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Abstract

Air pollution caused by various anthropogenic activities and biomass burning continues to be a major problem in India. To

assess the effectiveness of current air pollution mitigation measures, we used a 3D global chemical transport model to analyze

the projected optical depth of carbonaceous aerosol (AOD) in India under representative concentration pathways (RCP) 4.5

and 8.5 over the period 2000-2100. Our results show a decrease in future emissions, leading to a decrease in modeled AOD

under both RCPs after 2030. The RCP4.5 scenario shows a 48-65% decrease in AOD by the end of the century, with the

Indo-Gangetic Plain (IGP) experiencing a maximum change of ˜25% by 2030 compared to 2010. Conversely, RCP8.5 showed

an increase in AOD of ˜29% by 2050 and did not indicate a significant decrease by the end of the century. Our study also

highlights that it is likely to take three decades for current policies to be effective for regions heavily polluted by exposure

to carbonaceous aerosols, such as the IGP and eastern India. We emphasize the importance of assessing the effectiveness of

current policies and highlight the need for continued efforts to address the problem of air pollution from carbonaceous aerosols,

both from anthropogenic sources and biomass burning, in India.
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Abstract21

Air pollution caused by various anthropogenic activities and biomass burning continues to be a22

major problem in India. To assess the effectiveness of current air pollution mitigation measures, we23

used a 3D global chemical transport model to analyze the projected optical depth of carbonaceous24

aerosol (AOD) in India under representative concentration pathways (RCP) 4.5 and 8.5 over the25

period 2000-2100. Our results show a decrease in future emissions, leading to a decrease in modeled26

AOD under both RCPs after 2030. The RCP4.5 scenario shows a 48-65% decrease in AOD by the27

end of the century, with the Indo-Gangetic Plain (IGP) experiencing a maximum change of ∼25%28

by 2030 compared to 2010. Conversely, RCP8.5 showed an increase in AOD of ∼29% by 2050 and29

did not indicate a significant decrease by the end of the century. Our study also highlights that30

it is likely to take three decades for current policies to be effective for regions heavily polluted31

by exposure to carbonaceous aerosols, such as the IGP and eastern India. We emphasize the32

importance of assessing the effectiveness of current policies and highlight the need for continued33

efforts to address the problem of air pollution from carbonaceous aerosols, both from anthropogenic34

sources and biomass burning, in India.35

1 Plain Language Summary36

Air pollution from human activities and biomass burning is a significant issue in India. To37

understand the efficacy of current efforts, a computer model is used to study the projected levels38

of carbonaceous aerosols (measured as optical depth) from 2000 to 2100. The results suggest that39

emissions are expected to decrease after 2030, leading to a drop in modeled aerosol levels. In an40

optimistic scenario of RCP4.5, aerosol levels could decrease by 48-65% by the end of the century,41

with the Indo-Gangetic Plain(IGP) showing the most improvement by 2030. However, in a scenario42

without any significant measures, aerosol levels may increase by 29% by 2050 and not improve43

significantly by the end of the century. The study indicates that it might take around 30 years for44

current pollution control measures to make a noticeable difference in heavily polluted regions like45

the IGP and eastern India. These findings underscore the importance of evaluating the effectiveness46

of current policies and the need to address air pollution in India caused by carbonaceous aerosols47

from both human activities and biomass burning. This information is crucial for policymakers48

and the public to understand the progress made and the challenges that persist in combating air49

pollution.50

2 Introduction51

Atmospheric aerosols are considered to be the most important air pollutants affecting human52

health (Butt et al., 2016; Shiraiwa et al., 2017), atmospheric visibility (Gunthe et al., 2021), precip-53

itation patterns (Sarangi et al., 2018; Nandini et al., 2022), and regional and global climate change54

(Levy et al., 2013; Haywood, 2021). In recent decades, rapid economic expansion, population55

growth, and urbanization have led to increased concentrations of atmospheric aerosol components,56

including sulfate, Black Carbon (BC), Organic Carbon (OC), and dust, particularly over the Indian57

subcontinent (Provençal et al., 2017; David et al., 2018). In addition, Sea Salt (SS) particles are an58

important natural contributor to aerosol mass in coastal regions. (Murphy et al., 2019; Chin et al.,59

2002). These constituents play an important role in understanding the air quality over the region.60

–2–
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Aerosol Optical Depth (AOD) is an important optical property of aerosol particles, which can61

serve as a proxy for analyzing air quality. Several studies show that the daily and monthly mean62

AOD over heavily populated areas such as the Indo Gangetic Plain (IGP) has reached a maximum63

of about 0.8-0.9 (Lodhi et al., 2013; M. Kumar et al., 2018). Moreover, both light-absorbing and64

scattering carbonaceous aerosols (Black Carbon (BC) and Organic Carbon (OC) (Xie et al., 2017))65

are increasing over India due to increased Biomass Burning (BB) and various other anthropogenic66

sources (Venkataraman et al., 2006; Mhawish et al., 2021). This has a positive radiative effect67

on climate leading to an increase in near-surface temperature (Andreae & Gelencsér, 2006; Liu et68

al., 2020) and suppression of monsoon rainfall (Andreae, 1993; Cowan & Cai, 2011) over India.69

Additionally, these fine mode (FM), OC, and BC are associated to many cardiovascular mortality70

and morbidity, which include lung diseases such as asthma, Chronic Obstructive Pulmonary Disease71

(COPD), and lung cancer (Butt et al., 2016; Yang et al., 2019). Therefore, there is growing concern72

among policymakers and the scientific community in India about the future increase in carbonaceous73

aerosols from various BB and anthropogenic emission sources and the need to reduce these future74

emission sources on a high priority basis(Keywood et al., 2011; Lee et al., 2017).75

For this, four Representative Concentration Pathways (RCPs) were adopted in the Intergov-76

ernmental Panel on Climate Change (IPCC) Fifth Assessment Report for the future climate pro-77

jections: RCP2.6, RCP4.5, RCP6.0, and RCP8.5, which represent global radiative forcing of 2.6,78

4.5, 6.0, and 8.5 Watts m−2(Li et al., 2016), respectively. The RCPs outline the courses of action79

for emissions of greenhouse gases (GHGs), atmospheric concentrations, air pollutant emissions, and80

land use throughout the 21st century. According to the Synthesis Report (SYR) of the IPCC Fifth81

Assessment Report (AR5), the four Representative Concentration Pathways (RCPs) are divided82

into scenarios, with RCP2.6 being the scenario with strict mitigation and lowest forcing level mak-83

ing it the most optimistic scenario, followed by two mid-range scenarios - RCP4.5 and RCP6.0,84

and finally RCP8.5, the scenario with unabated emissions, which is also likely to be a worst-case85

scenario. In the absence of additional measures to limit emissions, often referred to as ’baseline sce-86

narios’, our trajectory is expected to fall within the range of RCP6.0 to RCP8.5 (Intergovernmental87

Panel on Climate Change, 2014). Since the RCP2.6 scenario is an optimistic model, it is difficult88

to achieve, while RCP6.0 is between RCP4.5 and RCP8.5. Therefore, RCP4.5 and RCP8.5 are89

expected to cover a realistic range of the estimated future (Chowdhury et al., 2018). Furthermore,90

RCP4.5 is a stabilization scenario representing a plausible pathway that could potentially limit the91

magnitude of future climate change impacts (Chowdhury et al., 2018).92

Over the last few decades, analysis using various models, satellite data, and ground-based93

AERONET stations have revealed an increasing trend in the temporal mean AOD over India (Ra-94

machandran et al., 2012; Srivastava & Saran, 2017). Several studies over India and various parts95

of the country have pointed out the increase in AOD due to regional and long-range transport of96

anthropogenic aerosol components (Rawat et al., 2019; David et al., 2018; Rajeev et al., 2000). This97

increase in aerosol loading is attributed to urbanization and population growth, which mainly con-98

tribute to the anthropogenic contribution of aerosols in India. Seasonal variations, especially in one99

of the most affected regions, IGP, show a significant increase in AOD during November-December100

and March-April, and a decreasing trend during May-October (Alpert et al., 2012; Chawala et al.,101

2023). To understand the future of aerosol loading in India, few studies have attempted to estimate102

the change in AOD and some of its components under RCP scenarios. (Saha et al., 2017) estimated103

an increase of 1.42% under RCP8.5 over the Indian subcontinent by 2036-2045 compared to base-104
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lines 1996-2005. However, not many attempts have been made to understand the future changes in105

carbonaceous aerosols in the Indian region.106

Fossil fuel combustion and biomass burning are the two major sources of carbonaceous aerosol107

loading in India. The dominance of these sources over each other varies across different regions108

throughout the country (Dutta & Chatterjee, 2021). It is also observed that the contribution of109

fossil fuel emission is higher during pre-monsoon, whereas post-monsoon and winter are dominated110

by biomass burning in certain parts of the country (Bikkina et al., 2019). Biomass burning is111

closely related to emissions as well as global and regional climate change (Taylor, 2009; Reisen et112

al., 2013). In turn, climate change may lead to more severe fires with high frequency and high113

intensity (FLANNIGAN et al., 2009). The growing population may increase the total emissions114

from anthropogenic as well as biomass burning emissions (Perera, 2017). An approximate increase115

of 38% in OC and 35% in BC emissions was estimated over India during 1996-2010 (Lu et al.,116

2011; Rawat et al., 2019). BC aerosols from fossil fuel burning were reported to be approximately117

4 times higher than biomass burning in urban regions of western India (Rajesh & Ramachandran,118

2017). Literature also indicates that the largest amount of biomass burning occurs in Southeast119

Asia, where an estimated 330 Tg of biomass is burned in an average year. This is primarily due to120

a large amount of agriculture slash burn and timber harvesting carried out here (Galanter et al.,121

2000; Streets et al., 2003). In 1990, India’s black carbon emissions were estimated at 0.45 Tg per122

year, of which 55% was from fossil fuel combustion and 45% from biomass combustion. Similarly,123

India’s organic matter emissions for the same year were estimated at 2.46 Tg per year, with 43%124

from fossil fuel combustion and 57% from biomass combustion (Shekar Reddy & Venkataraman,125

2000).In 2018, India emitted 1480 Gg yr−1 anthropogenic BC. Transport was the largest at 46%126

(673 Gg yr−1), followed by residential at 26% (387 Gg yr−1), and 16% (239 Gg yr−1) from other127

sectors. Industry and thermal power composed 11% (161 Gg yr−1) and 1% (19 Gg yr−1), with128

mobile diesel and irrigation at 2% (31 Gg yr−1). Simultaneously, 2018’s anthropogenic organic129

carbon (OC) emissions hit 3116 Gg yr−1. Residential biofuel burning accounted for 39% (1213 Gg130

yr−1), transport for 32% (1010 Gg yr−1), and other sources for 29% (893 Gg yr−1) (P. Kumar et131

al., 2023).132

Air pollution due to carbonaceous aerosols in India requires urgent strategies to reduce emis-133

sions, as India has set a target of net zero carbon emissions by 2070 at the UN Climate Summit134

Conference of Parties (COP26) in Glasgow in 2021. Over the past decade, the Indian government135

has adopted and implemented stringent measures to reduce air pollution (Gulia et al., 2022). The136

effectiveness of these measures can be assessed by analyzing changes in aerosol loading from vari-137

ous emission sources. To quantify the impact of these emission sources in India in the future, the138

current study aims to understand the seasonal variations of carbonaceous aerosol under futuristic139

climate scenarios. India has spatially varying landscapes, climates, and population distribution;140

accordingly, the study area is divided into six different regions. The objective is to understand the141

future evolution of carbonaceous aerosols (BC+OC) due to both anthropogenic and BB emissions142

under RCP4.5 (medium) and RCP8.5 (extreme) scenarios, thereby further providing deep insights143

into the impact and decadal trend of AOD in India up to the end of the century (the year 2100).144

The study excludes all climate changes that could affect the future contributions of these emission145

sources. Instead, the focus is solely on the impact of changes in emissions, which is the primary146

objective of policymakers to improve air quality in India in the future.147
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A description of the GEOS-Chem (GC) model, RCP scenarios, satellites, and ground-based148

observational data is provided in section 3. A detailed overview of the study region and its clas-149

sification is presented in section 4. Section 5, compares the AOD from the model using current150

emission inventories with the satellite and ground-based observations. Furthermore, we compared151

the carbonaceous AOD from the 2010 GEOS-Chem simulation (GC2010) obtained using the 2010152

meteorology as well as the emissions with projected carbonaceous AOD over India under the two153

RCP scenarios. The seasonal changes in these AOD for different regions were also examined. Sec-154

tion 6 discusses implications that may be useful for policymakers, and the main findings of the155

study are summarized in section 7.156

3 Methodology157

3.1 GEOS-Chem Model description158

In this study, the GEOS-Chem (GC) 3-D chemical transport model (version 12.1.1) (accessible159

at https://geoschem.github.io/, (Bey et al., 2001)) has been used. The assimilated meteo-160

rological data with 6-hour timestep has been used from Modern Era Retrospective Reanalysis2161

(MERRA2) datasets (Song et al., 2018). The simulation domain is localized over Asia (11°S-55°N,162

60°-150°E) with a horizontal resolution of 0.5° × 0.625° and 47 vertical layers extending down to163

0.01 hPa. For aerosol chemistry, GC uses aerosols, gas-aerosol phase partitioning, and O3-NOx-164

hydrocarbon chemistry. Tracer concentrations at the lateral boundaries are derived from global165

GEOS-Chem simulations with a horizontal resolution of 4° × 5° and an update frequency of 3166

hours. The GC simulated AOD of different components such as black carbon (BC), organic carbon167

(OC), dust, sulfate (SO2) and sea salt (SS), which were further aggregated to total AOD. The sim-168

ulation for carbonaceous aerosols such as BC and primary OC(POC) follows standard GEOS-Chem169

procedures outlined by (Park et al., 2003).170

Simulations are conducted utilizing emissions data representative of the present-day (year 2010)171

and future emissions spanning from 2010 to 2100 for each Representative Concentration Pathway172

(RCP) scenario. All simulations utilize the 2010 MERRA-2 assimilated meteorological dataset.173

The selection of the year 2010 is motivated by its relatively stable meteorological conditions (Li et174

al., 2016), aligning well with the objective of simulating future Aerosol Optical Depth (AOD) based175

on emissions spanning from 2010 to 2100 (Song et al., 2018). This choice is particularly suitable176

for investigations focusing on the long-term trends and climatology of aerosol emissions (Li et al.,177

2016). Each simulation is integrated over an 18-month period, with the initial 6 months designated178

as the model initialization phase for both the nested fine resolution (0.5° × 0.625°) and global coarse179

resolution (4° × 5°) simulations, which provide the boundary conditions.180

3.1.1 Emissions181

The emissions data for each decade within the Representative Concentration Pathway (RCP)182

scenarios, spanning from the baseline year 2000 to 2100, encompassing carbon monoxide, non-183

methane volatile organic compounds (VOCs), sulfur dioxide (SO2), nitrogen oxides (NOx), am-184

monia (NH3), black carbon (BC), and organic carbon (OC), were sourced from https://tntcat185

.iiasa.ac.at/RcpDb. These emissions have a spatial resolution of 0.5° x 0.5° and originate from186

various sources, including transportation (surface transportation, international shipping, and avia-187
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tion), energy production (power plants and energy conversion), resource extraction, residential and188

commercial sectors, industrial activities (combustion and processing) including solvent usage, waste189

management (landfills, wastewater treatment, and incineration), agriculture (field waste burning),190

as well as grassland and forest fires.191

With the exception of emissions attributed to biomass burning, shipping, and aviation, which192

exhibit monthly variations, the RCP emissions are generally represented as annual averages. To193

enhance the precision of aerosol simulations over India, monthly scaling factors for ozone (O3)194

precursors, aerosol precursors, and aerosols were derived from the MIX emission dataset for the195

year 2010 (Li et al., 2016). Notably, for the simulation pertaining to the year 2010 in the absence196

of RCP scenarios, we employed MIX emission inventories in conjunction with the Modern Era197

Retrospective Reanalysis2 (MERRA-2) meteorological data. Throughout this investigation, these198

gridded monthly scaling factors are systematically applied to anthropogenic RCP emissions across199

all years and RCP scenarios. The anthropogenic emissions specific to India from the MIX dataset are200

primarily derived from the latest inventory accessible at http://meicmodel.org.cn/?page id=89,201

widely recognized for its application in aerosol modeling studies over the Indian subcontinent.202

Fig.A1 shows the changes in the sum of anthropogenic and biomass burning emissions of SO2,203

NOx, NH3, BC, and OC over India between 2000 and 2100 as a function of RCP scenarios. In204

2000, there were 5.1, 3.2, 3.8, 0.5, and 1.8 Tg species per year of SO2, NOx, NH3, BC, and OC205

emissions in India, respectively. Trends for all species over the 2000-2100 period follow a similar206

pattern, with peak emissions for all but NH3 occurring between 2030 - 2040 and for OC in 2050.207

A significant decrease is observed in emissions between 2050 and 2100 under both scenarios. SO2208

emissions in 2100 are 68% and 30% lower than in 2000 under RCP4.5 and RCP8.5 respectively.209

Under RCP4.5, NOx emissions increase (decrease) by 126% (45%) in 2040 (2100) and by 115%210

(14%) in 2030 (2100) under RCP8.5 compared to those in the year 2000. Under RCP4.5, BC (OC)211

emissions decrease (increase) by 55% (143%) in 2100 compared to those in 2000. Under RCP8.5,212

on the other hand, both BC and OC increased by 20% and 17%, respectively, in 2100 compared213

to those in 2000. Under all RCP scenarios, NH3 emissions increase steadily by 90-137% from214

2000 to 2100, primarily due to increasing food demand and population (van Vuuren et al., 2011).215

The natural emissions are set to 2010 and follow the configurations in the typical GEOS-Chem216

simulation. (Sauvage et al., 2007) and (Murray et al., 2012) describe NOx emissions from lightning,217

while (Yienger & Levy II, 1995) describes emissions from soil. Similarly, global emission inventory218

was used for the NH3 emissions from soils, plants, and oceans(Bouwman et al., 1997). Biogenic219

Volatile Organic Compounds (BVOCs) such as isoprene, monoterpenes plays a crucial role in the220

formation of secondary organic aerosols (SOA) and were determined using the Model of Emissions221

of Gases and Aerosol from Nature (MEGAN) (Guenther et al., 2006). The weather of 2010 affected222

the natural emissions of BVOCs, lightning NOx, and soil NOx over India.223

3.2 Observations (AERONET, MODIS Terra and Aqua, and MERIS)224

This section outlines the satellite and ground-based observations used in this study for com-225

parison with the model data. The satellite observations include MODIS-Aqua and Terra, as well226

as MERIS. The AERONET dataset consists of data from five stations, as shown in Fig. 1. These227

datasets were regridded to the model resolution for analysis.228
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Satellite observations:229

MODIS: Data from two Moderate Resolution Imaging Spectroradiometer (MODIS) instru-230

ments on the Aqua and Terra satellites was used in this study. The two satellites orbit in opposite231

directions, with Terra starting from the North and Aqua from the South. Each satellite passes232

over the equator at a different time: Terra in the morning and Aqua in the afternoon. AOD233

over land at 550 nm was obtained from the ”Optical Depth Land and Ocean” product of the234

level 2 aerosol product (L2 collection 6). Using the Deep Blue (over land) and Dark Target (over235

ocean) algorithms, MODIS L2 provides complete global coverage of aerosol properties and can be236

accessed at https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MOD06 L2/. The237

Deep Blue algorithm estimates AOD by analyzing different wavelengths as well as surface and at-238

mospheric feature contrast. For our analysis, the Aqua and Terra AOD data were converted to239

model resolution.240

MERIS: The Medium Resolution Imaging Spectrometer (MERIS) is a programmable medium241

spectral resolution imaging spectrometer operating in the solar reflectance spectrum and carried242

by the European Space Agency’s Envisat satellite. In the spectral range from 390 nm to 1040243

nm, fifteen spectral bands with programmable widths and positions can be selected by ground244

command. Santer developed the aerosol retrieval technique in 2000 based on the Look-Up Tables245

(LUT) approach for specific aerosol size distributions with specific refractive indices. Particles are246

assumed to be spherical and ground reflection is assumed to be minimal (Kokhanovsky et al., 2007).247

The MERIS AOD retrieval used here (Mei, Rozanov, et al., 2017; Mei, Vountas, et al., 2017) has its248

own cloud screening procedure, aerosol type selection, and appropriate surface parameterization.249

Although the instrument was originally not designed for retrieval of AOD because of the absence250

of SWIR channels, it has been used in a number of cases and the retrieved AOD proved to be very251

reliable. It should be noted that the AOD product has the native resolution of the instrument, i.e.,252

roughly 1 km2.253

AERONET Level 2 aerosol product: AERosol RObotic NETwork (AERONET) is the di-254

rect ground based AOD observations that had been cloud-screened and quality-assured (Holben et255

al., 1998). Level 2 data for five AERONET sites for 2010 over India was used in this study, obtained256

from https://aeronet.gsfc.nasa.gov/cgi-bin/draw map display aod v3?long1=-180&long2=257

180&lat1=-90&lat2=90&multiplier=2&what map=4&nachal=1&formatter=0&level=3&place code=258

10&year=2010. As depicted in Fig.1 and our division of regions, two of the five stations are in IGP259

(Kanpur and Gandhi College in Uttar Pradesh), and the rest is in NI (Nainital), SI (Pune), and WI260

(Jaipur). The AOD at 550nm was used for all the AERONET stations except Pune. Due to the261

unavailability of AOD data at 550 nm for Pune the next close wavelength of 675 nm was used in262

the analysis. At a resolution of 0.5° x 0.625°, the monthly averaged AERONET observations were263

matched to the closest GEOS-Chem grid cells.264

4 Study Region265

The Indian region extending between 8°4’N 68°7’E to 37°6’N 97°25’E encompasses diverse266

terrain, including the mountain ranges in the north, the Gangetic Plain, the deserts in the northwest,267

the central plateau, and the Deccan plateau with the eastern and western ghats on the sides.268

This diverse topography, coupled with variability in the population distribution, land use, land269
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Figure 1: The study area is divided into six different domains based on climatic conditions, seasonal
variability, and aerosol variations. Pie charts display the average AOD and the distribution of its
components at 550nm modeled by GEOS-Chem for the year 2010, with AERONET station locations
marked by red triangles.

cover patterns, and environmental conditions, contributes to the heterogeneous nature of aerosol270

characteristics.271

The aerosol distribution over any region is intricately linked to the sources, which in turn272

is closely related to the demography and land use - land cover pattern. For instance, the Indo-273

Gangetic Plain (IGP) is one of the most populous regions of India, which could be attributed274

to the availability of fertile land and water resources. The region also has the highest emissions,275

resulting in significant amounts of various pollutants (Rawat et al., 2019; Mogno et al., 2021), with276

the emissions from anthropogenic origin evident in the region. Carbonaceous aerosols significantly277

contribute to the IGP region due to fossil fuel and coal burning, biomass burning such as wood,278

burning of agricultural waste, forest fires, and other anthropogenic pollution. Similarly, the western279

part is dominated by the dust particles from the suspension during hot and dry weather, further280

enhanced by long-range transport from Asian and African deserts (Mitra & Sharma, 2002; Streets281

et al., 2003; Dey et al., 2004; Sharma et al., 2010; Misra et al., 2014; Yadav et al., 2022).282

India’s climate exhibits distinct variations, primarily influenced by its geographical features.283

The country experiences a continental climate marked by notable seasonal changes. Southern and284

central regions, situated closer to the equator, undergo a tropical climate with consistently warm285

temperatures. In contrast, the northern and northwestern parts feature a subtropical climate char-286

acterized by relatively hotter summers and colder winters. The onset of the Southwestern monsoon,287

marked by prevailing southwesterly winds, impacts most of the country, while specific regions experi-288

ence northeasterly winds during the reversal phase. Consequently, India’s meteorological seasons are289
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categorized into winter (December-January-February), pre-monsoon/summer (March-April-May),290

monsoon (June-July-August-September), and post-monsoon (October-November) (David et al.,291

2018; Mangla et al., 2020).292

The pollution levels in a region are significantly influenced by both topography and weather293

conditions. The Hindu Kush and the Himalayas, situated to the northwest and northeast of the294

Indo-Gangetic Plain (IGP), along with its continental weather, contribute to elevated pollution295

levels, particularly during the winter months (Mogno et al., 2021). The pollution events in the296

IGP have a substantial impact on eastern India (EI) along with forest fire events in the region297

(Ramachandran & Cherian, 2008; Biswas et al., 2017). Conversely, southern India, enveloped by298

oceans on all sides, maintains a relatively cleaner environment. Emissions from other parts of299

India are not expected to exert a notable effect on the northern part of India (NI). For this study,300

India has been divided into six domains (Fig.1) based on topography, climatic conditions, seasonal301

variability, and variation in the aerosol distribution. In Fig.1, NI, WI, EI, CI, SI and IGP represent302

the northern, western, eastern, central, and southern parts of India and the Indo-Gangetic Plain,303

respectively. (David et al., 2018, 2019). The ground-based AERONET stations are represented by304

red triangles for each region.305

5 Results and Discussion306

5.1 Current AOD trends and its composition over India307

In the following section, we discuss the distribution of AOD compositions considered for this308

study (such as BC, OC, dust, SS, and SO4) across the six regions of India for the year 2010 (Fig.1).309

Next, we will look at the seasonal variation that would further aid in a better understanding of the310

dynamics of these components and the total AOD in India with different seasons.311

5.1.1 Spatial distribution of AOD and Aerosol composition312

The mean AOD and its components over six different regions of India for the year 2010 are313

shown in Fig.1. IGP region exhibited the highest average AOD followed by CI, SI, WI, EI, and314

NI, with a mean AOD of 0.53, 0.44, 0.38, 0.33, 0.32, and 0.17, respectively. In the six regions, the315

sulfate concentration is found to dominate, followed by OC, except for WI where dust dominates316

potentially because of the prevailing arid climate and presence of deserts (Table.1). In EI, the317

contribution of OC is highest amongst the six regions, and NI has the least mean AOD and is one318

of the cleanest regions due to its high altitude and less emission sources. Fig.2 shows the simulated319

seasonal mean concentration of OC, BC, dust, sulfate, SS, and Total AOD (sum of OC, BC, dust,320

sulfate, and SS). The highest seasonal mean AOD is observed to be 0.8 to 1.0 in some parts of321

IGP during post-monsoon (October-November). During this period, especially in November, the322

pollutants are trapped due to the shallow atmospheric boundary layers (Ojha et al., 2020). Also,323

the fire emission rates during the post-monsoon crop harvesting season are three times higher324

than during the pre-monsoon season (Mogno et al., 2021). The major contributors observed are325

sulfate, followed by OC. This region’s industrial sector is responsible for these species’ regional326

emissions (Rawat et al., 2019; Shukla et al., 2022). Specifically, the OC AOD is observed to be the327

highest in IGP. The value ranges from 0.16 - 0.2. IGP is expected to have high AOD values due328

to high population density and emission sources (David et al., 2018). The high concentration of329
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carbonaceous aerosols (OC and BC) can be attributed to biomass burning emissions, whereas the330

secondary source could be due to the condensation of organic vapors as they oxidize and become331

less volatile (Seinfeld & Pandis, 2016; Mogno et al., 2021).332

Further, high aerosol loading ranging between 0.5 to 0.7 is observed in IGP, EI, southwestern333

India, and the east coast during winter (December-January-February). It is during this period that334

anthropogenic activities dominate aerosol loading. Therefore, a higher AOD is observed in the335

peninsular region compared to the northern part in winter, which is in line with the studies con-336

ducted by (Tripathi et al., 2006). Moreover, the coal-based thermal power plant location coincides337

with the areas of high AOD in the central and the eastern IGP (Tyagi et al., 2021). Addition-338

ally, the highest seasonal mean AOD of 0.47 is observed in summer (March-April-May). Studies339

suggest that the southwesterly summer winds transport dust from the Thar Desert, and biomass340

burning is also a major contributor, specifically in the Western part of IGP, during this period.341

Additionally, the industrial sector in the eastern part is the prominent anthropogenic source and342

contributor (Dey et al., 2004; Shukla et al., 2022). About ∼76% of IGP forms major cultivable343

land. Therefore, crop residue burning after harvest is one of the major practices during this season344

that contributes to emissions (R. Kumar et al., 2011). During this period, the AOD is observed to345

be high in EI. Further, EI is highly influenced by the activities in IGP as the winds transport the346

pollution from IGP to EI. Several studies have reported high levels of AOD in North East India,347

particularly during the summer when the winds carry the pollution from the IGP region toward348

the eastern Himalayas (Biswas et al., 2017).349

Table 1: Region wise Aerosol Composition (%) for the year 2010

Region
Aerosol Composition %

BC OC Dust SO4 SS

India 1.66 21.67 15.34 58.20 3.13
North India 1.44 18.66 18.93 60.28 0.70

Indo-Gangetic Plain 1.80 22.84 14.88 58.82 1.66
East India 2.15 30.90 11.04 53.56 2.34
West India 1.54 19.28 25.45 47.60 6.12

Central India 1.54 20.59 14.33 60.83 2.71
South India 1.55 20.29 12.49 61.13 4.55

Note: Percentages may not total 100% due to rounding errors.

5.1.2 Seasonal variation in AOD350

In this section, the seasonal variation in GC-simulated AOD and its components, along with the351

satellite observations (MODIS Terra, MODIS Aqua, and MERIS) and ground-based AERONET352

measurements over the six regions will be discussed. The seasonal variation of AOD and its com-353

ponents over the six regions of India and for all the seasons of the year 2010 is shown in Fig.4.354

Additionally, for better understanding, we have compared the Total AOD data of GC and all355
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Figure 2: Spatial plot illustrating the Total AOD and its components derived from GEOS-Chem
for the year 2010. The color bar represents the AOD values. The components have been scaled to
a common magnitude by multiplying them with appropriate factors.

the satellites using a box and whisker plot as shown in Fig.3. The plot indicates no considerable356

fluctuation in the mean AOD values among the seasons.357

During monsoon, the MODIS Aqua and Terra AOD are observed to be about ∼26-41 % more358

than the model and the MERIS AOD. It is only in this season that the modeled total AOD is lower359

compared to the satellites’ AOD. On the other hand, the spatial resolution of MERIS is higher360

compared to MODIS. Additionally, the algorithm used by both instruments for estimating AOD is361

different. Therefore, this difference in the spatial resolution and algorithm can lead to a difference362

in value between MERIS and MODIS AOD. On further investigating the components, the highest363

contributor is observed to be sulfate, followed by dust (Fig. 4). The contribution of SS in all the364

regions is highest in monsoon compared to other seasons. SS contributes ∼13.3% in WI followed365

by ∼12.41% in SI. For the rest of the regions, it ranges from ∼1% to 6%, with NI having the lowest366

value. The BC ranges between ∼1%-2% for all regions and OC between ∼14%-20% for regions367

except EI, which is ∼29.45% this season.368

Whereas, during post-monsoon, GC is found to be overestimating the AOD value by ∼6-9%369

and ∼21.4% (Model:0.391, MERIS: 0.322, Aqua: 0.367, Terra: 0.359) relative to the MODIS (Aqua370

and Terra) and MERIS data, respectively. In this season, a reduction in dust and SS percentage371

is observed compared to monsoon. However, a considerable increase in carbonaceous aerosols is372
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noticed. There are a few regions like IGP and EI where a consistently high percentage of OC and373

BC is observed as compared to other regions, and there is an increase of ∼28.14% and ∼22.33%374

in BC and OC with respect to monsoon, respectively, in EI and similarly ∼50.36% and ∼38.94%375

in IGP. Additionally, a drastic increase of ∼93% in BC and ∼68.47% in OC is evident in WI with376

respect to monsoon. The percentage of dust is the least in this season compared to others in all six377

regions.378

During winter, it is observed that the model and the MODIS Terra are in good agreement, but379

compared to MERIS and MODIS Aqua, the model is overestimating in the range of ∼8-30%. One of380

the evident findings is the highest percentage of carbonaceous aerosols is in winter compared to the381

rest of the seasons. Especially in EI, where BC is ∼3%, and OC is ∼41.32%, there is a considerable382

increase of ∼17.64% and ∼14.81% in BC and OC, respectively, with respect to post-monsoon. In383

this season, the highest percentage of AOD component is sulfate, followed by OC ranging around384

∼47-62% and ∼23-41%, respectively. When the monthly mean AOD from the satellites and model385

averaged over India is compared in Fig.A2, the satellite and model data show a good agreement386

except for some months in the monsoon (July and August). The GEOS-Chem model produces lower387

AOD values than satellite data, particularly over regions with high aerosol loading Fig.A3. This388

could be attributed to both limitations in the model’s representation of aerosol sources, transport,389

and cloud screening by satellite products, as during Monsoon, the Indian subcontinent is very390

cloudy. Further, total AOD obtained from GC and satellites show comparable variations with391

ground-based AERONET measurements, with satellites over-estimating during monsoon months392

as shown in Fig.A3.393

During summer, a high monthly mean AOD can be observed in the case of both model and394

satellite (Model:0.469, MERIS: 0.410, Aqua: 0.416, Terra: 0.429) (Fig.3). The highest total AOD is395

in the month of May over India in 2010 (Fig.A2). The potential contributors for such high AOD are396

driven by dust in the northwest regions (Dey et al., 2004) and the dominance of sea spray aerosols397

(Ramachandran & Cherian, 2008; Jin et al., 2018) in the southern and western parts Fig.2. It is398

evident from Fig.4 that the dominant component is sulfate throughout all the regions, constituting399

∼55% - 65% except in WI, where the dust is ∼42% and sulfate is slightly less, that is ∼38% in this400

season. Compared to other seasons, we find an overall high dust composition in all the regions.401

Additionally, a slight variation in SS is observed in all regions compared to the winter and post-402

monsoon seasons. The highest variation is observed in WI, the SS during summer is ∼4.29% which403

is much higher as compared to winter (∼0.32%) and post-monsoon (∼1.14%). The OC ranges from404

∼15% to 20%, and BC is around 1.5%.405

5.1.3 An integrated view of Aerosol composition406

In this study, Fig.1 depicts the variation in AOD over the six regions of India. Here, the pie407

chart reflects the overall AOD and its components, and its composition is shown in Table. 1. IGP,408

of all the regions in India, has the greatest AOD. NI is the region with the least aerosol loading409

with an average AOD of ∼32 % compared to that of IGP. It’s interesting to note that CI and SI410

also have a sizable aerosol loading. Even if there are fewer emissions in EI, there is still high aerosol411

loading because of transport from IGP and perhaps CI. On the other hand, IGP emissions do not412

seem to have a substantial impact on NI.413
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Figure 3: Box and whisker plot of total AOD (OC, BC, Dust, SS, SO4) from GEOS-Chem model
at 550nm, MERIS, MODIS – Aqua, and Terra for the four seasons over India. The central line
represents the median, and the square denotes the mean. The box encompasses the interquartile
range (25th to 75th percentiles), while the whiskers extend to the outer percentiles (5th to 95th)

The composition of the aerosols is a crucial aspect of their distribution over India (1). Dust414

and sea salt have a significant influence on WI. In fact, dust contributes just as much as inorganic415

aerosols (anthropogenic). However, sea salt makes up a small portion of the aerosols in all the other416

locations, which are dominated by inorganic aerosols. The largest loading of carbonaceous aerosols417

is found in EI, which is a considerably less developed region. It is significant to highlight that the418

overall AOD over a large portion of India is affected by the sum of BC and OC, which is ∼20-33%.419

The sources of BC and OC are mainly anthropogenic, indicating the prevalence of human-made420

emissions in India.421

Evaluating the modeled aerosol composition with the observations would be very helpful to422

comprehensively examine the model’s ability to represent aerosol speciation over India. The com-423

ponents of aerosols have been measured in various ways from different campaigns and sites (Singh424

et al., 2016; Yadav et al., 2022; B. Kumar et al., 2016). Measurements have revealed that BC con-425

tributes significantly to megacities and big cities. Numerous observations also reveal that sulfate426

and nitrate aerosols are present in large quantities along with the prevalence of dust (Dey et al.,427

2004; Misra et al., 2014; Mitra & Sharma, 2002; David et al., 2018; Thiemens & Shaheen, 2014).428

It is pertinent to note that the emissions are continually changing, thereby making it difficult to429

compare the modeled data with the observations.430

5.1.4 Comparison of GC, Satellite and AERONET AODs431

In Fig.A4, the simulated monthly averaged AOD from GC is compared with the satellite432

data for 2010 over the entire India. The simulated AOD is observed to be lower than that of433

the measured. The calculated AOD is approximately 90% of the measured values, as determined434

through linear regressions that constrained the lines to pass through the origin. Taking into account435

the inherent measurement errors and the variability in aerosol concentrations, there is a notable436
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Figure 4: Seasonal distribution of AOD and its components across six regions in India. The pie
chart showcases the distribution of AOD and its composition at 550nm, simulated by the GEOS-
Chem model for the year 2010. The numbers within each pie represent the average AOD calculated
for each region and season: (a) Monsoon, (b) Post Monsoon, (c) Winter, and (d) Summer.

agreement between the simulated and observed AOD values. A bias, or a finite estimated value437

when the measured value is zero, is suggested by a linear regression where the intercept is not set438

as zero. The Pearson correlation coefficient (R) values obtained are 0.56, 0.59, and 0.51 for MODIS439

Aqua, MODIS Terra, and MERIS, respectively, for AOD ≤ 1.5 as shown in Table.A1. Similarly,440

the slope values obtained for MODIS Aqua, MODIS Terra, and MERIS are 0.5, 0.54, and 0.53,441

respectively.442

In Fig.A5, the GC simulated AOD is compared with satellite observations and ground-based443

AERONET measurements with the help of the Pearson correlation coefficient (R), the slope, in-444

tercept, and the number of data points. Due to the possibility that the satellite trajectory may445

not consistently align directly over the AERONET station, the satellite measurements and the446

GEOS-Chem model data within a 25 km radius around the AERONET station were compared, as447

described in (David et al., 2018) to enhance the number of available observations. A good correla-448
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tion with a coefficient ranging between ∼0.65 to 0.74 is observed. Several factors, such as spatial449

resolution, retrieval algorithm, and aerosol vertical distribution, can be attributed to the same.450

This comparative assessment provides a preliminary insight into the extent of coherence between451

observational and model data.452

5.2 Current and Projected carbonaceous aerosols over India under RCP Scenarios453

In this section, first, the GC2010 is compared with the RCP projected total AOD as well as just454

carbonaceous aerosols (OC and BC) for 2010 in India. This will give insights into the variations in455

AOD under different RCP scenarios for the same year of 2010. Next, we look into the evolution of456

carbonaceous aerosols and the seasonal variation that is being projected by the model. This aims457

to understand the contribution of OC and BC AOD under two different future RCP scenarios of458

4.5 and 8.5.459

5.2.1 Comparisons of current and projected AOD for 2010460

The comparison of the GC simulated total AOD (OC, BC, Dust, SO4, SS) for current (for the461

year 2010) with the RCP4.5 and RCP8.5 is shown in Figure 5. It is observed that for NI, EI, and462

WI the values are in good agreement. There is not much difference between the mean values of463

both RCPs. Over NI, EI and WI, the GC2010 mean is ∼27-29% (GC2010: 0.170, RCP4.5: 0.134,464

RCP8.5: 0.131), ∼27-28% (GC2010: 0.317, RCP4.5: 0.248, RCP8.5: 0.247) and ∼19-23% (GC2010:465

0.327, RCP4.5: 0.273, RCP8.5: 0.265) respectively higher as compared to the projected values.466

A large difference is observed in the GC2010 and the projected AOD in the case of IGP, CI, and467

SI. Over IGP, CI, and SI, the GC2010 mean is ∼30-35% (GC2010: 0.528, RCP4.5: 0.406, RCP8.5:468

0.391), ∼35-42% (GC2010: 0.445, RCP4.5: 0.329, RCP8.5: 0.314) and ∼38-43% (GC2010: 0.383,469

RCP4.5: 0.278, RCP8.5: 0.268) respectively higher with respect to the RCPs. Under the RCP4.5470

and RCP8.5 scenarios, emissions and atmospheric chemistry changes can lead to differences in the471

concentration and distribution of aerosols in the atmosphere, which can affect AOD. In total AOD,472

a higher value of RCP4.5 is observed compared to RCP8.5.473

5.2.2 Comparison of simulated current and projected carbonaceous aerosols for474

2010475

Comparison of the GC2010 carbonaceous aerosols (sum of OC and BC) with the RCP4.5 and476

RCP8.5, over the six regions for the year 2010 is shown in Fig. 6. The mean value for NI is seen to be477

in good agreement, which is ∼24-26% (GC2010: 0.034, RCP4.5: 0.027, RCP8.5: 0.027) higher with478

respect to RCPs. The mean values of GC2010 for EI and WI are ∼27-31% (GC2010: 0.105, RCP4.5:479

0.08, RCP8.5: 0.083) and ∼36-38% (GC2010: 0.068, RCP4.5: 0.049, RCP8.5: 0.050) higher with480

respect to RCPs, respectively. Overall, the mean values of RCP8.5 are higher than RCP4.5, and481

this is consistent over all the six regions. However, it can be observed that the simulation without482

RCPs is comparatively higher than the RCPs for IGP (GC2010: 0.130, RCP4.5: 0.092, RCP8.5:483

0.098), CI (GC2010: 0.098, RCP4.5: 0.060, RCP8.5: 0.068) and SI (GC2010: 0.084, RCP4.5: 0.053,484

RCP8.5: 0.060). The GC2010 mean is ∼33-41% for IGP, 44-63% for CI, and 40-58% for SI higher485

with respect to the means of both RCPs.486
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Figure 5: Box and whisker plot of total AOD (OC, BC, Dust, SO4, SS) from GEOS-Chem model
at 550 nm, RCP4.5 and RCP8.5 over the six regions for the year 2010. The central line represents
the median, and the square denotes the mean. The box encompasses the interquartile range (25th
to 75th percentiles), while the whiskers extend to the outer percentiles (5th to 95th)
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Figure 6: Box and whisker plot of Carbonaceous AOD(OC+BC) from GEOS-Chem model at 550
nm, RCP4.5 and RCP8.5 over the six regions for the year 2010. The central line represents the
median, and the square denotes the mean. The box encompasses the interquartile range (25th to
75th percentiles), while the whiskers extend to the outer percentiles (5th to 95th)

5.2.3 Projected evolution of carbonaceous aerosols487

In Fig.7, it could be observed that under the RCP4.5 scenario, the carbonaceous AOD is488

increasing at the rate of 6.91% AOD per decade up to the year 2030 and then there is a decline of489

-8.76% AOD per decade. On the other hand, RC8.5 showed an increase of 8.72% AOD per decade490

up to 2050 and further reduces by -3.52% AOD per decade from 2050 until the end of the century.491

Fig.8 shows the spatial distribution of the carbonaceous AOD over India and the decadal variation492

under the two RCP scenarios. The maximum AOD is observed over IGP in both scenarios. Under493

–16–



manuscript submitted to JGR: Atmospheres

RCP8.5, 2020-2080 is the period with high AOD, mostly contributed by IGP and EI. A gradual494

increase in AOD over CI and some parts of SI and WI from 2030 is noticed, but the reduction in495

this region is also very much evident from 2090 until the end of the century. Similar to RCP8.5,496

high AOD is observed over IGP and EI until 2050 in RCP4.5, however a much higher reduction497

by the end of the century is evident in this scenario. Unlike RCP8.5, the WI and SI remain not498

much affected in RCP4.5, but a high AOD on the east coast of CI and SI is apparent, which is later499

significantly reduced.500
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Figure 7: Time series of Carbonaceous AOD (OC and BC) at 550 nm from GEOS-Chem from
2000 to 2100 (Yearly Mean)

5.2.4 Projected changes in the seasonal mean of carbonaceous aerosols over dis-501

tinct regions502

Carbonaceous aerosols from both anthropogenic and biomass burning emissions in the current503

situation are arguably the biggest threat to air quality in the Indian subcontinent. In India, burning504

biomass for domestic purposes, burning solid waste, burning coal for energy, industrial emissions,505

burning crop residue, engaging in construction and demolition work, engaging in vehicular activity,506

and operating brick kilns are the main contributors to atmospheric particulate matter (Reisen et507

al., 2013; Lee et al., 2017; Group et al., 2018). For many years, the Indian government has placed508

a strong emphasis on lowering air pollution in order to achieve a cleaner environment. However, in509

the past ten years, some strict policies relating to air pollution have been applied and implemented510

across India to lower air pollution (Gulia et al., 2022). The effectiveness of such policies can511

be effectively judged by analyzing carbonaceous aerosols generated from emissions. This section512

focuses on the evolution of AOD contributed by carbonaceous aerosols over six regions. In Fig.9,513

the analysis of the sum of OC and BC AOD from 2020 to 2100 relative to 2010 over 6 regions under514

the two RCP scenarios of 4.5 and 8.5 for all the seasons is carried out.515
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Figure 8: Spatial Decadal plot of Carbonaceous AOD (BC+OC) from GEOS-Chem for the RCP4.5
and RCP8.5. The color bar represents the (BC+OC) AOD values

NI: The analysis reveals that out of all the six regions, NI is one of the cleanest as seen in516

Fig.9. It could be noted that there is both positive and negative change under RCP4.5. However, in517

the case of RCP8.5, we could only observe a positive change. In the case of RCP4.5, the year 2030518

is the year with maximum AOD for all seasons, except for the monsoon season for which the year519

is 2040. The maximum percentage change under RCP4.5 for monsoon, post-monsoon, winter, and520

summer is ∼24%, 26%, 24%, and 20%, respectively. Similarly, the maximum negative percentage521

for monsoon, post-monsoon, winter, and summer with respect to 2010 is ∼ (-44%, -53%, -56%, and522
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-36%), respectively. The year with the least AOD is found to be the end of the century, that is, 2100.523

Under RCP8.5, 2050 is the year of maximum AOD for all seasons. The maximum change is found524

to be ∼ 31%, 39%, 39%, and 28% for monsoon, post-monsoon, winter, and summer, respectively.525

IGP: IGP has the highest AOD out of all the six regions (Fig.1). Under the RCP4.5 scenario,526

2030 is observed to be the year with the highest AOD across all four seasons (Fig.9). However, in527

the case of RCP8.5, the highest AOD is observed in the year 2050 for all seasons except monsoon,528

where the highest value is in 2030. Among the RCP the maximum increase is observed in RCP8.5 of529

about ∼38% during winter. The maximum decrease is ∼(-65%) during winter under RCP4.5. Fig.4530

indicates that it is during post-monsoon and winter IGP observes a high fraction of OC and BC.531

As for percentage changes under the RCP4.5 scenario, the maximum (minimum) values are +25%532

(-63%) and +27%(-65%) in post-monsoon and winter of 2030 (2100) respectively. The maximum533

percentage change for RCP4.5 (RCP8.5) during monsoon, post-monsoon, winter, and summer is534

∼21%(21%), 25%(35%), 27%(38%) and 19%(29%) respectively. However, except for monsoon in535

the case of RCP8.5, a negative change is not observed as the lowest AOD value of 2100 is still536

∼6-10% higher with respect to 2010.537

EI: It is well established from the previous sections that due to meteorological effects, EI is538

highly influenced by IGP. Unlike other regions, it is evident in Fig.9 that the year with maximum539

AOD is 2020 for monsoon and summer, which is earlier as compared to the other seasons for RCP4.5.540

Similarly, for RCP8.5, the year with maximum AOD is 2040 for summer and 2050 for the rest of541

the seasons. The maximum percentage change, in the case of both the RCPs is the least in all the542

regions. The maximum(minimum) percentage change for RCP4.5 is ∼11%(-55%), 8%(-59%), 12%(-543

56%), and 10%(-42%) for monsoon, post-monsoon, winter and summer respectively. Similarly, for544

RCP8.5 the values are ∼22%, 14%(-7%), 20%(-2%) and 8%(-17%) for monsoon, post-monsoon,545

winter and summer respectively.546

WI: The years with maximum carbonaceous AOD for RCP4.5 and RCP8.5 is 2030 and 2050,547

respectively, consistent for all seasons. ∼25% is the maximum percentage change that is observed548

in this region for the winter season under RCP4.5. Similarly, ∼39% is the maximum percentage549

change for the winter and summer seasons, under RCP 8.5. The AOD is expected to go as high550

as 0.085, which is ∼23% higher as compared to the lowest value of 0.069 observed in 2100 under551

the RCP8.5 scenario. The maximum negative percentage change under RCP4.5 in this region is552

∼(-58%) observed in winter, followed by -55% in post-monsoon.553

CI: Similar to WI the maximum AOD for RCP4.5 and RCP8.5 is 2030 and 2050, respectively554

and it is consistent for all seasons. The maximum positive (negative) change under RCP4.5 with555

respect to 2010 is ∼ 21%(-63%) in winter(post-monsoon). Similarly, for RCP8.5 the maximum AOD556

change is seen in 2050 (year with maximum AOD) with respect to 2010. The change is 36% in557

winter, followed by 33% in post-monsoon. Under RCP8.5, the least AOD due to only carbonaceous558

aerosols is seen in 2100 and is 0.052, 0.081, 0.091, and 0.084 for monsoon, post-monsoon, winter,559

and summer which is slightly higher or equal; than the reference year of 2010 which is 0.048, 0.075,560

0.081 and 0.078 respectively.561

SI: WI and SI are observed to be quite similar, as the maximum AOD for RCP4.5 and RCP8.5562

is in 2030 and 2050, respectively and it is consistent for all seasons. There is not much difference ob-563

served between the percentage values of both regions. The maximum positive (negative) percentage564

change for monsoon, post-monsoon, winter, and summer for RCP4.5 is ∼14% (-46%), 18%(-62%),565
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20%(-63%) and 12%(-46%) respectively. Similarly, for RCP8.5, The maximum percentage change566

for monsoon, post-monsoon, winter, and summer is 26%, 31%, 34%, and 25% with respect to 2010.567

Figure 9: Shown are the maximum percentage changes (units: %) in the projected seasonal mean
carbon aerosol optical depth (AOD) from 2020 to 2100 relative to the base year 2010. Plots include
six regions under both RCP4.5 and RCP8.5 scenarios. Colored columns indicate maximum increases
and shaded columns indicate maximum decreases. Years with notable increases are highlighted in
red, while instances of maximum decreases are uniformly related to the year 2100.

6 Implication for mitigation of carbonaceous aerosol568

India pledged to strive towards achieving net zero carbon emissions by 2070 at the United569

Nations COP26 in 2016 to control the anthropogenic emission-induced warming of the atmosphere,570

aligning with the goal to limit the global temperature increase to 2°C by 2100 (compared to the571

pre-industrial time), signed at the Paris Agreement. To achieve this aspirational target, intense572

emission control measures must be adopted for GHGs and particulate pollutants, especially car-573

bonaceous aerosols. RCP scenarios representing the net radiative forcing by 2100 under different574

future emission patterns (as outlined in the SRES scenarios introduced in IPCC AR5) of GHGs575

and other climate-forcing agents based on changes in driving factors, such as economic and tech-576

nological advancements, serve as useful tool for understanding the effects of emissions on future577

concentrations. The IPCC identifies RCP2.6 and RCP4.5 as the two most likely scenarios to achieve578

these objectives; however, with current mitigation policies, RCP2.6 is extremely difficult to follow.579

In this study, we have estimated the future levels of carbonaceous AOD (sum of OC and BC) un-580
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der RCP scenarios RCP4.5 and RCP8.5 (most probable emission pathways) using the GEOS-chem581

model, which is shown to capture the atmospheric chemistry and transport of aerosol particles582

reasonably well. An increase in AOD over EI due to the outflow of aerosols from IGP shows that583

atmospheric transport, in addition to emission, is critical for deciding future concentrations. Our584

study emphasizes that aerosol loading can be significantly reduced to meet the objectives of the585

Paris Agreement if emissions are cut down in accordance with RCP4.5. Further, we show that if586

no stringent emission control measures are adopted (RCP8.5), the emission reduction will not be587

sufficient to limit the temperature rise to 2°C by the end of the century. By analysing the trends588

in potential future levels of carbonaceous aerosols across different regions of India presented in this589

study, policymakers can make more informed decisions about framing policies to reduce AOD levels590

and mitigate their radiative effects on climate change.591

7 Conclusions592

The study used the high-resolution nested-grid version of the GEOS-Chem (GC) model (0.5° ×593

0.625°) to investigate the future trajectory of Aerosol Optical Depth (AOD) attributed to carbona-594

ceous aerosols over six delineated regions of India from 2000 to 2100. This investigation aimed to595

identify the projected shifts resulting from the anticipated changes in emissions under the two RCP596

scenarios. The simulated GC2010 carbonaceous aerosol load adequately reflects the spatiotemporal597

distributions of observed levels in India. In addition, the GC performed well in the current simu-598

lation compared to the satellite data (with a slope and correlation coefficient of ≥ 0.93 and ∼0.93599

to 0.95, respectively) as shown in Fig.A4 and Table.A1. When comparing the simulated AOD data600

with the satellite data over the 5 AERONET stations, the correlation coefficient ranged from ∼0.65601

to 0.74. Modeled AOD showed good agreement with the retrievals of the satellite instruments,602

confirming the usefulness and validity of the GC model results. Moreover, the GC2010 simulated603

carbonaceous aerosols (OC + BC) also agree well with the future RCP scenarios simulation, with604

slight overestimation in all six different regions of India.605

The GC results show an improvement in the future AOD due to carbonaceous aerosols. It606

could be observed that under the RCP4.5 scenario, the AOD increases at a rate of 6.91% AOD per607

decade until 2030, and then there is a decrease of -8.76% AOD per decade. For the RC8.5 scenario,608

on the other hand, an increase of 8.72% AOD per decade through 2050 and a further decrease of609

-3.52% AOD per decade from 2050 to the end of the century is observed.610

The spatial distribution of AOD (OC+BC) across India and the decadal variation under the611

two RCP scenarios show that the maximum AOD is observed over IGP in both scenarios. Under612

RCP8.5, the period 2020-2080 is the period with high AOD mainly driven by IGP and EI. From613

2030, a gradual increase in AOD is also observed over CI and some parts of SI and WI, but the614

decrease in this region is also very significant from 2090 to the end of the century. Similar to RCP8.5,615

high AOD is observed over IGP and EI through 2050, but a much steeper decline is observed in this616

scenario by the end of the century. Unlike RCP8.5, WI and SI are not very affected in RCP4.5, but617

we definitely observe a high AOD on the east coast of CI and SI, which later declines significantly.618

Further study reveals that the maximum percentage increase in AOD is ∼25% in IGP during619

post-monsoon in 2030 with respect to 2010, under RCP4.5. However, the percentage increase in EI620

during post-monsoon is the least, which is ∼8% in 2020 with respect to 2010. On the other hand,621

it is under this scenario, a percent decrease of ∼30-65% could be noted by the end of the century622
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with respect to 2010 across all four seasons, with IGP having the highest decrease. This suggests a623

significant reduction in AOD due to both anthropogenic and biomass-burning sources by the end of624

the century with respect to 2010. Under the RCP8.5, a maximum change of ∼40% mostly during625

post-monsoon and winter was observed across all the regions except for the EI where change is626

comparatively less. However, the decrease in AOD by 2100 with respect to 2010 is only evident in627

IGP during monsoon and EI during post-monsoon, winter, and summer. This indicates that the628

AOD for the rest of the regions and seasons under the RCP8.5 scenario will be much higher by the629

end of the century compared to 2010.630

While the insights gained from projected future changes in the AOD of carbonaceous aerosols631

under RCP scenarios are valuable for informing mitigation strategies, it is crucial to recognize the632

inherent uncertainties associated with such projections. In particular, this study did not consider the633

potential impacts of future interannual to decadal climate change on the combined effects of organic634

carbon (OC) and black carbon (BC). Acknowledging these uncertainties underscores the need for635

ongoing research and refined modeling approaches to enhance the accuracy and comprehensiveness636

of our projections. In addition, the fully coupled chemistry-climate model estimates that combine637

the effects of future emissions and climate change on (OC+BC) AOD are needed. In addition,638

predictions of AOD levels are also influenced by regional meteorology (Reisen et al., 2013), which639

raises further issues that needs to be addressed.640
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Appendix A Additional Figures641
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Figure A1: Sum of anthropogenic and biomass burning emission (units: Tg/year) of (a) SO2 (b)
NOx (c) NH3 (d) BC and (e) OC in India for the period 2000 – 2100 under the RCP4.5 and RCP8.5

–23–



manuscript submitted to JGR: Atmospheres

J F M A M J J A S O N D
Month

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AO
D

Summer Monsoon Post-MonsoonWinter

SO4
BC
OC
SS
Dust
MERIS
MODIS Aqua
MODIS Terra

Figure A2: Monthly variation of all AOD components at 550 nm from GEOS-Chem of 2010 over
India along with the monthly mean of the data from MERIS, MODIS Aqua and MODIS Terra
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Figure A3: Monthly variation of all AOD components at 550 nm from GEOS-Chem of 2010 for
the 5 AERONET station along with the monthly mean of the data from MERIS, MODIS Aqua,
MODIS Terra, and AERONET Station
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Figure A4: Density plot of simulated AOD at 550 nm with Aqua, Terra, and MERIS for 2010.
The color bar represents the number of data in each 0.03 bin. The linear regression line is shown
for AOD data limited to 0.5 (white), 1.0 (yellow), 1.5(red), and zero intercepts (black).

Table A1: The slope, correlation coefficient (R), and intercept (c) of simulated AOD with MODIS
Aqua, MODIS Terra, and MERIS for the AOD limiting values of 0.5, 1.0, and 1.5 at 550 nm along
with the slope of the line with intercept set to zero

AOD
MODIS Aqua MODIS Terra MERIS

Slope R c Slope R c Slope R c

1.5 0.95 0.93 0 0.93 0.94 0 1.12 0.93 0
1.5 0.5 0.56 0.23 0.54 0.59 0.18 0.53 0.51 0.26
1.0 0.56 0.57 0.2 0.58 0.59 0.18 0.52 0.51 0.26
0.5 0.59 0.52 0.15 0.64 0.56 0.12 0.24 0.29 0.28
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Figure A5: Correlation of GEOS-Chem with the satellite and AERONET data. The data points
of both GEOS-Chem and Satellite are extracted over a 25 km radius from each AERONET station.
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Appendix B Open Research642

The AOD data from Aqua/MODIS and Terra/MODIS Aerosol Product 5min L2 Swath 10km,643

C6, NASA Level-2 and Atmosphere Archive and Distribution System (LAADS) Distributed Active644

Archive Center (DAAC) Goddard Space Flight Center, Greenbelt, MD are available at https://645

ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MOD06 L2/[MOD06 L2]. The MERIS646

data were obtained from Copernicus Climate Change Service, Climate Data Store, (2019): Aerosol647

properties gridded data from 1995 to present derived from satellite observation. Copernicus Climate648

Change Service (C3S) Climate Data Store (CDS) https://doi.org/10.24381/cds.239d815c,649

datalink (https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-aerosol-properties650

?tab=form). For downloading the aforementioned MERIS data, following parameters were se-651

lected: Time aggregation (Monthly Average), Variable (Aerosol Optical Depth), Sensor on satellite652

(MERIS on ENVISAT), Algorithm (S4M (SeaWiFS algorithm for MERIS sensor)), year(2010)653

and Version (v7.0a). Additionally, the AERONET Level 2 AOD data for the 5 locations namely;654

Kanpur( 26.513N, 80.232E), Gandhi College (25.871N, 84.128E), Nainital (29.359N, 79.458E), Pune655

(18.537N, 73.805E) and Jaipur(26.906N, 75.806E) was obtained from https://aeronet.gsfc.nasa656

.gov/cgi-bin/draw map display aod v3?long1=-180&long2=180&lat1=-90&lat2=90&multiplier=657

2&what map=4&nachal=1&formatter=0&level=3&place code=10&year=2010. The GEOS-Chem658

3-D global model is freely available at https://geoschem.github.io/. For visualization, open-659

source software QGIS (Download: https://www.qgis.org/en/site/forusers/download.html)660

and Python programming code were used. The modeled data is available on https://data661

.mendeley.com/datasets/mh55488db3/1.662
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Figure 9.





Figure A1(a).
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Figure A1(b).
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Figure A1(c).



2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
Year

0

1

2

3

4

5

6

7

8

9

10

11
Em

is
si

on
(c) NH3

RCP 4.5
RCP 8.5



Figure A1(d).
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Figure A1(e).
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Figure A2.
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Figure A3.
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Figure A4(a).
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Figure A4(b).
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Figure A4(c).



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Meris

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
G

EO
S-

Ch
em

0

500

1000

1500

2000

N
o.

 o
f p

oi
nt

s 
in

 b
in



Figure A5.
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