimate. Of-711

ten, landscape evolution modelers select the minimally-complex model needed to explain712

their observations. As a result, they have often excluded subsurface hydrology, despite713

the widespread importance of subsurface flow for runoff generation (Wu et al., 2021). How-714

ever, we have shown here that there are some cases where the subsurface hydrology is715

indispensable for understanding the evolution of landscapes. The importance of subsur-716

face runoff generation for a particular application of a landscape evolution model is de-717

pendent on the geologic and climatic setting, but also on the scale of interest. Studies718

focusing on watershed scales of 1-10s of kilometers may find that capturing subsurface719

flow is essential, while these details may be less important in the evolution of entire oro-720

gens, where the length of subsurface flow paths relevant to runoff generation is shorter721

than the scales of geomorphic interest.722
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Figure 14. (A) Hillshades of model results in the same configuration as shown in Figure 11,
only Q∗

max = 0.6 was used to determine the streampower incision coefficient for cases with Druids
Run geomorphic variables. Visual comparison of results suggests that the difference in hydrology
between the two sites is the primary control on emergent morphology. (B, C) Violin plots of hill-
slope length and relief, comparing the field data (labelled “Druids Run” and “Baisman Run”) to
the four modeled cases. There is little difference between simulations with swapped geomorphic
variables (comparing down columns), while there is still substantial sensitivity to swapped hydro-
logical variables (compare across rows). All four modeled cases still have length and relief greater
than those observed in the field.
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Figure 15. Modeled versus observed hillslope length (A) and hillslope relief (B). Results are
only shown for the true cases (not the swapped parameter cases). The number following the
simulation name is the value of Q∗

max. For Druids Run, simulations using both the original and
updated estimates of Q∗

max are shown. The points are median values, and the error bars show the
interquartile range.

We were able to show that hydrology was indispensable for understanding our sites,723

in part because we had hydrologic data for comparison, rather than just surface topog-724

raphy. Adding the hydrological dimension can help get the right answer for the right rea-725

sons in landscape evolution models, or discriminate when we have not gotten the right726

answer for the right reasons. This kind of approach could be useful beyond one-to-one727

site comparisons. For instance, we might be able to examine the effects of hydrological728

versus geomorphic processes on landscape evolution and hydrologic function across land-729

scapes with different lithologies, by using rainfall-runoff relationships or other hydrolog-730

ical indicators that are more widely available than saturation. Constraining subsurface731

properties is still challenging, but methods like the logistic regression approach we pre-732

sented here may be useful, especially as they are improved and refined.733

4.2 Parameter estimation and limits of DupuitLEM734

While our results provide evidence for a critical link between subsurface hydrol-735

ogy and landscape evolution, there are clear discrepancies between the characteristics736

of Baisman Run and Druids Run that we observed and those we were able to model with737

DupuitLEM. Some of these discrepancies could be due to our choice of model param-738

eters, while others appear to be structural limitations of DupuitLEM.739

Our results here and in prior studies (Litwin et al., 2022; Litwin, Tucker, et al., 2023)740

demonstrate that emergent topography and hydrology are highly sensitive to transmis-741

sivity, so the accuracy of the transmissivity estimate is likely a factor in model–data dis-742

crepancies. Our novel approach to estimate transmissivity relied on topographic index743

as a measure of hydrological similarity (O’Loughlin, 1986; Beven & Kirkby, 1979). How-744

ever, our results showed that topographic index and discharge, when combined in Equa-745
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tion 7, were only modestly good predictors of saturated area (Figure 8). Furthermore,746

topographic index is a resolution-dependent quantity (Zhang & Montgomery, 1994), which747

means that the resulting transmissivity that we calculate also depends on DEM resolu-748

tion. While accounting for this effect is unlikely to change the relative magnitudes of trans-749

missivity between the sites, it may change the estimated values. This was a problem with750

calibrated transmissivities in TOPMODEL as well (Beven, 1997), so some of the strate-751

gies that have been devised to reduce the scale dependence in that context (e.g., Saulnier752

et al., 1997) may be useful for improving our transmissivity estimates as well.753

Our model results also showed that hillslope length and relief were too large in the754

simulated landscapes regardless of transmissivity. This could suggest that the relative755

magnitude of hillslope diffusivity to the fluvial erosion efficiency is too large (Perron et756

al., 2008; Theodoratos et al., 2018). Our modelled cases are generally able to reproduce757

observed hilltop curvature (Figure S3A), which suggests that the diffusivity is not the758

primary issue. Modelled channel steepness, however, is systematically larger than the759

channels from which the parameters were defined (Figure S3B). One likely issue that could760

explain this discrepancy arises from using K estimates from 1D channel profiles in a 2D761

model. Hillslopes in the 2D model contribute material to valleys that rivers must remove.762

This decreases their erosional efficiency compared to what is expected when estimating763

K from a 1D profile in which the river only needs to erode at a rate U (Equation 16).764

This topic requires further exploration than can be accommodated here, and will be cov-765

ered in future work.766

While there are limitations to our ability to estimate transmissivity and other pro-767

cess rates, we know that some key hydrological and geomorphic processes and features768

are missing from DupuitLEM. For example, DupuitLEM does not have a pathway for769

evaporation or transpiration of water once it has reached the saturated zone. Especially770

in cases where the water table is close to the surface, evaporation of saturated zone wa-771

ter is likely a significant control on hydrologic dynamics. Including it would decrease the772

proportion of the watershed that stays saturated during interstorm periods and decrease773

antecedent wetness when storms arrive.774

Our simulations were also limited to cases where the subsurface thickness is uni-775

form across the landscape. We know this may not generally be the case. In Baisman Run,776

deeply weathered zones under hillslopes delay the arrival of hillslope water to streams777

and support baseflow, while a relatively shallow subsurface in valley bottoms may in-778

crease the likelihood of overland flow in the channels (Cosans, 2022; St. Clair et al., 2015).779

This pattern could increase flow persistence and drainage dissection relative to a uni-780

form subsurface. In contrast, very thin soils on hillslopes at Druids Run allow satura-781

tion and overland flow to occur frequently, while a more permeable valley bottom may782

increase the subsurface conveyance in valleys relative to the amount of water that remains783

after storms. Depending on how the riparian area is connected to the stream, it may also784

store more water that can be slowly released during interstorm periods. These patterns785

could increase or decrease saturated areas and drainage dissection, depending on the ex-786

tent of the riparian aquifer and its stream connection. In addition to shaping subsurface787

structure, weathering can also result in significant chemical denudation. DupuitLEM,788

like many geomorphic models, assumes all denudation occurs by physical erosion. This789

limitation is discussed in the next section.790

4.3 Chemical weathering and landscape evolution in the Eastern Pied-791

mont792

We were not the first to be interested in the contrast between landscapes on schist793

and serpentine bedrock in the Piedmont. Cleaves et al. (1974) also made this compar-794

ison, using Pond Branch (a subwatershed of Baisman Run), and a small watershed on795

the Soldiers Delight Ultramafite that is south of our site. Pond Branch had been stud-796
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ied previously (Cleaves et al., 1970), while this paper introduced the Soldiers Delight study797

site. The focus of their study was to contrast the roles of physical versus chemical de-798

nudation in the two terrains, and identify the hydrological signature of the deep sapro-799

lite that is present on the schist. Cleaves et al. (1974) identified a hydrological signature800

very similar to what we observed: the schist bedrock site had baseflow-dominated runoff,801

which was highly persistent through droughts due to the large volume of storage in the802

saprolite. In contrast, they observed that the site on the ultramafic bedrock generated803

more quickflow, and had highly variable baseflow discharge, which they attributed to the804

lack of saprolite.805

In examining the morphologies of the two sites, they determined that there was no806

strong evidence for differences in overall rates of denudation between the terrains. How-807

ever, on the basis of a geochemical mass balance they determined that chemical weath-808

ering was responsible for approximately 90% of denudation in Soldiers Delight at present,809

while it was responsible for approximately 50% of denudation at Pond Branch. This would810

suggest a significant difference in how we should interpret the resulting morphologies,811

as we assumed that all denudation was due to physical erosion. Some recent work be-812

gins to provide a framework for understanding morphologic effects of chemical denuda-813

tion. Ben-Asher et al. (2019) introduced a modification of the hillslope mass balance that814

includes chemical denudation in the form of a chemical depletion fraction (CDF). They815

showed that curvature should be reduced as the ratio of chemical to total denudation816

increases, assuming a constant hillslope diffusivity. Marcon (2019) applied this princi-817

ple to several hillslopes on contrasting lithologies across the Piedmont, including sites818

on schist and serpentine bedrock. They found decreasing hilltop curvature with increas-819

ing CDF, where serpentine sites had the highest CDF and lowest hilltop curvatures. In-820

terestingly, at our sites we found virtually no difference in hilltop curvature between litholo-821

gies. If the total denudation rate at both sites is indeed very similar, but chemical de-822

nudation is dramatically different, we are left with the conclusion that the identical cur-823

vature is a coincidence that arises from higher hillslope diffusivity D at Druids Run than824

Baisman Run. Dissolution could also have significant effects on river profiles, with con-825

sequences for interpretations of channel steepness and streampower incision coefficient826

K. Further research, including updated denudation estimates specific to our sites, would827

be needed to draw further conclusions.828

4.4 Toward surface–subsurface critical zone evolution829

Here we sought to understand how subsurface properties condition runoff gener-830

ation and, as a result, topographic evolution. Many other processes that build and struc-831

ture the critical zone, which extends from the top of the canopy to the bottom of the cir-832

culating groundwater, are closely coupled (Brantley et al., 2007; Troch et al., 2015). Be-833

sides the hydrological link, other studies have shown that subsurface properties can in-834

fluence morphology by limiting the size and effectiveness of sediment to do erosional work835

(Callahan et al., 2019; Brocard et al., 2016). Others have investigated critical zone evo-836

lution from fresh bedrock up to the surface, and have shown some aspects of how climate,837

hydrology, and geomorphology condition the evolution of the subsurface (e.g., Rempe838

& Dietrich, 2014; Harman & Cosans, 2019; Anderson et al., 2019). There is a lot of work839

to be done to understand the feedbacks between surface and subsurface evolution, and840

how they produce, across a range of climates and lithologies, relatively similar patterns841

of drainage networks and soil-mantled hillslopes. At the same time, we have an increas-842

ingly detailed picture of critical zone structure. High-resolution topographic data has843

given us detailed insights into geomorphic processes acting at the surface (Sofia, 2020),844

while near-surface geophysics has allowed us to peer into the subsurface and begin to test845

models of subsurface evolution (Riebe et al., 2017; Parsekian et al., 2021). Our hope is846

that future work will consider the importance of feedbacks between subsurface hydrol-847

ogy and topography as we go forward in our understanding of critical zone structure and848

evolution.849
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5 Conclusions850

We framed this paper with two hypotheses about how the morphology and hydro-851

logical function of two landscapes should be different, informed by our understanding852

of how the subsurface affects coevolution of runoff and topography. We found that both853

the hydrological function and morphology aligned with our predictions. Druids Run, which854

has a thin permeable subsurface, had more extensive variably saturated areas, more vari-855

able effective area contributing runoff, and shorter hillslopes than Baisman Run, which856

has a deep permeable subsurface. An analysis of the available field data further showed857

that the transmissivity was substantially higher at Baisman Run than Druids Run. While858

these findings support our hypothesis that coevolution with subsurface hydrology is im-859

portant for emergent morphology and hydrological function, they did not in themselves860

provide a causal link. To test that link, we used a landscape evolution model with ground-861

water flow to show that the differences in geomorphic process rates (the hillslope diffu-862

sivity and streampower incision coefficient) were insufficient to explain the differences863

in morphology and hydrological function we observed. At the same time, we found dis-864

crepancies between the calibration-free model results and field data, which we discussed865

in the context of both parameter estimation challenges and model structure. The meth-866

ods we explored here could serve as the basis for future study to uncover the importance867

of subsurface hydrology for the evolution and hydrological function of landscapes.868

6 Open Research869

All original data, model output, and scripts needed to process data and generate870

figures are archived on Zenodo (Litwin & Harman, 2024). The Python package DupuitLEM871

v1.1 (Litwin, Barnhart, et al., 2023) contains the models and scripts used to generate872

and post-process the model output. Landlab v2.0 (Barnhart et al., 2020) is a core de-873

pendency of DupuitLEM.874
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Abstract14

Topography is a key control on runoff generation, as topographic slope affects hydraulic15

gradients and curvature affects water flow paths. At the same time, runoff generation16

shapes topography through erosion, which affects landscape morphology over long timescales.17

Previous modeling efforts suggest that subsurface hydrological properties, relative to cli-18

mate, are key mediators of this relationship. Specifically, when subsurface transmissiv-19

ity and water storage capacity are low, (1) saturated areas and storm runoff should be20

larger and more variable, and (2) hillslopes shorter and with less relief, assuming other21

geomorphic factors are held constant. While these patterns appear in simulations, it re-22

mains uncertain whether subsurface properties can exert such a strong control on emer-23

gent properties in the field. We compared emergent hydrological function and topogra-24

phy in two watersheds that have very similar climatic and geologic history, but very dif-25

ferent subsurface properties due to contrasting bedrock lithology. We found that hill-26

slopes were systematically shorter and saturated areas more dynamic at the site with27

lower transmissivity. To confirm that these differences were due to subsurface hydrol-28

ogy rather than differences in geomorphic process rates, we estimated all parameters of29

a coupled groundwater-landscape evolution model without calibration. We showed that30

the difference in subsurface properties has a profound effect on topography and hydro-31

logical function that cannot be explained by differences in geomorphic process rates alone.32

The comparison to field data also exposed model limitations, which we discuss in the con-33

text of future efforts to understand the role of hydrology in the long-term evolution of34

Earth’s critical zone.35

Plain Language Summary36

In many humid landscapes, runoff is generated by water that flows through the shal-37

low subsurface from ridges to valleys, eventually emerging and draining to rivers. The38

greater the capacity of the subsurface to move water, the more water can collect before39

surface runoff begins. Surface water may cause erosion, which shapes ridges and valleys40

over millions of years. We previously developed a computer model based on these prin-41

ciples and showed that the subsurface capacity to store and transmit water affects both42

runoff generation and topographic evolution. Lower capacity results in more surface runoff43

and shorter, lower relief hillslopes, when all other factors are held constant. Here we tested44

this by comparing two watersheds that differ primarily in their bedrock composition, which45

affects subsurface water storage and transmissivity. We found that the low transmissiv-46

ity site had more dynamic surface runoff and shorter hillslopes, supporting our predic-47

tions. We set up computer models for both sites, which suggested that subsurface dif-48

ferences are necessary to explain observed differences in runoff and topography. Finally,49

we discuss some key limitations of the model that could be improved upon in future at-50

tempts to understand how hydrology affects the long-term evolution of Earth’s surface.51

1 Introduction52

1.1 Background53

It has long been understood that there is a close, two-way connection between runoff54

and the topographic form of landscapes. Topography influences flow paths of water over55

the surface and through the subsurface and supplies the elevation component of hydraulic56

head, while erosion by water shapes landscapes over long timescales. Horton (1945) first57

suggested that there is something valuable to learn about how places work hydrologi-58

cally by considering this coupling. While Horton’s work focused on the role of infiltra-59

tion excess overland flow in determining contributing areas and drainage network topol-60

ogy, Carlston (1963) suggested that we should also be able to learn something about groundwater-61

driven runoff based on channel spacing. However, the vastly different timescales of runoff62

and evolution of channel networks via erosion has made it challenging to study the co-63

–2–



manuscript submitted to Water Resources Research

evolution of hydrological and geomorphic states and fluxes. As a result, hydrologists study-64

ing runoff generation usually assume that landscape form is fixed, while geomorpholo-65

gists studying landscape evolution usually assume hydrology can be reduced to a few pa-66

rameters that capture how hydroclimate affects the efficiency of bedrock erosion and sed-67

iment transport.68

Recent advances in modeling and the availability of high performance computers69

have allowed the coupling of hydrologic and geomorphic models that consider the evo-70

lution of hydrologic and geomorphic states together. Litwin et al. (2022) used a shallow71

aquifer model to generate saturation excess runoff from steady recharge, and used the72

runoff to drive fluvial incision in a streampower-plus-diffusion landscape evolution model.73

They showed that the thickness and permeability of the subsurface were important con-74

trols on runoff, and as a consequence, the degree of drainage dissection and length of hill-75

slopes. Litwin, Tucker, et al. (2023) extended this model to examine the emergence of76

variable source area hydrology, adding stochastic precipitation and a simple represen-77

tation of the vadose zone to the prior model to capture more realistic hydrologic dynam-78

ics. Again, the thickness and permeability were key controls on both the morphology and79

hydrological function of the coevolved landscapes. They showed that landscapes with80

efficient subsurface drainage and large water storage capacity had less variable and smaller81

saturated areas than those that had poor subsurface drainage, and therefore generated82

less storm runoff. This difference in runoff response has implications for geomorphology83

as well. Decreasing the spatial extent of runoff decreases the extent of fluvial erosion,84

which decreases the degree of drainage dissection. Litwin, Tucker, et al. (2023) also found85

an emergent relationship between runoff and morphology. Specifically, the fraction of quick-86

flow relative to total discharge scaled inversely with the dimensionless hillslope relief in87

the watershed. This relationship supported prior predictions (Dunne, 1978) that steeper88

landscapes (with more transmissive soils) generated more runoff via subsurface flow, while89

landscapes with gentle topography (and thinner less transmissive soils) generated more90

runoff via saturation excess.91

While these numerical results indicate that the subsurface is a key link between to-92

pography and runoff generation, it is unclear whether these relationships appear outside93

idealized models. While field studies have shown that subsurface properties and topog-94

raphy have effects on hydrologic function (e.g., Prancevic & Kirchner, 2019; Jencso &95

McGlynn, 2011), relationships between subsurface properties and topography remain elu-96

sive (Luo et al., 2016; Sangireddy et al., 2016), let alone unambiguous evidence that the97

link between them is the result of coevolution (Yoshida & Troch, 2016). This lack of clear98

relationships is to be expected because hydrology, conditioned by climate, is only one99

connection between the subsurface and topography. Other controls include lithology and100

tectonic setting, which affect the styles and efficiencies of weathering and sediment trans-101

port, and vegetation, which alters subsurface properties and sediment transport efficiency102

through root growth, and hydrologic partitioning through evapotranspiration (Brantley103

et al., 2017; Collins & Bras, 2010). If the subsurface connects topography and runoff gen-104

eration despite all of this complexity, catchment coevolution may be a useful tool for un-105

derstanding and predicting hydrological function (Troch et al., 2015).106

1.2 Approach107

If a signature of coevolution between topography and hydrological function exists,108

we will be most likely to find it where we can isolate the hydrological effects from other109

influences. We selected two sites where contrasting lithology results in a strong contrast110

in subsurface properties, but climatic and tectonic histories are similar because of their111

proximity. Our first site, Druids Run, is underlain by serpentine bedrock that forms thin112

rocky soil, while the second site, Baisman Run, is underlain by schist that weathers to113

form deep, permeable soil and saprolite. Assuming that the present hydrological func-114
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tion is adjusted to the watershed geomorphology, we drew on insights from Litwin, Tucker,115

et al. (2023) to hypothesize that:116

1. Saturated areas and storm runoff are larger and more variable at Druids Run than117

Baisman Run, and118

2. Hillslopes are shorter and have less relief at Druids Run than Baisman Run.119

First, we characterized the hydrological function and morphology of the two sites and120

evaluated whether they support these hypotheses. To determine whether these differ-121

ences could be the result of coevolution, we fully parameterized the landscape evolution122

model used in Litwin, Tucker, et al. (2023) without calibration. We determined the im-123

portance of subsurface hydrological differences by performing a simple sensitivity anal-124

ysis in which we swapped the geomorphic process variables between the two sites and125

observed whether geomorphic process rates could explain differences in emergent mor-126

phology and hydrologic function.127

2 Materials and Methods128

2.1 Site descriptions129

Our study sites are located in the Piedmont physiographic province, north of Bal-130

timore, Maryland. The climate is humid, with a mean annual precipitation of approx-131

imately 1150 mm and mean annual potential evapotranspiration of approximately 750132

mm. There is no pronounced seasonality in precipitation, less than 5% falls of which falls133

as snow. Baisman Run is a 381 ha watershed in Oregon Ridge Park, defined by an out-134

let at (39.4795 N, 76.6779 W). Druids Run is a 107 ha watershed located in Soldiers De-135

light Natural Environment Area, and is defined by an outlet at (39.4171 N, 76.8523 W).136

The watersheds are 16 km apart, and are at approximately the same elevation (52 m and137

56 m above sea level respectively). Both watersheds drain to the Chesapeake Bay; Bais-138

man Run drains via the Gunpowder River and Druids Run via the Patapsco River. Bais-139

man Run has been monitored extensively as part of the Baltimore Ecosystem Study, and140

more recently as part of several projects aimed at improving understanding of deeply weath-141

ered critical zones (Putnam, 2018; Cosans, 2022). Druids Run has no prior description142

or study. It is unnamed in the National Hydrography Dataset, so we unofficially named143

it in honor of a local group of druids that meet in the watershed.144

Baisman Run is underlain by the Loch Raven Schist (Crowley et al., 1975), a Cambrian-145

Devonian mica schist that has weathered to form deep, permeable soil and saprolite. Depth146

to weathered bedrock is greater than 200 cm in most of the watershed, below saprolite147

tens of meters thick at the ridge crests (Cosans, 2022). Above the saprolite, primary soils148

include Manor loam and channery loam, Glenelg loam and channery loam, and Manor-149

Brinklow complex in steeper slopes. Agriculture was historically present in the eastern150

headwaters, where there is now suburban development, and a homestead and tree farm151

were historically present in the Pond Branch sub-watershed (Cleaves et al., 1970). The152

remainder of the watershed has been relatively undisturbed since the 1950s and today153

supports a mature deciduous forest.154

Druids Run is primarily underlain by the Soldiers Delight Ultramafite (Guice et155

al., 2021). Soils are primarily classified as chrome silt loam, and are generally thin with156

a strong permeability contrast at the base of the A horizon (at an average depth of 46157

cm). Ridgetop soil is rocky and can be as thin as 5 cm, and exposed bedrock is common158

near channel heads. In valley bottoms, alluvium and organic material accumulate to thick-159

nesses around 1 m. The Soldiers Delight Ultramafite is host to a “serpentine barrens”160

ecosystem, which consists primarily of grasses and shrubs with some areas supporting161

hardwood and conifer trees. The Soldiers Delight area was mined for chromite in the 19th162

and 20th century. Several small pits are present near ridge crests in Druids Run, and placer163
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Baisman Run Druids Run

Watershed Boundary
Channels
Saturation Surveys

Figure 1. Hillshades of Baisman Run and Druids Run with the watershed boundary and
channel network delineated with the DrEICH algorithm. Areas where we conducted saturation
surveys (see Figure 4) are shown in dashed black boxes. The two sites are to scale, revealing the
difference in their size and drainage dissection.

mining may have occurred in the valley bottoms, but the effects of this appear to be min-164

imal in this watershed. Some structures and two small ponds are present in the upper165

portion of Druids Run, but most of the watershed is free from development.166

2.2 Hydrological data167

We combined existing hydrological data with new measurements of precipitation,168

streamflow, and saturated areas. Instantaneous precipitation rates were measured from169

June 2022 to February 2023 at a weather station located in an open field approximately170

0.8 km north of Baisman Run. An identical unit was installed in an open area in Druids171

Run, which recorded instantaneous precipitation from April 2022 to February 2023. The172

stream gage at Baisman Run is operated and maintained by the U.S. Geological Survey173

(Gage 01583580). We established a new stream gage at Druids Run for this project.174

The Druids Run stream gage is located at an existing concrete culvert crossing the175

stream channel. In April 2022 we installed a PVC housing on the concrete structure ap-176

proximately 2 m from the culvert inlet. We measured water stage with a Solinist Lev-177

elogger pressure transducer within that housing, and corrected for atmospheric pressure178

with a Solinst Barologger. The pressure transducer operated until the device failed in179

October 2022. Periodic discharge measurements were made to construct a rating curve.180

Low flows were measured with salt dilution gaging recorded with a HOBO conductiv-181

ity logger, and high flows were measured using an OTT MF Pro electromagnetic cur-182

rent profiler. A power law model fit the stage-discharge data well, as shown in Figure183

S1.184

We surveyed limited areas of both watersheds manually for saturation conditions185

between April 2022 and March 2023. At Baisman Run, the surveys were conducted in186

the headwaters of the Pond Branch sub-watershed. At Druids Run, they were conducted187

in a headwater catchment near the eastern watershed boundary. We measured satura-188

tion at points along predefined transects, and returned to the approximate (but not ex-189
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act) positions for each survey. We selected transects to balance capturing a range of hill-190

slopes, zero- and first-order channels, while covering a small enough area to avoiding sig-191

nificant changes in saturation over the course of a measurement campaign. Saturation192

was measured by walking the transects, and pushing a rebar rod approximately 2 cm into193

the ground and moving the rod up and down in the shallow hole. Points along these tran-194

sects were recorded as not saturated if no squishing sound was heard (N), soil-saturated195

if a squishing sound was heard (Ys), ponded (Yp), or flowing (Yf) if water was observed196

on the surface. Three close locations were measured at each point on the transect, and197

the highest category in this hierarchy was recorded as the value (e.g., if two points did198

not squish, but one did, the recorded class would still be Ys). This procedure was repeated199

under different discharge and moisture conditions.200

2.3 Hydrological analysis201

Valuable information about contributing areas can be extracted from rainfall and202

runoff timeseries. The event runoff ratio, defined as the ratio of the total event runoff203

to event precipitation, is an indicator of the proportion of the watershed that is contribut-204

ing runoff during storms (e.g., O’Loughlin, 1986). To calculate event runoff, we first sep-205

arated the discharge timeseries into baseflow and quickflow using the graphical approach206

described by Hewlett and Hibbert (1967). Baseflow is equal to discharge and quickflow207

is zero until discharge increases at a rate faster than 0.000546 m3 s−1 km−2 h−1 (Hewlett208

& Hibbert, 1967). Baseflow continues to increase at this rate until discharge declines and209

is equal to baseflow. Storm events are periods where quickflow is greater than zero and210

the rise is associated with precipitation. We defined event precipitation as the total pre-211

cipitation falling between a fixed time t0 before the runoff event begins and a fixed time212

t1 before the runoff event ends. By inspection of the timeseries, we found that t0 = 2213

hours and t1 = 1 hour were appropriate for Druids Run, and t0 = 6 hours and t1 = 2214

hours were appropriate for Baisman Run. We excluded runoff events shorter than 6 hours215

because these generally had small discharge responses relative to noise in the timeseries.216

While the runoff ratio provides a signature of contributing area, the saturation dataset
provides a direct means to assess the variability of saturated areas. The saturation sur-
veys yielded categorical data that vary with topographic position and catchment discharge.
To develop quantitative insights from the dataset, we first created a binary classification
of whether points were not saturated (N) or saturated (Ys, Yp, Yf). We then used lo-
gistic regression to generalize our discrete measurements to predictions of how satura-
tion probability varies with topographic (wetness) index (Beven & Kirkby, 1979) and
discharge:

log

(
p

1− p

)
= α0 + α1 log

(
A

v0|∇z|

)
+ α2 log

(
Qb

Atot

)
(1)

where p is the probability of saturation, TI = A
v0|∇z| is the topographic index (note that217

here we do not include the log transform in the definition), Q is the discharge at the start218

of the saturation measurement campaign, Atot is the watershed area, and α0, α1, and219

α2 are model parameters.220

2.4 Hillslope length and relief221

We conducted geomorphic analyses using a lidar-derived digital elevation model222

with 0.76 m resolution, which was collected in 2015 and is publicly available from Bal-223

timore County. We conducted all topographic analyses using LSDTopoTools (S. Mudd224

et al., 2022). To determine hillslope length and relief, we began by identifying the chan-225

nel networks at both sites using the DrEICH algorithm (Clubb et al., 2014). DrEICH226

uses χ-analysis (Perron & Royden, 2013) to locate channel heads at the transition point227

from linear channel segments to nonlinear hillslope segments in χ-elevation space. χ-analysis228

is discussed in more detail in Section 2.7.2. We adjusted the DrEICH model parameters229

such that the predicted channel network matched the observed network in the subwa-230
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tersheds where we surveyed saturated areas. We then used the channel network to iden-231

tify hilltops, which are defined as edges shared by watersheds with the same Strahler stream232

order (Hurst et al., 2012). Finally, we calculated hillslope length as the steepest descent233

distance from each hilltop point to the nearest channel point, and hillslope relief as the234

hilltop elevation above the nearest channel point (Grieve et al., 2016).235

2.5 Landscape evolution model236

To test the link between hydrological and geomorphic features, we used the land-237

scape evolution model described in Litwin, Tucker, et al. (2023). The model accounts238

for topographic evolution due to baselevel change, water-driven erosion using the stream-239

power erosion equation, and hillslope sediment transport using a nonlinear hillslope dif-240

fusion equation. We decided to use a linear diffusion formulation, as the hillslopes at Bais-241

man Run and Druids Run generally remain convex until they reach valley bottoms, and242

the topography shows no evidence of shallow landsliding or other mass movements. The243

subsurface maintains constant and spatially uniform properties through evolution, im-244

plicitly assuming that the production of permeable material keeps pace with surface ero-245

sion. The overland flow that drives fluvial erosion is generated by exfiltration and pre-246

cipitation on saturated areas in places where the shallow aquifer reaches the land sur-247

face. The shallow aquifer model uses the Dupuit-Forcheimer assumptions to calculate248

flow over a sloping impermeable base. The aquifer receives recharge from the vadose zone,249

which is represented as a single 1-dimensional profile in which discrete depth increments250

fill and drain by the plant-available water capacity in the increment. Recharge is calcu-251

lated by determining the amount of water in the vadose profile that infiltrates below the252

water table depth at each point in the aquifer. The climate is treated as a simple ran-253

dom process, following Eagleson (1978), with exponentially distributed storm depth, du-254

ration, and interstorm duration, and constant evapotranspiration at the climatological255

mean rate during the interstorm periods.256

We ran the model under the same initial and boundary conditions used in Litwin,257

Tucker, et al. (2023). The domain is square, and the bottom boundary is fixed to base-258

level, while the remaining three side boundaries are zero-flux. This allows for the estab-259

lishment of a drainage network with higher order streams than the same size domain where260

all boundaries are set to a fixed baselevel. In the absence of a known initial condition,261

we begin with a flat surface at baselevel. We ran the model for 50 Ma to approach dy-262

namic equilibrium between erosion and uplift. While this timescale is long relative to263

periodic changes in climate and baselevel in the Eastern Piedmont (e.g., Cleaves, 1989),264

we know that both sites have experienced the same forcings through their evolution, such265

that a single climate and baselevel change rate should still provide insights into their evo-266

lution.267

2.6 Hydrological parameters268

2.6.1 Transmissivity, hydraulic conductivity, and permeable thickness269

The maximum transmissivity, which we will just call the transmissivity, is defined270

as the depth-integrated saturated hydraulic conductivity. It appears in our model as the271

product of the effective saturated hydraulic conductivity ks and permeable thickness b.272

We developed a novel method to use the saturation survey data to estimate a catchment-273

averaged transmissivity, building on an existing approach. We then divided that value274

into estimates of ks and b.275

Our method of estimating transmissivity is similar to that described by O’Loughlin
(1986), as it is built on a steady state hillslope water balance and the assumption that
places with the same topographic index TI saturate at the same time (Beven & Kirkby,
1979). The approach begins by considering recharge that is supplied at a rate r(x, y) to
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the saturated zone. At hydrologic steady state, the total water outflow along a topographic
contour segment with length v0 is equal to the integral of recharge over the area upslope
of the contour Ac. The maximum amount of recharge that can be moved through the
subsurface before saturation occurs depends on the transmissivity T and the local hy-
draulic gradient, which is assumed to be equal to the topographic gradient ∇z. As a re-
sult, the criterion for saturation is:∫

Ac

r(x, y)dA ≥ T |∇z|v0. (2)

At saturation, any additional recharge will become overland flow. Because in general the
recharge is not known, O’Loughlin (1986) equated the total watershed recharge with the
watershed baseflow Qb: ∫

Atot

r(x, y)dA = Qb, (3)

where Atot is the watershed area. From this expression, we derived an average recharge
rate r̄ = Qb/Atot. Dividing Equation 2 by the average recharge rate equation and re-
arranging the terms, we derived an expression for the discharge-normalized transmissiv-
ity:

1

|∇z|v0

∫
Ac

(r
r̄

)
dA ≥ T

Qb/Atot
. (4)

By further assuming that the integral in the above expression is approximately unity,
we found an expression that relates the topographic index to transmissivity and base-
flow discharge:

A

|∇z|v0
≥ T

Qb/Atot
. (5)

We will call the topographic index where saturation begins to occur TI∗, which is a func-
tion of discharge Qb. Using a log transform, we derived an expression for the log of trans-
missivity:

log(T ) = log (TI∗) + log

(
Qb

Atot

)
. (6)

To find T using this expression and our saturation surveys, consider a logistic regression
model with the form:

ρ(p) = log

(
p

1− p

)
= β0 + β1 log

(
A

v0|∇z|
Qb

Atot

)
(7)

where β0 and β1 are parameters of the regression model. This logistic regression model
is very similar to that in Equation 1, but has one fewer parameter, and consequently en-
forces that the odds of saturation are log-linearly dependent on the product of Qb and
TI. At the critical value of topographic index TI∗, we will call the odds of saturation
ρ∗:

ρ∗ = β0 + β1 log

(
TI∗

Qb

Atot

)
. (8)

Finally, we rearranged Equation 8 to match the form of Equation 6, and solved for the
transmissivity:

T = e(ρ
∗−β0)/β1 . (9)

The main difference between this approach and that described by O’Loughlin (1986) is276

that their approach equates the event runoff ratio with the proportion of the watershed277

that is saturated, while we have direct estimates of the saturated area. This should make278

our approach more robust, though it is still limited to the steady-state theory from which279

it was derived. Finally, we partitioned transmissivity between permeable thickness b and280

an effective saturated hydraulic conductivity ks based on permeable thickness values taken281

from the USDA Soil Survey (Staff & Natural Resources Conservation Service, United282

States Department of Agriculture., 2023) and insights gained from prior subsurface in-283

vestigations of Baisman Run.284
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2.6.2 Drainable porosity and plant available water content285

Drainable porosity ne relates the depth of water stored or released to the change286

in hydraulic head. Estimates usually require either hydraulic well tests or laboratory anal-287

yses. In the absence of hydraulic test data or permission to take soil samples from Druids288

Run, we assumed that the drainable porosity was the same at both sites. Plant avail-289

able water content (na) is the amount of water, below the field capacity, that is avail-290

able for plant use. The values were estimated based on the USDA Soil Survey data for291

the dominant soil types at the two sites.292

2.6.3 Climatological parameters293

We fit three independent exponential distributions for storm depth ds, duration tr,
and interstorm duration tb by calculating the mean values of these quantities from a pre-
cipitation dataset previously collected from 2014-2018 at the weather station at Bais-
man Run (Cosans, 2022). Because the two sites are very close together, this one time-
series was used to calculate storm statistics at both sites. The distributions are:

f(ds) =
1

⟨ds⟩
exp

(
− ds

⟨ds⟩

)
(10)

f(tr) =
1

⟨tr⟩
exp

(
− tr

⟨tr⟩

)
(11)

f(tb) =
1

⟨tb⟩
exp

(
− tb

⟨tb⟩

)
(12)

(13)

where the angled braces indicate the temporal mean of the quantity. Potential evapo-294

transpiration (ET) was estimated based on the average annual value in Baltimore be-295

tween 1981 and 2010, as reported by the Northeast Regional Climate Center at Cornell296

University. In our model, ET only occurs during interstorm periods, so the interstorm297

potential ET rate pet was estimated by rescaling the average potential ET rate with the298

interstorm time fraction. Our climatological approach is simplistic, neglecting covariance299

of storm depth, duration, and interstorm duration, seasonality, paleoclimatic variabil-300

ity, and so on. However, we do not expect any large differences in the climate between301

the two sites, so even a simple approach should allow us to make comparisons of how land-302

scapes with different geomorphic and subsurface hydrologic properties respond to climatic303

conditions similar to those observed at our sites.304

2.7 Estimating geomorphic parameters305

The topographic parameters of our model are the uplift or baselevel change rate306

U , hillslope diffusivity D, streampower incision coefficient K, characteristic contour width307

v0, and the streampower exponents m and n, as discussed below. The Piedmont is thought308

to be in geomorphic steady state (Pavich, 1989; Bazilevskaya et al., 2013), so the regional309

rate of baselevel change was estimated the long-term erosion rate estimated with cos-310

mogenic 10Be. The remaining parameters were identified using topographic analysis.311

2.7.1 Hillslope diffusivity312

Hillslope diffusivity can be derived from the rate of baselevel change U and hill-
top curvature CHT (Roering et al., 2007; Hurst et al., 2012):

D = − U

CHT
. (14)

In hillslope evolution contexts, it is typical to account for the ratio of the bulk densities313

of regolith (on which the diffusion process occurs) and parent material (on which base-314

level change occurs) (Roering et al., 2007). Because we are working with an integrated315
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channel and hillslope model, and we do not have good estimates for the bulk density of316

fluvially-eroded material, we will neglect the bulk density terms. In this context, D is317

an effective diffusivity that will match the simulated hilltop curvature with that from318

our topographic measurements. We calculated the hilltop curvature by taking the sec-319

ond derivative of a polynomial surface fit to a 10 m footprint around each hilltop point.320

Hilltop points are the same as those used for the hillslope length analysis. The footprint321

size was selected by calculating the hilltop curvature for footprints of varying sizes and322

selecting the size at which there is a break in the standard deviation of curvature, fol-323

lowing the procedure described by Hurst et al. (2012).324

2.7.2 Streampower parameters325

We estimated the streampower law parameters using an integral approach called
χ-analysis (Perron & Royden, 2013). While the parameters can be derived from slope-
area analysis, slope estimates often have significant noise that can result in poor param-
eter estimates (Perron & Royden, 2013). The integral approach is more stable, as it only
requires the elevation and the upslope area to calculate the model parameters. The typ-
ical χ-analysis needed slight modification to accommodate our landscape evolution model.
Litwin et al. (2022) derived the fluvial incision term of the landscape evolution model
with assumptions that yielded linear dependence on the dimensionless discharge Q∗, a
slope exponent n = 1, and area exponent m = 1/2. We derived a more general form
by assuming that the exponent that determines the channel width from area and the ex-
ponent that determines erosion rate from shear stress were free parameters:

Ef = KQ∗n (v0a)
m |∇z|n (15)

where Ef is the fluvial incision rate, K is the erodibility, v0 is the characteristic contour
width, a is the area per contour width, and ∇z is the elevation gradient. For simplic-
ity, we will use the variable Q∗ to refer to the temporally-averaged dimensionless discharge
which is called ⟨Q∗⟩ in Litwin, Tucker, et al. (2023). Because χ-analysis is usually only
applied to river channels, it is typical to neglect the hillslope diffusion term, and write
the solution at equilibrium between uplift and fluvial incision along a channel distance
coordinate x:

U = KQ∗n (v0a)
m

∣∣∣∣∂z∂x
∣∣∣∣n . (16)

We then solved for |∂z/∂x|, and substituted area for area per contour width times the
characteristic contour width A = v0a:∣∣∣∣∂z∂x

∣∣∣∣ = (
U

KQ∗n

)1/n

A−m/n. (17)

Next we normalized upslope area to a reference drainage area A0, and integrate the equa-
tion above with respect to x:

z(x) = z(xb) +

∫ x

xb

(
U

KQ∗nAm
0

)1/n (
A0

A(x)

)m/n

dx (18)

where z(xb) is the elevation at a specified baselevel location xb. In general, Q∗ varies with
position, so we cannot remove it from the integral. However, in our model Q∗ generally
approaches a constant value with distance downstream equal to one minus the actual
evapotranspiration relative to precipitation 1−⟨AET ⟩/⟨P ⟩, which is approximately the
mean runoff ratio ⟨Q⟩/⟨P ⟩. We will call this value Q∗

max. Then we can write:

z(x) = z(xb) +

(
U

KQ∗n
maxA

m
0

)1/n

χ, (19)

where

χ =

∫ x

xb

(
A(x)

A0

)m/n

dx. (20)
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These equations show that the elevation of a stream channel in dynamic equilibrium should
be linear with respect to χ if U , K, and Q∗

max are uniform, and that the slope of that
relationship should be:

ksn =

(
U

KQ∗n
maxA

m
0

)1/n

, (21)

which is often called the normalized channel steepness index. Note that this is related326

to but distinct from our use of “steepness” in Litwin et al. (2022).327

We calculated the slopes of channel segments in χ-elevation space for the channel
networks we extracted previously. Because the reference drainage area A0 is introduced
for dimensional purposes only, we can set it equal to unity, and solve for the streampower
incision coefficient K:

K =
U

(ksnQ∗
max)

n . (22)

3 Results328

3.1 Hydrologic and geomorphic observations329

3.1.1 Discharge, baseflow, and runoff ratio330

Figure 2 shows the timeseries of discharge and precipitation for both sites. Base-331

flow (in dark blue) at Baisman Run shows a strong annual signal, with drydown from332

early summer continuing until October, when a small persistent increase is combined with333

episodic increases in response to large storms. Unfortunately the discharge timeseries avail-334

able to us at Druids Run is too short to look at annual trends, though there does ap-335

pear to be a significant drydown from spring into summer, leading to low flows by late336

June. We did not observe no-flow conditions at the gage location, but we do know that337

flows were often close to or below the pressure transducer detection limit during the sum-338

mer.339

The storm runoff ratio is substantially more variable at Druids Run than Baisman340

Run. We identified 21 storm events at Druids Run and 43 storm events at Baisman Run,341

and found that the total event precipitation explained most of the variation in total event342

quickflow Qf,event (Figure 3). Events are colored by the antecedent baseflow, which shows343

that some of the variation in event runoff that cannot be explained by event precipita-344

tion may be explained by antecedent conditions. To quantify the sensitivity of event runoff345

to event precipitation, we fit the curve Qf,event = a2P
a1
event, where the log-space slope346

corresponds to the fitted exponent a1. The exponent and standard error are 3.17±0.40347

and 1.89±0.13 at Druid Run and Baisman Run, respectively. An exponent a1 = 1 would348

indicate that the storm runoff is a constant proportion of the event precipitation. When349

the event runoff ratio is interpreted as the effective proportion of the watershed contribut-350

ing runoff (O’Loughlin, 1986), an exponent closer to one indicates that the contribut-351

ing area does not vary with storm size. This interpretation suggests that contributing352

areas vary with precipitation at both sites, but they are more variable at Druids Run353

than Baisman Run. This interpretation also suggests that as storm events approach 100354

mm, nearly all of Druids Run contributes storm runoff (3A). These events are fairly fre-355

quent; the annual maximum recurrence interval of 100 mm of precipitation in 24 hours356

is approximately two years at our sites (NOAA, 2024).357

3.1.2 Saturated areas358

At Druids Run, observed saturation was highly variable in time and correlated with359

discharge. We measured saturation five times along nine transects, seven of which run360

along first order drainages or the interfluves between them, and two of which run par-361

allel to the valley bottom (Figure 4A–E). The surveys conducted under the two high-362

est flow conditions (C, E) had the greatest number of saturated points. Saturation was363
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Figure 2. Timeseries of discharge Q (black), baseflow Qb (dark blue), and precipitation P

(light blue) at Druids Run (A) and Baisman Run (B). Storm events that we identified based
upon the baseflow separation and precipitation begin with green dots and end with red dots,
which are placed at the corresponding times on both the precipitation and discharge timeseries.
Note that the timeseries for Baisman Run and Druids Run are not aligned in time.

often discontinuous with distance downstream in first order channels. Upslope areas some-364

times saturated and flowed first, while downslope reaches remained dry, as flow passed365

through the subsurface. First order channels tend to have exposed bedrock or thin al-366

luvial cover near their headwaters, while closer to the valley bottom they become sub-367

merged in alluvium that has sufficient capacity to move the water from upslope through368

the subsurface. Bedrock fractures may also play a role in redistributing surface flow to369

subsurface pathways.370

In contrast, saturated areas were more static at Baisman Run. We measured sat-371

uration four times along six transects, four of which run perpendicular to the valley bot-372

tom, and two run parallel to it (Figure 4F–I). Regardless of discharge, we found that sat-373

uration was confined to locations at or below the distinct break in slope where the hill-374

slopes meet the valley bottom. Within the valley bottom, saturation was not present ev-375

erywhere, as the stream channel is incised into the valley bottom alluvium in some places.376

Flow emerges at distinct springs and seeps at the break in slope (Putnam, 2018). The377

springs are further evidence that subsurface pathways support baseflow, while the rel-378

atively static nature of saturated areas support our observation that event quickflow is379

less sensitive to event precipitation at Baisman Run than it is at Druids Run.380
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Figure 3. Event runoff characteristics for Druids Run (A) and Baisman Run (B). Event totals
are calculated by summing the 15-minute precipitation and quickflow timeseries over the event
durations. The points are colored by the initial baseflow Qb. The dotted line is a 1:1 line, which
represents the case where event runoff is equal to event precipitation. The blue line is a power
law regression with the form Qf,event = a2P

a1
event, and the shaded area is the 95% confidence

interval on the regression. The range on the coefficient a1 is given as the standard error.

We generalized our point observations to whole-watershed predictions of satura-381

tion frequency using logistic regression. Specifically, we predicted the presence of sat-382

uration (flowing water, ponded water, or soil saturation) using topographic index and383

discharge using Equation 1. The parameters of the fitted model are shown in Table 1.384

To calculate topographic index, we first resampled the DEM to 5 m resolution to smooth385

over roughness in the high resolution DEM and to reflect the uncertainty in the posi-386

tioning data of our saturation surveys. The resampling approach is also consistent with387

our measurement scheme, in which we labeled locations based upon the highest satura-388

tion class observed in a small vicinity. We calculated upslope area using the D∞ algo-389

rithm, and slope using the same 10 m footprint used to calculate hilltop curvature. While390

our regression model calls for the use of baseflow discharge, we used the total discharge,391

as all of our samples were taken during baseflow or recession periods. This was also nec-392

essary because the timeseries of discharge at Druids Run does not overlap all the sat-393

uration surveys. For consistency, we used instantaneous discharge measurements from394

immediately before the surveys began. At Druids Run, we made these measurements us-395

ing dilution gaging; Baisman Run, we used instantaneous discharge from the USGS gage.396

α0 α1 α2

Druids Run 4.609 ± 0.637 0.174 ± 0.040 1.000 ± 0.097
Baisman Run -7.487 ± 3.922 0.703 ± 0.103 0.081 ± 0.540
Table 1. Estimated parameter values of the logistic regression models for saturation (Equation
1), where α0 is the intercept, α1 is the coefficient on topographic index, and α2 is the coefficient
on the area-normalized discharge. Parameter ranges are given as standard errors.

We used the logistic model to predict the odds of saturation for the range of to-397

pographic index values in each watershed and the range of discharge values at which sat-398
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Figure 4. Observations of saturation made on transects at Druids Run (A–E) and Baisman
Run (F–I). The latter plots have been rotated 90 degrees such that north is in the direction of
the positive x-axis. In both figures, flow in the valley bottom is from right to left. The classifica-
tion and sampling approaches are described in Section 2.2.
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uration surveys were conducted (Figure 5). In Figure 5, the topographic index value at399

which the black dashed line intersects the odds ratio curves is the critical value of TI400

where saturation becomes more likely than not for a given value of discharge. We plot-401

ted this together with the probability density of watershed topographic index (orange)402

to show how the critical TI relates to the distribution of TI for the watershed.403

The regression model for Druids Run in Figure 5A shows that the predicted odds404

of saturation varies substantially with discharge. When discharge is small, the critical405

TI value confines likely saturation to a very small portion of the total watershed area,406

while for large discharge the critical value of TI is low enough that most of the water-407

shed is likely to be saturated. This supports the high variability of saturation in space408

and time that we inferred from the pointwise measurements.409

The logistic regression model predicts very different behavior for Baisman Run (Fig-410

ure 5B). First, we notice that the saturation odds curve does not vary with discharge,411

such that all curves overlap. This is reflected in the regression parameter alpha2 on dis-412

charge (Table 1), which is much smaller and more uncertain for Baisman Run than Druids413

Run. As a result, the critical value of topographic index is nearly constant with time.414

Second, we notice that the curves are narrower and steeper than those estimated for Druids415

Run, such that the odds of saturation increases more abruptly around the critical value416

of TI. This is reflected in the regression parameter α1 on topographic index, which is417

much larger at Baisman Run than Druids Run. This supports our observation that sat-418

uration emerges abruptly at the transition from hillslopes to valley bottoms.419

The logistic regression models also allowed us to generalize the saturation predic-420

tions to the entire watersheds. We predicted saturation through time for the discharge421

timeseries in Figure 2 and for all raster points based upon their topographic index. We422

then classified whether each point was “wet” (exceeded criteria for saturation greater than423

95% of the time), “dry” (exceeded criteria for saturation less than 5% of the time), or424

variably saturated if it met neither of those criteria.425

Figure 6 shows a dramatic difference in the hydrological function of the two sites426

based on the logistic regression model predictions. The predicted channel network at Druids427

Run was ephemeral until close to the watershed outlet. Saturation occurred occasion-428

ally in zero-order basins and up onto the hillslopes. Some of the hillslopes we sampled429

that appear as “dry” may in fact saturate occasionally, but less than 5% of the time. In430

contrast, the regression model predicted that Baisman Run had a continually wet stream431

channel over the course of our observation period, and did not experience saturation on432

the hillslopes.433

Analysis of rainfall-runoff and saturation data reveal the dramatic difference be-434

tween hydrological function of the two sites. When the permeable subsurface is thin, as435

at Druids Run, much of the landscape saturates and desaturates relatively easily in re-436

sponse to precipitation, and the effective proportion of the watershed contributing runoff437

varies substantially. In contrast, when the permeable subsurface is thick, as at Baisman438

Run, the same precipitation causes modest or no change in saturated areas, though new439

subsurface flow paths may still be activated with increasing storm size, such that the ef-440

fective contributing area increases with increasing wetness.441

3.1.3 Hillslope length and relief442

Both hillslope length and relief are greater at Baisman Run than Druids Run. The443

channel networks and hilltop points from which hillslope length and relief were defined444

are shown in Figure 1. Totals of 5.3×104 and 7.0×104 hilltop points with unique length445

and relief were identified at Druids Run and Baisman Run, respectively. The median hill-446

slope length is 88.3 m at Druids Run and 177.3 m at Baisman Run, while median relief447

was 2.9 m at Druids Run and 6.7 m at Baisman Run. Figure 7A shows that there is no448
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Figure 5. Regression results for Druids Run (A) and Baisman Run (B). The regression model
has the form given in Equation 1. The modeled probability of saturation is given in terms of
topographic index and discharge, where discharge varies logarithmically across the range of sat-
uration survey discharge values. There is a dashed line at the 50% probability mark, and where
this intersects each one of the probability curves, there is a dotted line dropped to the x-axis.
This indicates the critical value of topographic index at which saturation is more likely than not
to occur given that value of discharge. On the opposing axis is the probability density of topo-
graphic index, estimated with a kernel density approach. The lighter shaded region indicates the
range of TI values sampled in our surveys, which indicates good topographic index coverage of
our samples.
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Figure 6. Classified saturated areas for Druids Run (A) and Baisman Run (B), based on
the logistic regression model in Equation 1 and shown in Figure 5, and the runoff timeseries
shown in Figure 2. The modeled probability necessary for saturation was set at 50%. A loca-
tion was classified as “wet” if it exceeded criteria for saturation greater than 95% of the time,
“dry” if it exceeded criteria for saturation less than 5% of the time, or variably saturated if it
was in between. At Druids Run we predicted persistent saturation near the watershed outlet, an
ephemeral channel network above that, and occasional saturation on some flat and concave hill-
slopes, and generally dry convex hillslopes. At Baisman Run, we predicted persistent saturation
in the channel network, and dry conditions everywhere else.

overlap in the interquartile range (IQR) of hillslope length or relief for the two sites. The449

strength and sign of this difference supports our hypothesis that the site with a thick per-450

meable subsurface will have greater hillslope length and relief than that with a thin per-451

meable subsurface.452

3.2 Landscape evolution parameterization453

While both the hydrological and geomorphic differences between Druids Run and454

Baisman Run support our hypotheses, we have not yet established that the subsurface455

is the link between the emergent hydrological function and morphology. To do so, we es-456

timated the parameters for DupuitLEM, and ran the model under conditions that ap-457

proximate those found at our sites. Using the approaches described in Sections 2.6 and458

2.7, we estimated all the parameters needed to run the model without calibration.459

3.2.1 Hydrologic parameters460

We first estimated the transmissivity using Equation 9. We estimated the param-461

eters β0 and β1 by fitting Equation 7 using topographic index, discharge, and saturation462

survey data. With the fitted model, we determined the optimal threshold probability p∗463

at which saturation was likely to occur. While we could have chosen 50% as we did in464

the regression model for saturated area, we found that this performed poorly on the sim-465

pler two-parameter formulation used to calculate transmissivity. The selected value of466

p∗ should balance correctly classifying points as saturated (high true positive ratio (TPR))467

and minimizing the number of points that are misclassified as saturated (low false pos-468

itive ratio (FPR)). Plotting TPR against FPR gives the receiver operating character-469
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Figure 7. Violin plots of hillslope length and relief for Druids Run (A) and Baisman Run (B).
Hillslope length is the length along a flow path from a hilltop point to the nearest channel point
along a flowpath. Hillslope relief is the drop in elevation over that distance. Violin plots show
the median, minimum, and maximum (horizontal lines) values and the interquartile range (wider
vertical bar).

istic curve, from which we selected the optimal threshold probability by maximizing the470

difference TPR-FPR. The results of this process are shown in Figure 8. Using the op-471

timal p∗, we estimated the transmissivity from Equation 9 10,000 times using Monte Carlo472

simulations to determine the uncertainty due to the variance and covariance of the lo-473

gistic regression parameters. The median and quartiles of transmissivity are reported in474

Table 2. This approach predicts that the transmissivity at Baisman Run is nearly 8 times475

higher than at Druids Run. There is no overlap between the IQRs of the estimated trans-476

missivities, which suggests a robust difference between the two sites. While the true un-477

certainty is likely much larger as a result of methodological choices (raster resolution,478

flow routing method, threshold selection method), experimentation suggested that the479

median transmissivity is always larger at Baisman Run than Druids Run when the same480

methodology is applied to both sites.481

Transmissivity (m2/d) Regression Parameters

Med LQ UQ β0 β1 ρ∗ p∗

Druids Run 1.12 0.88 1.40 -0.691 0.268 -0.660 0.341
Baisman Run 8.46 7.07 10.23 -3.113 0.676 -1.668 0.159
Table 2. Median (Med), lower and upper quartiles (LQ, UQ) of transmissivity estimated from
the logistic regression model, and the associated regression model parameters. The bar over a
variable indicates the mean value.

To estimate the effective hydraulic conductivity from transmissivity, we first esti-482

mated the permeable thickness. At Druids Run, data from the USDA Soil Survey sug-483
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Figure 8. Results of the TPR-FPR analysis. (A–B) The receiver operating characteristic
curve for Druids Run and Baisman Run, respectively, colored by the threshold value p∗ used to
obtain each combination of quantities. (C–D) The difference TPR-FPR, which we seek to maxi-
mize, plotted against the transmissivity value associated with each threshold p∗. We selected the
transmissivity associated with the largest value of TPR-FPR.

gested a strong permeability contrast at the base of the A horizon, so we used the char-484

acteristic A horizon thickness as our permeable thickness (Staff & Natural Resources Con-485

servation Service, United States Department of Agriculture., 2023). At Baisman Run,486

there is no strong permeability contrast within the soil profile, so we used the entire soil487

profile thickness, weighted for the different soil types found in the watershed. We added488

2 m to this value to account for the importance of flow through the shallow saprolite (Cosans,489

2022), which is below the maximum depth considered by the USDA Soil Survey. We di-490

vided transmissivity by the permeable thickness, and found that the effective hydraulic491

conductivity is similar between the two sites (2.83× 10−5 and 2.43× 10−5 for Druids492

Run and Baisman Run, respectively); the majority of the difference in transmissivity is493

due to the difference in permeable thickness. The values are shown in Table 3.494

We estimated drainable porosity and plant-available water content from literature495

values. We assumed drainable porosity was constant and equal to 0.25 at both sites, which496

is typical for materials with medium sand to medium gravel texture (Johnson, 1967). While497

drainable porosity is an important variable for regulating the degree to which the wa-498

ter table rises and falls in response to recharge, it has a relatively narrow range of pos-499

sible values in comparison to other parameters, so a possible difference between the sites500

should not have a strong effect on our results. We estimated plant-available water con-501

tent as 0.19 and 0.14 for Druids Run and Baisman Run respectively using characteris-502

tic values for our sites from the USDA Soil Survey.503
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Lastly, climatological variables were estimated using the approaches described in504

the methods section with weather station data and literature values. The relevant val-505

ues are shown in Table 3.506

Overall, our characterization of hydrological properties is a rather coarse simpli-507

fication of reality. Exponential distributions for precipitation do not capture the impor-508

tance of extreme events (Rossi et al., 2016), while subsurface properties are often dynamic509

in time and vary both with depth and landscape position (e.g., St. Clair et al., 2015; Pe-510

drazas et al., 2021). Still, our prior modeling work showed that even with these simpli-511

fications the model can produce rich and complex emergent hydrologic behavior (Litwin,512

Tucker, et al., 2023). Our approach here can serve as a starting place for future work that513

accounts for higher-order controls on runoff generation.514

Name Symbol Units Druids Run Baisman Run

Hydraulic conductivity ks m/s 2.84e−5 2.43e−5
Permeable thickness b m 0.46 4.03
Plant-available water content na - 0.19 0.14
Drainable porosity ne - 0.25 0.25
Mean storm duration ⟨tr⟩ s 1.02e4 1.02e4
Mean interstorm duration ⟨tb⟩ s 1.11e5 1.11e5
Mean storm depth ⟨ds⟩ m 4.50e−3 4.50e−3
Interstorm potential ET rate pet m/s 2.58e−8 2.58e−8

Table 3. All hydrological parameters needed to run DupuitLEM. The values for ne, ⟨tr⟩, ⟨tb⟩,
⟨ds⟩, and pet are identical at the two sites.

3.2.2 Geomorphic parameters515

The uplift or baselevel change rate U is an important model parameter and is needed516

to obtain estimates of both the hillslope diffusivity D and the streampower incision co-517

efficient K. We equated U with the denudation rate estimated from in-situ 10Be„ assum-518

ing that the Piedmont physiographic province is near dynamic equilibrium between base-519

level change and denudation. Portenga et al. (2019) estimated the mean denudation rate520

of the Piedmont in the nearby Potomac River basin as 11.4 m/Myr (IQR 7.6 – 15.0) as-521

suming an average rock density of 2700 kg/m3. To quantify the uncertainty in U , and522

its contribution to the uncertainty in D and K, we estimated a probability distribution523

for U based on the box plot in Figure 4 of Portenga et al. (2019). The data did not ap-524

pear particularly skewed, so we modeled denudation with a normal distribution, which525

we truncated to permit only positive values.526

We estimated the diffusivity based on hilltop curvature, as presented in Equation527

14. All the parameter values needed are shown in Table 4, and the distributions of the528

log of hilltop curvature are shown in Figure 9A. Hilltop curvature is quite similar at both529

sites. This is surprising since different processes likely contribute to diffusive transport530

at Druids Run versus Baisman Run. For example, freeze-thaw effects may be more im-531

portant in the exposed, rocky soils at Druids Run, while treethrow may be more impor-532

tant in the forest-covered soils at Baisman Run. We estimated the diffusivity and its un-533

certainty by Monte Carlo simulation, sampling the distribution of U 10,000 times, and534

selecting 10,000 values from the hilltop curvature dataset independently with replace-535

ment. The distributions of diffusivity from the Monte Carlo simulation are shown in Fig-536

ure 9B. The median diffusivity is 8.6e−3 m2/yr (IQR 4.4e−3 – 1.7e−2) at Druids Run,537

and 9.3e−3 m2/yr (IQR 4.3e−3 – 1.9e−2) at Baisman Run.538
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CHT (m−1) U (m/yr)
Med LQ UQ Med LQ UQ

Druids Run −1.272e−3 −2.084e−3 −7.053e−4 1.193e−5 7.561e−6 1.495e−5
Baisman Run −1.125e−3 −2.123e−3 −6.571e−4 1.193e−5 7.561e−6 1.495e−5

Table 4. Hilltop curvature CHT and uplift U for Baisman Run and Druids Run. Negative
curvature indicates convexity. Uplift values are the same for both sites.
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Figure 9. Violin plots of the log of hilltop curvature and log of hillslope diffusivity for Druids
Run (A) and Baisman Run (B). Violin plots show the median, minimum, and maximum (hor-
izontal lines) values and the interquartile range (wider vertical bar). Both distributions are
similar, though Druids Run has slightly higher curvature, and therefore slightly lower diffusivity.

We calculated the streampower incision coefficient K using Equation 22 by esti-539

mating n, ksn, and Q∗
max. We first conducted a χ-analysis of the channel networks of540

both sites to determine the streampower exponent n and then the appropriate steepness541

index ksn. Lastly, we estimated the maximum dimensionless discharge Q∗
max based on542

available hydrologic data.543

To calculate the optimal coordinate χ, we need to estimate the concavity index m/n544

(see Equation 20) for which the channel network collapses to a single line in χ-elevation545

space (Perron & Royden, 2013). We tried a range of values for the concavity index and546

determined that m/n = 1/2 produced a satisfactory collinearity of channels for both547

of the sites. Independently estimating the exponents m and n is challenging (Harel et548

al., 2016), so we chose the combination m = 1/2 and n = 1 for consistency with our549

prior modeling studies.550

We determined ksn from the slope of the relationship between χ and elevation for551

individual channel segments using the method described by S. M. Mudd et al. (2014).552

We estimated K using the segments that are above the 40th percentile of channel net-553

work drainage area, which are colored by ksn in Figure 10A–B. We selected this drainage554

area cutoff to isolate channel segments where Q∗ is less likely to vary with distance down-555

stream. We found that channel segments with smaller upslope areas were often less lin-556

ear in χ-elevation space, which may indicate a change in Q∗ with area. Figure 10C shows557

the distribution of ksn values that meet these criteria. We found that ksn was nearly twice558
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as high at Druids Run, with a median of 2.774 (IQR 2.163 – 3.284), as Baisman Run,559

with a median of 5.23 (IQR 4.747 – 7.017).560

ksn (m) Exponents (-) Runoff (-)
Median LQ UQ m n Q∗

max

Druids Run 2.774 2.163 3.284 0.5 1 0.3
Baisman Run 5.230 4.747 7.017 0.5 1 0.3
Table 5. Channel steepness index ksn, streampower exponents, and maximum runoff rate
Q∗

max for Baisman Run and Druids Run.

We estimated the maximum dimensionless discharge Q∗
max at Baisman Run as the561

long-term average runoff ratio ⟨Q⟩/⟨P ⟩ = 0.3 (Cosans, 2022). From our short timeseries562

at Druids Run, we calculated a runoff ratio of 0.57. Because ksn depends on the prod-563

uct of K and Q∗
max (Equation 21) in our model, these data suggest that the factor of564

two difference in ksn between our sites could be due to the difference in the hydrology,565

expressed in Q∗
max, rather than a difference in material and geomorphic properties, ex-566

pressed in K. While that would support our hypothesis, we will conservatively set Q∗
max =567

0.3 for Druids Run as a first estimate, matching Baisman Run.568

With all components of Equation 22 estimated, we used the same Monte Carlo pro-569

cedure to calculate K and its uncertainty. Figure 10D shows that K is substantially higher570

at Druids Run than at Baisman Run when Q∗
max is set equal. The median at Druids Run571

is 1.34e−5 yr−1 (IQR 8.24e−6–1.98e−5), while at Baisman Run it is 6.49e−6 yr−1 (IQR572

3.83e−6 – 9.66e−6). The full table of geomorphic parameters are shown in Table 6.573

Name Symbol Units Druids Run Baisman Run

Uplift rate U m/yr 1.143e−5 1.143e−5
Hillslope diffusivity D m2/yr 8.611e−3 9.285e−3
Streampower incision coefficient K 1/yr 1.334e−5 6.546e−6
Contour length v0 m 30 30

Table 6. Geomorphic parameters needed to run DupuitLEM. We used the median value from
the estimated parameter distributions for U , D, and K. The values for U and the characteristic
contour length v0 are identical at the two sites.

The difference in streampower incision coefficient between the two sites potentially574

confounds our interpretation of subsurface hydrologic controls on emergent hillslope length575

and hydrological function, assuming the difference is due to a contrast in material prop-576

erties rather than hydrology. Our estimated subsurface hydrological variables support577

our perceptual model of how the sites should be different if they have coevolved with their578

hydrology; lower transmissivity at Druids Run should lead to more surface runoff and579

channel incision, and greater extent of variably saturated areas than the high transmis-580

sivity conditions at Baisman Run. However, a higher streampower incision coefficient581

may indicate that runoff is more effective at detaching and transporting sediment out582

of the watershed at Druids Run, which could also lead to closer spacing of channels and583

shorter hillslopes (Perron et al., 2008).584

To test whether subsurface hydrology is necessary and sufficient for explaining the585

difference in variable source areas and hillslope length at the two sites, we ran four sim-586

ulations, shown in Figure 11: two that represent our best estimates of hydrological and587
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Figure 10. χ-elevation plots for Druids Run (A) and Baisman Run (B) for a concavity index
m/n = 0.5. Channel segments are colored by their steepness index ksn where the upslope area
is greater than the 40th watershed area percentile, and are otherwise gray. (C) the distributions
of ksn for the segments colored in (A) and (B), showing generally higher channel steepness at
Baisman Run than Druids Run. (D) distributions of the streampower incision coefficient K from
Monte Carlo simulations. ksn scales inversely with the erodibility, such that the streampower
incision coefficient is lower at Baisman Run than Druids Run.
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geomorphic parameters as described above (DR-DR, BR-BR), and two where we swapped588

the geomorphic parameters (DR-BR, BR-DR). Our best estimate cases helped discrim-589

inate how well DupuitLEM can capture landscape geomorphic and hydrologic dynam-590

ics at our sites. By comparing the best estimate simulations with simulations that have591

the same hydrological parameters but swapped geomorphic parameters, we determined592

whether geomorphic process rates alone explained the differences in morphology when593

the landscape coevolves with hydrology. Because we started with a randomized rough594

surface as an initial condition, we did not expect the simulation results to look exactly595

like Druids Run or Baisman Run. Instead, we compared them on the basis of aggregate596

properties including the hillslope length and relief, and saturation behavior.597

Baisman Run (BR)Druids Run (DR)

BR-DRDR-DRDR

BR-BRDR-BRBR

Hydrologic Variables
(ks , b, na)

Geomorphic
Variables (K, D)

Figure 11. Four boxes indicating the four simulations we conducted. Colored boxes indicate
the correctly matched hydrologic and geomorphic parameters, while white boxes indicate the ones
in which the geomorphic variables are swapped. The listed hydrological and geomorphic variables
are those that are varied, while all others are kept the same.

Lastly, we considered what happens when the differences in observed channel steep-598

ness were due to differences in runoff ratio (Q∗
max) rather than material properties (K).599

In our model formulation, determining the right value of Q∗
max should be an iterative600

process, in which the value of Q∗
max is estimated in order to determine erodibility, the601

model is run forward, the discharge and precipitation from the simulated landscape are602

used to recalculate Q∗
max, and then the streampower incision coefficient is adjusted ac-603

cordingly. This would be repeated until the estimated Q∗
max value matches the value pro-604

duced by the simulation. If there is a mismatch, the channel steepness of the modeled605

topography will be offset from that measured at the site. While we did not do a com-606

plete iterative solution, we did adjust Q∗
max and K according to the results of our first607

simulation.608

3.3 Landscape evolution results609

The landscape evolution model results showed the important effect of subsurface610

hydrology on the emergent landscapes, and revealed the complexity of interactions be-611

tween hydrologic and geomorphic processes. We first simulated topography for the four612

cases presented in Figure 11, and analyzed the hillslope properties and persistence of sat-613

urated areas using the same criteria as we used for the field sites. The only necessary614

difference was that we identified channel heads using a threshold on topographic curva-615

ture (∇2z > 0.001), because the DrEICH algorithm performed poorly on our model sim-616

ulations, which are much lower resolution than the lidar-derived DEMs. Because the trans-617

missivity is the primary difference in hydrological variables, we call the cases with hy-618

drology like Druids Run (DR-DR and DR-BR) the low transmissivity cases, and cases619

with hydrology like Baisman Run (BR-BR and BR-DR) the high transmissivity cases.620
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The most striking pattern in the hillshades shown in Figure 12A is that the low621

transmissivity cases were substantially more dissected than the high transmissivity cases.622

DR-DR and DR-BR have extensive fluvial dissection that extends onto hillslopes, which623

appears more extensive than we observed at Druids Run. However, the broad undissected624

hillslopes in BR-BR and BR-DR are similar to what we observed at Baisman Run. De-625

spite some visual similarities, Figure 12B–C shows that BR-BR and BR-DR cases tended626

to overpredict hillslope length and relief. Also, contrary to our expectations, in the low627

transmissivity cases where the geomorphic properties have been swapped (DR-DR ver-628

sus DR-BR), the difference in hillslope length and relief appeared to be comparable to629

the difference between Baisman Run and Druids Run (for a better view of length and630

relief at the field sites, see Figure 7). However, the presence of fluvial dissection broadly631

across these modeled topographies makes direct comparison with our field sites more dif-632

ficult. When the transmissivity is large, the channel network is very well defined, and633

we found less apparent effect of the difference in geomorphic parameters. While the 25th
634

and 75th percentiles of hillslope length at BR-DR are smaller than those at BR-BR, their635

medians are approximately the same (Figure 12B).636

Swapping geomorphic parameters had a relatively minor effect on hydrological func-637

tion. Figure 13A shows that simulations with swapped geomorphic parameters but the638

same hydrologic parameters have very similar saturated area patterns, whereas there is639

a substantial difference between simulations that have different hydrologic parameters.640

The low transmissivity cases have large variably saturated areas that extend onto hill-641

tops, as at Druids Run, though there are no hilltops that are classified as dry in the low642

transmissivity cases. They also show more persistent saturation in valley bottoms and643

zero-order basins than observed in Druids Run (Figure 13A–B). The saturated areas mod-644

eled in the high transmissivity cases look very similar to those observed at Baisman Run,645

where there is persistent saturation in valley bottoms and dry hilltops. The fractional646

saturated areas are similar to those observed at the sites as well (Figure 13B).647

Next we examined the emergent runoff ratio and adjusted the fluvial parameters648

to account for the difference between the runoff ratio and the initial estimate of Q∗
max.649

The emergent runoff ratio for the high transmissivity cases were 0.33 and 0.32 for BR-650

BR and BR-DR respectively, which were very close to our initial estimate of 0.3, which651

was the observed runoff ratio at Baisman Run. The difference in geomorphic parame-652

ters had little effect on emergent runoff ratio in these cases. In the low transmissivity653

cases, the runoff ratio was significantly higher than our initial estimate of 0.3. We found654

runoff ratios of 0.86 and 0.81 for DR-DR and DR-BR respectively. These values are again655

not highly sensitive to the difference in geomorphic parameters, but both are substan-656

tially higher than our initial estimate, and higher than our field estimate of 0.57 for Druid657

Run. However, this is consistent with our observation that DR-DR and DR-BR have much658

more extensive saturated areas than Druids Run. These higher runoff ratios suggest that659

we should increase estimated Q∗
max, and therefore decrease the estimated K at Druids660

Run. If we increase Q∗
max to 0.6, the corresponding K values is 6.68e−6 yr−1, which is661

within 3% of the K value we estimated for Baisman Run. The geomorphic results of this662

increase are shown in Figure 14. The hydrologic effect of this increase is minimal, as shown663

in Figure S2.664

Adjusting the streampower incision coefficient for differences in Q∗
max nearly elim-665

inates the difference in emergent morphology and hydrology between cases with swapped666

geomorphic parameters. The hydrological function of the landscapes is very similar when667

geomorphic parameters are swapped, which is expected given that there was little dif-668

ference in hydrological function between the original cases with swapped geomorphic pa-669

rameters. The emergent runoff ratio for DR-DR is now 0.78, which is slightly lower than670

we calculated previously. The emergent topography looks very similar when geomorphic671

parameters are swapped, and distributions of hillslope length and relief are nearly iden-672

tical (Figure 14). This suggests that the differences in the geomorphic parameters, and673
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Figure 12. (A) Hillshades of model results in the same configuration as shown in Figure 11.
Dissection is substantially higher in cases with Druids Run hydrological variables than Baisman
Run hydrological variables. (B, C) Log-scaled violin plots of hillslope length and relief, comparing
the field data (labelled “Druids Run” and “Baisman Run”) to the four modeled cases. Horizontal
lines represent the maximum and minim values, while the vertical bar represents the interquartile
range.
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Figure 13. (A) Map view of saturated area classes for model results in the same configuration
as shown in Figure 11 and Figure 12A. Saturated area behavior is not highly sensitive to swap-
ping geomorphic variables, while it is sensitive to swapping hydrological variables. (B) Fractional
area that is classified as wet, variable, and saturated based on field data (labelled “Druids Run”
and “Baisman Run”) and the four modeled cases. Cases that have the hydrological variables asso-
ciated with Baisman Run appear similar to the field characteristics of Baisman Run. Cases that
have the hydrological variables associated with Druids Run show more persistent saturation than
the field characteristics of Druids Run.
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in particular the intrinsic erodibility of the rock and regolith, are not responsible for the674

differences in emergent morphology. Instead, what we see in the difference in morphol-675

ogy between Druids Run and Baisman Run is more likely a combination of effects driven676

by the difference in their subsurface hydrology, as (1) the difference in transmissivity changes677

the extent of saturated areas and surface water on the landscape, which changes the pro-678

portion of the landscape that experiences fluvial erosion, and (2) higher runoff ratios in-679

crease the efficiency of water-driven sediment transport in areas where there is satura-680

tion, which further incises the landscape.681

Our results also showed that there is more work to do to understand the controls682

on the geomorphic evolution of our sites. For instance, adjusting Q∗
max did not bring us683

closer to the true hillslope length and relief. Figure 15 shows how the true cases DR-DR684

and BR-BR compare to the hillslope length and relief of Druids Run and Baisman Run,685

respectively. The number in parentheses following the model label is the estimated value686

of Q∗
max. The values of hillslope length and relief from simulation DR-DR (0.6) were far-687

ther from the true values at Druids Run than those from simulation DR-DR (0.3). At688

the same time, we know that the channel steepness ksn from the simulation DR-DR (0.3)689

will not match ksn of Druids Run, because we overestimated the streampower incision690

coefficient K relative to the emergent value of Q∗
max. More work is needed to understand691

both the possible difference in other parameters (e.g., the denudation rate) and limita-692

tions of model structure for capturing our sites, but it is clear that the difference in the693

hydrology of the sites is an important component of their geomorphic evolution.694

4 Discussion695

4.1 The expression of subsurface hydrology in landscape evolution696

It is well known that transmissivity affects the hydrological function of landscapes.697

All distributed hydrological models built on Darcy’s law will show a similar effect; the698

transmissivity, or more generally the depth-integrated hydraulic conductivity, affects the699

aquifer thickness and hydraulic gradient needed to convey a given water flux. This in700

turn determines how the water table will interact with the surface and produce overland701

flow (e.g., Beven & Kirkby, 1979; Li et al., 2014; Nippgen et al., 2015; Marçais et al., 2017).702

While there are limits to the Darcian approach for landscape scale runoff generation (e.g.,703

Uchida et al., 2005), it has proved useful for understanding and predicting runoff, sub-704

surface transport, and saturated areas.705

Previous work toward understanding the role of transmissivity in topographic evo-706

lution (Luijendijk, 2022; Litwin et al., 2022; Litwin, Tucker, et al., 2023) is a logical ex-707

tension of the hydrological study of runoff generation, as sediment transport is an im-708

portant consequence of runoff generation. It has only recently received attention, in part709

because considering the long-term effects of this coevolution is computationally inten-710

sive, and in part because it relies on subsurface properties that are hard to estimate. Of-711

ten, landscape evolution modelers select the minimally-complex model needed to explain712

their observations. As a result, they have often excluded subsurface hydrology, despite713

the widespread importance of subsurface flow for runoff generation (Wu et al., 2021). How-714

ever, we have shown here that there are some cases where the subsurface hydrology is715

indispensable for understanding the evolution of landscapes. The importance of subsur-716

face runoff generation for a particular application of a landscape evolution model is de-717

pendent on the geologic and climatic setting, but also on the scale of interest. Studies718

focusing on watershed scales of 1-10s of kilometers may find that capturing subsurface719

flow is essential, while these details may be less important in the evolution of entire oro-720

gens, where the length of subsurface flow paths relevant to runoff generation is shorter721

than the scales of geomorphic interest.722
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Figure 14. (A) Hillshades of model results in the same configuration as shown in Figure 11,
only Q∗

max = 0.6 was used to determine the streampower incision coefficient for cases with Druids
Run geomorphic variables. Visual comparison of results suggests that the difference in hydrology
between the two sites is the primary control on emergent morphology. (B, C) Violin plots of hill-
slope length and relief, comparing the field data (labelled “Druids Run” and “Baisman Run”) to
the four modeled cases. There is little difference between simulations with swapped geomorphic
variables (comparing down columns), while there is still substantial sensitivity to swapped hydro-
logical variables (compare across rows). All four modeled cases still have length and relief greater
than those observed in the field.
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We were able to show that hydrology was indispensable for understanding our sites,723

in part because we had hydrologic data for comparison, rather than just surface topog-724

raphy. Adding the hydrological dimension can help get the right answer for the right rea-725

sons in landscape evolution models, or discriminate when we have not gotten the right726

answer for the right reasons. This kind of approach could be useful beyond one-to-one727

site comparisons. For instance, we might be able to examine the effects of hydrological728

versus geomorphic processes on landscape evolution and hydrologic function across land-729

scapes with different lithologies, by using rainfall-runoff relationships or other hydrolog-730

ical indicators that are more widely available than saturation. Constraining subsurface731

properties is still challenging, but methods like the logistic regression approach we pre-732

sented here may be useful, especially as they are improved and refined.733

4.2 Parameter estimation and limits of DupuitLEM734

While our results provide evidence for a critical link between subsurface hydrol-735

ogy and landscape evolution, there are clear discrepancies between the characteristics736

of Baisman Run and Druids Run that we observed and those we were able to model with737

DupuitLEM. Some of these discrepancies could be due to our choice of model param-738

eters, while others appear to be structural limitations of DupuitLEM.739

Our results here and in prior studies (Litwin et al., 2022; Litwin, Tucker, et al., 2023)740

demonstrate that emergent topography and hydrology are highly sensitive to transmis-741

sivity, so the accuracy of the transmissivity estimate is likely a factor in model–data dis-742

crepancies. Our novel approach to estimate transmissivity relied on topographic index743

as a measure of hydrological similarity (O’Loughlin, 1986; Beven & Kirkby, 1979). How-744

ever, our results showed that topographic index and discharge, when combined in Equa-745
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tion 7, were only modestly good predictors of saturated area (Figure 8). Furthermore,746

topographic index is a resolution-dependent quantity (Zhang & Montgomery, 1994), which747

means that the resulting transmissivity that we calculate also depends on DEM resolu-748

tion. While accounting for this effect is unlikely to change the relative magnitudes of trans-749

missivity between the sites, it may change the estimated values. This was a problem with750

calibrated transmissivities in TOPMODEL as well (Beven, 1997), so some of the strate-751

gies that have been devised to reduce the scale dependence in that context (e.g., Saulnier752

et al., 1997) may be useful for improving our transmissivity estimates as well.753

Our model results also showed that hillslope length and relief were too large in the754

simulated landscapes regardless of transmissivity. This could suggest that the relative755

magnitude of hillslope diffusivity to the fluvial erosion efficiency is too large (Perron et756

al., 2008; Theodoratos et al., 2018). Our modelled cases are generally able to reproduce757

observed hilltop curvature (Figure S3A), which suggests that the diffusivity is not the758

primary issue. Modelled channel steepness, however, is systematically larger than the759

channels from which the parameters were defined (Figure S3B). One likely issue that could760

explain this discrepancy arises from using K estimates from 1D channel profiles in a 2D761

model. Hillslopes in the 2D model contribute material to valleys that rivers must remove.762

This decreases their erosional efficiency compared to what is expected when estimating763

K from a 1D profile in which the river only needs to erode at a rate U (Equation 16).764

This topic requires further exploration than can be accommodated here, and will be cov-765

ered in future work.766

While there are limitations to our ability to estimate transmissivity and other pro-767

cess rates, we know that some key hydrological and geomorphic processes and features768

are missing from DupuitLEM. For example, DupuitLEM does not have a pathway for769

evaporation or transpiration of water once it has reached the saturated zone. Especially770

in cases where the water table is close to the surface, evaporation of saturated zone wa-771

ter is likely a significant control on hydrologic dynamics. Including it would decrease the772

proportion of the watershed that stays saturated during interstorm periods and decrease773

antecedent wetness when storms arrive.774

Our simulations were also limited to cases where the subsurface thickness is uni-775

form across the landscape. We know this may not generally be the case. In Baisman Run,776

deeply weathered zones under hillslopes delay the arrival of hillslope water to streams777

and support baseflow, while a relatively shallow subsurface in valley bottoms may in-778

crease the likelihood of overland flow in the channels (Cosans, 2022; St. Clair et al., 2015).779

This pattern could increase flow persistence and drainage dissection relative to a uni-780

form subsurface. In contrast, very thin soils on hillslopes at Druids Run allow satura-781

tion and overland flow to occur frequently, while a more permeable valley bottom may782

increase the subsurface conveyance in valleys relative to the amount of water that remains783

after storms. Depending on how the riparian area is connected to the stream, it may also784

store more water that can be slowly released during interstorm periods. These patterns785

could increase or decrease saturated areas and drainage dissection, depending on the ex-786

tent of the riparian aquifer and its stream connection. In addition to shaping subsurface787

structure, weathering can also result in significant chemical denudation. DupuitLEM,788

like many geomorphic models, assumes all denudation occurs by physical erosion. This789

limitation is discussed in the next section.790

4.3 Chemical weathering and landscape evolution in the Eastern Pied-791

mont792

We were not the first to be interested in the contrast between landscapes on schist793

and serpentine bedrock in the Piedmont. Cleaves et al. (1974) also made this compar-794

ison, using Pond Branch (a subwatershed of Baisman Run), and a small watershed on795

the Soldiers Delight Ultramafite that is south of our site. Pond Branch had been stud-796
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ied previously (Cleaves et al., 1970), while this paper introduced the Soldiers Delight study797

site. The focus of their study was to contrast the roles of physical versus chemical de-798

nudation in the two terrains, and identify the hydrological signature of the deep sapro-799

lite that is present on the schist. Cleaves et al. (1974) identified a hydrological signature800

very similar to what we observed: the schist bedrock site had baseflow-dominated runoff,801

which was highly persistent through droughts due to the large volume of storage in the802

saprolite. In contrast, they observed that the site on the ultramafic bedrock generated803

more quickflow, and had highly variable baseflow discharge, which they attributed to the804

lack of saprolite.805

In examining the morphologies of the two sites, they determined that there was no806

strong evidence for differences in overall rates of denudation between the terrains. How-807

ever, on the basis of a geochemical mass balance they determined that chemical weath-808

ering was responsible for approximately 90% of denudation in Soldiers Delight at present,809

while it was responsible for approximately 50% of denudation at Pond Branch. This would810

suggest a significant difference in how we should interpret the resulting morphologies,811

as we assumed that all denudation was due to physical erosion. Some recent work be-812

gins to provide a framework for understanding morphologic effects of chemical denuda-813

tion. Ben-Asher et al. (2019) introduced a modification of the hillslope mass balance that814

includes chemical denudation in the form of a chemical depletion fraction (CDF). They815

showed that curvature should be reduced as the ratio of chemical to total denudation816

increases, assuming a constant hillslope diffusivity. Marcon (2019) applied this princi-817

ple to several hillslopes on contrasting lithologies across the Piedmont, including sites818

on schist and serpentine bedrock. They found decreasing hilltop curvature with increas-819

ing CDF, where serpentine sites had the highest CDF and lowest hilltop curvatures. In-820

terestingly, at our sites we found virtually no difference in hilltop curvature between litholo-821

gies. If the total denudation rate at both sites is indeed very similar, but chemical de-822

nudation is dramatically different, we are left with the conclusion that the identical cur-823

vature is a coincidence that arises from higher hillslope diffusivity D at Druids Run than824

Baisman Run. Dissolution could also have significant effects on river profiles, with con-825

sequences for interpretations of channel steepness and streampower incision coefficient826

K. Further research, including updated denudation estimates specific to our sites, would827

be needed to draw further conclusions.828

4.4 Toward surface–subsurface critical zone evolution829

Here we sought to understand how subsurface properties condition runoff gener-830

ation and, as a result, topographic evolution. Many other processes that build and struc-831

ture the critical zone, which extends from the top of the canopy to the bottom of the cir-832

culating groundwater, are closely coupled (Brantley et al., 2007; Troch et al., 2015). Be-833

sides the hydrological link, other studies have shown that subsurface properties can in-834

fluence morphology by limiting the size and effectiveness of sediment to do erosional work835

(Callahan et al., 2019; Brocard et al., 2016). Others have investigated critical zone evo-836

lution from fresh bedrock up to the surface, and have shown some aspects of how climate,837

hydrology, and geomorphology condition the evolution of the subsurface (e.g., Rempe838

& Dietrich, 2014; Harman & Cosans, 2019; Anderson et al., 2019). There is a lot of work839

to be done to understand the feedbacks between surface and subsurface evolution, and840

how they produce, across a range of climates and lithologies, relatively similar patterns841

of drainage networks and soil-mantled hillslopes. At the same time, we have an increas-842

ingly detailed picture of critical zone structure. High-resolution topographic data has843

given us detailed insights into geomorphic processes acting at the surface (Sofia, 2020),844

while near-surface geophysics has allowed us to peer into the subsurface and begin to test845

models of subsurface evolution (Riebe et al., 2017; Parsekian et al., 2021). Our hope is846

that future work will consider the importance of feedbacks between subsurface hydrol-847

ogy and topography as we go forward in our understanding of critical zone structure and848

evolution.849
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5 Conclusions850

We framed this paper with two hypotheses about how the morphology and hydro-851

logical function of two landscapes should be different, informed by our understanding852

of how the subsurface affects coevolution of runoff and topography. We found that both853

the hydrological function and morphology aligned with our predictions. Druids Run, which854

has a thin permeable subsurface, had more extensive variably saturated areas, more vari-855

able effective area contributing runoff, and shorter hillslopes than Baisman Run, which856

has a deep permeable subsurface. An analysis of the available field data further showed857

that the transmissivity was substantially higher at Baisman Run than Druids Run. While858

these findings support our hypothesis that coevolution with subsurface hydrology is im-859

portant for emergent morphology and hydrological function, they did not in themselves860

provide a causal link. To test that link, we used a landscape evolution model with ground-861

water flow to show that the differences in geomorphic process rates (the hillslope diffu-862

sivity and streampower incision coefficient) were insufficient to explain the differences863

in morphology and hydrological function we observed. At the same time, we found dis-864

crepancies between the calibration-free model results and field data, which we discussed865

in the context of both parameter estimation challenges and model structure. The meth-866

ods we explored here could serve as the basis for future study to uncover the importance867

of subsurface hydrology for the evolution and hydrological function of landscapes.868

6 Open Research869

All original data, model output, and scripts needed to process data and generate870

figures are archived on Zenodo (Litwin & Harman, 2024). The Python package DupuitLEM871

v1.1 (Litwin, Barnhart, et al., 2023) contains the models and scripts used to generate872

and post-process the model output. Landlab v2.0 (Barnhart et al., 2020) is a core de-873

pendency of DupuitLEM.874
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Figure S1. Rating curve for the Druids Run watershed, including measured discharge and the

power law model.
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Figure S2. (A) Map view classified saturated areas for model results shown in Figure 14A,

where Q∗
max = 0.6 was used to determine the erodibility for cases with Druids Run geomorphic

variables. Saturated area behavior is not highly sensitive to swapped geomorphic variables, while

it is sensitive to swapped hydrological variables. (B) Fractional area that is classified as wet,

variable, and dry based on field data (labelled “Druids Run” and “Baisman Run”) and the four

modeled cases.
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Figure S3. Violin plots showing distributions of hilltop curvature (A) and channel steep-

ness (B). The results correspond to the updated runoff ratio cases, where DR-DR and BR-DR

use Q∗
max=0.6 and BR-BR and DR-BR use Q∗

max=0.3. Modeled hilltop curvature shows good

agreement with the sites, though it is slightly lower than true in BR-BR and BR-DR as the long

hillslopes in these cases are still adjusting to baselevel. Channel steepness is substantially higher

in modeled cases than true cases for the input value of K.
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