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Abstract

Surface semi-geostrophic turbulence is examined in this study. In our simulations, the strength of the ageostrophic component of

the flows is controlled by the Rossby number ε, varying from 0.01 to 0.2. The flows manifest a cyclone-anticyclone asymmetry

with a cyclonic preference for cold vortices and an anticyclonic preference for warm filaments. This asymmetry becomes

especially pronounced in the flows with large ε, where an abundance of warm filaments is observed. Strong vertical motions

concentrate in the small-scale filaments and at the periphery of the vortices. There, the lateral divergence becomes significant.

A negative correlation between the divergence and the relative vorticity is identified using joint probability density functions.

Slopes of the kinetic and potential energy spectra vary between -2.2 and -1.7 at intermediate scales. Analyses of spectral

fluxes demonstrate an inverse kinetic energy cascade and a forward cascade of potential energy. As ε increases, the filaments

become more numerous in the flows. They wrap around cyclones, weakening their interactions and subsequent mergers,

thus suppressing the inverse cascade of kinetic energy. We characterize lateral dispersion in the SSG flows using the finite-

scale Lyapunov exponents (FSLEs). They are used to identify Lagrangian coherent structures, such as those created by the

interaction of vortices. The FSLEs are also used to investigate the regimes of dispersion at different scales. The results show a

smooth transition from hyper-ballistic diffusion at small scales to normal diffusion at large scales.
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Key Points:6

• An asymmetry between cyclonic cold vortices and anticyclonic warm filaments char-7

acterizes the surface semi-geostrophic turbulence.8

• The ageostrophic component strengthens the forward potential energy cascade by9

exciting warm filaments but suppresses the inverse kinetic energy cascade by pre-10

venting cyclone mergers.11

• Horizontal dispersion transforms from a hyper-ballistic regime at small scales to12

a normal dispersion regime at large scales.13
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Abstract14

Surface semi-geostrophic turbulence is examined in this study. In our simulations, the15

strength of the ageostrophic component of the flows is controlled by the Rossby num-16

ber ε, varying from 0.01 to 0.2. The flows manifest a cyclone-anticyclone asymmetry with17

a cyclonic preference for cold vortices and an anticyclonic preference for warm filaments.18

This asymmetry becomes especially pronounced in the flows with large ε, where an abun-19

dance of warm filaments is observed. Strong vertical motions concentrate in the small-20

scale filaments and at the periphery of the vortices. There, the lateral divergence becomes21

significant. A negative correlation between the divergence and the relative vorticity is22

identified using joint probability density functions. Slopes of the kinetic and potential23

energy spectra vary between -2.2 and -1.7 at intermediate scales. Analyses of spectral24

fluxes demonstrate an inverse kinetic energy cascade and a forward cascade of potential25

energy. As ε increases, the filaments become more numerous in the flows. They wrap around26

cyclones, weakening their interactions and subsequent mergers, thus suppressing the in-27

verse cascade of kinetic energy. We characterize lateral dispersion in the SSG flows us-28

ing the finite-scale Lyapunov exponents (FSLEs). They are used to identify Lagrangian29

coherent structures, such as those created by the interaction of vortices. The FSLEs are30

also used to investigate the regimes of dispersion at different scales. The results show31

a smooth transition from hyper-ballistic diffusion at small scales to normal diffusion at32

large scales.33

Plain Language Summary34

The generation of submesoscale structures by mesoscale currents is one of the im-35

portant pathways of energy dissipation in the ocean. It can be modeled with an ideal-36

ized surface semi-geostrophic (SSG) equations. The SSG model is able to reproduce ageostrophic37

effects, including a cyclone-anticyclone asymmetry. In this study, we simulate a turbu-38

lent SSG flow and demonstrate that, as the ageostrophy increases, warm filaments be-39

come more numerous. The filaments contribute to transporting the potential energy to-40

wards smaller scales. Meanwhile, the cold cyclones shrink in size and become more iso-41

lated from each other due to the shielding by warm filaments wrapping around them.42

As a result, cyclone interaction and the subsequent mergers are weakened, and the in-43

verse cascade of the kinetic energy towards larger scales is suppressed.44

1 Introduction45

Oceanic turbulence comprises flows of different scales, including ocean-wide gyres,46

mesoscale eddies, submesoscale eddies, fronts, and filaments. At the lowest end of the47

scale, submesoscale flows become more familiar due to new evidence provided by field48

measurements (Shcherbina et al., 2013; Mensa et al., 2018; Pearson et al., 2019; Balwada49

et al., 2016) and high-resolution numerical simulations (Balwada et al., 2021; Jing et al.,50

2021). Submesoscale flows are characterized by an O(1) Rossby number and consequently51

exhibit significant ageostrophy, including large vertical velocity and horizontal divergence52

(McWilliams, 2016). Thus, they provide a pathway for energy transfer from almost two-53

dimensional (2D) quasi-geostrophic (QG) turbulence to three-dimensional (3D) turbu-54

lence.55

Over the years, several theoretical models that go beyond QG but still retain cer-56

tain physical simplicity—referred to as ”intermediate models” in the terminology of McWilliams57

and Gent (1980)—have been developed. Some of these models exclusively address flows58

generated by buoyancy perturbations at the surface of the ocean, such as the surface quasi-59

geostrophic (SQG) model (Blumen, 1978; Held et al., 1994) and the surface semi-geostrophic60

(SSG) model (Ragone & Badin, 2016). The SQG model has been investigated by dif-61

ferent authors (Isern-Fontanet et al., 2006; Klein et al., 2008; Qiu et al., 2016) with re-62

spect to its capability to describe upper ocean currents using only surface data, such as63
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those obtained by satellite altimetry and thermal radiometry. It has been demonstrated64

that SQG flows generate submesoscale structures (Capet et al., 2008; Carton et al., 2016).65

Numerical simulations by (Capet et al., 2008) showed that these structures are due to66

frontogenesis processes, which occur when forward-cascading surface potential energy67

transfers into inversely-cascading kinetic energy. Spectra of kinetic energy exhibited an68

approximately -5/3 slope. Similar spectral slopes were obtained from altimetry data by69

(Traon et al., 2008) and in realistic numerical simulations by (Klein et al., 2008; Chas-70

signet & Xu, 2017). For a comprehensive review of SQG dynamics, readers are referred71

to (Lapeyre, 2017). The SQG theory relies on the assumption of a small Rossby num-72

ber, ε = U/(f0LD) < 1, where U is the characteristic velocity scale, LD is the length73

scale, and f0 is the Coriolis parameter. However, at submesoscales, ε can approach or74

exceed unity (Thomas et al., 2008). Ageostrophic effects become significant at the sub-75

mesoscale; one example is that strong vortices in the upper ocean are predominantly cy-76

clonic (Shcherbina et al., 2013; Munk, 2000; Griffa et al., 2008). As ε approaches unity,77

anticyclones become more vulnerable to frontal instability than cyclones (Hoskins & Brether-78

ton, 1972). Another manifestation of the ageostrophic effects is the vertical motion driven79

by frontogenesis. It can release the available potential energy of the system, re-stratify80

the upper ocean, and cause a warming trend at the surface. These features were real-81

ized in simulations based on the primitive equations (Roullet & Klein, 2010; Klein et al.,82

2008).83

To include the ageostrophic effects, Hakim et al. (2002) extended the SQG model84

to the next order of approximation. Their model, called SQG+1, exhibited ageostrophy,85

including an asymmetry between cold and warm filaments and a preference for cyclonic86

vortices. However, the SQG+1 model was still constrained by a requirement for a glob-87

ally small ε. To alleviate this constraint, Ragone and Badin (2016) reformulated the SQG88

dynamics in a geostrophic coordinate system and proposed a surface semi-geostrophic89

(SSG) model. The geostrophic coordinate system was previously introduced by Eliassen90

(1948); Fjørtoft (1962). It is a moving coordinate system that follows the geostrophic91

current. The total velocity in the advection term is retained rather than being approx-92

imated by the geostrophic velocity. SSG simulations by Ragone and Badin (2016) showed93

features similar to those in the SQG+1 simulations, including a cyclone-anticyclone asym-94

metry and a surface warming trend. Besides, the SSG simulations demonstrated an im-95

proved ability to capture frontogenesis and showed an abundance of small-scale fronts/filaments96

in the simulated flows due to the improved representation of the nonlinear advection term.97

In what follows, we employ the SSG model to investigate the dynamics of surface-98

intensified flows generated by buoyancy forcing at the surface. The flows are ageostrophic99

to a significant degree and exhibit frontogenesis and three-dimensional effects. We fo-100

cus on characterizing vertical velocity and lateral divergence, especially concerning their101

relation to the relative vorticity and strain rate in filaments and eddies. Spectral char-102

acteristics of the flows are also investigated; we go beyond energy spectra and study an103

energy cascade by computing energy fluxes across the scales. The last objective of this104

work is a characterization of the Lagrangian dynamics. We compute the finite-size Lya-105

punov Exponents (FSLEs) to identify the regimes of lateral dispersion at different scales.106

In Section 2, we briefly review the SQG and SSG models. Section 3 describes the107

numerical methods and control parameters employed in this study. The results of the108

simulations are reported in Section 4, and conclusions are given in Section 5.109

2 SQG and SSG models revisited110

Buoyancy perturbation b(x, y, z, t) = −gρ′/ρ0, where g is the acceleration due to
gravity and ρ′ is the density perturbation with respect to the constant reference density
ρ0, it is a conserved quantity in both SQG and SSG models. b is related to the (pertur-

–3–
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bation) geopotential, ϕ = p/ρ0, where p is the pressure, via hydrostaticity such that

b =
∂ϕ

∂z
. (1)

The above equation combined with the geostrophic relation

f0(vg, −ug) =

(
∂ϕ

∂x
,
∂ϕ

∂y

)
, (2)

where f0 is the Coriolis parameter, gives the thermal wind equation(
∂b

∂x
,
∂b

∂y

)
= f0

(
∂vg
∂z

, −∂ug

∂z

)
. (3)

The ocean surface is subject to external heating or cooling. To model this effect,
we specify the surface buoyancy perturbation bs(x, y) at the initial moment t = 0 and
then allow the flow to evolve freely. Here, the subscript s denotes a surface quantity. It
is assumed that b vanishes in the ocean interior at depth z = −H, where H is the ver-
tical scale of the motion driven by the buoyancy perturbation. Vertical boundary con-
ditions for the geopotential can then be written as

∂ϕ

∂z
= bs(x, y, t) at z = 0, (4a)

∂ϕ

∂z
= 0 at z = −H. (4b)

Note that the background stratification is taken to be linear such that the Brunt-Vaisalla111

frequency is N = const. The buoyancy perturbation is assumed to remain relatively small112

such that N remains approximately constant at all times (Hoskins & West, 1979; Ragone113

& Badin, 2016).114

2.1 SQG model115

Quasi-geostrophic potential vorticity (q, PV) remains undisturbed in the interior
of the fluid layer at all times such that

q =
∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

f2
0

N2

∂2ϕ

∂z2
= 0. (5)

The above equation takes the form of the Laplace’s equation

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= 0, (6)

when non-dimensionalized using the deformation radius LD = NH/f0 as the horizon-
tal scale, H as the vertical scale and U as the velocity scale. All quantities in Eq. (6) are
dimensionless, but we keep the same notations. Vertical structure of the flow subject to
the boundary conditions Eq. (4) can be obtained in the wavenumber space (Tulloch &
Smith, 2006)

ϕ̃(k, z, t) =
cosh[(z + 1)k]

k sinh(k)
b̃s(k, t) (7)

where the tilde sign denotes the horizontal Fourier transform and k = (kx, ky) is the

horizontal wavenumber vector whose magnitude is k =
√

k2x + k2y. On the surface, bs
is advected by the geostrophic current,

∂bs
∂t

+ Jxy(ϕs, bs) = 0, (8)

where Jxy(A,B) = AxBy−AyBx represents the nonlinear advection term in Jacobian116

form.117
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2.2 SSG model118

As we traverse the scales of the flows from mesoscale down to submesoscale, the
Rossby number ε increases, and the ageostrophic component of velocity becomes signif-
icant. To study flows beyond the validity of the quasi-geostrophy, a coordinate system
that follows the geostrophic component of the current was introduced (Hoskins & Brether-
ton, 1972; Hoskins, 1975). The relations between the physical coordinates (x, y, z) and
geostrophic coordinates (X,Y, Z) are

x = X − 1

f0
vg = X − 1

f2
0

∂ϕs

∂x
, (9a)

y = Y +
1

f0
ug = Y +

1

f2
0

∂ϕs

∂y
(9b)

z = Z. (9c)

In this system, the horizontal advection by the total velocity (u, v) which includes the
ageostrophic component, can be expressed using the geostrophic velocity (ug, vg)

Dg

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
=

∂

∂t
+ ug

∂

∂X
+ vg

∂

∂Y
. (10)

In the geostrophic coordinate system, the Bernoulli function Φ = ϕ + (u2
g + v2g)/2 as-

sumes the role of the geopotential ϕ such that(
∂Φ

∂X
,
∂Φ

∂Y
,
∂Φ

∂Z

)
=

(
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

)
= (f0vg,−f0ug, b). (11)

A full set of equations of the SSG model then includes the conservation of buoyancy b
and the potential vorticity qsg (

Dg

Dt
+ w

∂

∂Z

)[
b
qsg

]
= 0. (12)

The potential vorticity is defined as:

qsg = − g

f0ρ0
ζsg · ∇ρ, (13)

where the absolute vorticity

ζsg =

(
−∂vg

∂z
,
∂ug

∂z
, f0 +

∂vg
∂x

− ∂ug

∂y

)
+

1

f0
(Jyz(ug, vg), Jzx(ug, vg), Jxy(ug, vg)) (14)

includes nonlinear terms in the second bracket (Hoskins & Draghici, 1977). In the ocean
at rest, ug = vg = 0, the potential vorticity and the absolute vorticity reduce to their
background values:

qsg = − g

ρ0

∂ρ

∂z
= N2, (15a)

ζsg = f0k, (15b)

where k is the unit vector in the vertical direction. In the presence of the flow, the ver-
tical component of the absolute vorticity,

ζsg = [f0 +
∂vg
∂x

− ∂ug

∂y
+

1

f0
Jxy(ug, vg)]k. (16)

remains dominant. The reciprocal of the Jacobian of a transformation from physical to
geostrophic coordinates may be written as (Hoskins, 1976)

J−1
g =

f0
ζsg

= 1− 1

f2
0

(
∂2Φ

∂X2
+

∂2Φ

∂Y 2

)
+

1

f4
0

[
∂2Φ

∂X2

∂2Φ

∂Y 2
+ (

∂2Φ

∂X∂Y
)2

]
. (17)
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and qsg = ζsg/f0Φzz. An assumption of negligible potential vorticity in the fluid in-
terior leads to a nonlinear Monge-Ampére equation:

1

N2

∂2Φ

∂Z2
+

1

f2
0

(
∂2Φ

∂X2
+

∂2Φ

∂Y 2

)
− 1

f4
0

[
∂2Φ

∂X2

∂2Φ

∂Y 2
+

(
∂2Φ

∂X∂Y

)2
]
= 0. (18)

The above equation replaces the linear Laplace’s equation Eq. (6) in the SQG model.119

To solve Eq. (18) we follow a numerical technique developed by Ragone and Badin (2016).120

For further details, readers are referred to Appendix A.121

3 Numerical method122

The model domain is discretized in the geostrophic space (X,Y, Z). The domain123

is periodic in both horizontal directions and contains Nx = 512 grid points in each di-124

rection. The non-dimensional horizontal domain size is set to L/LD = 6, where L is125

the dimensional horizontal domain size, and LD is the deformation radius. This results126

in a non-dimensional horizontal grid size of approximately ∆X ≈ 0.01. In the verti-127

cal direction, the domain is bounded by rigid walls and contains Nz = 20 levels which128

are spaced exponentially with the majority of grid points close to the top surface.129

To initialize the simulation, an initial surface buoyancy perturbation bs(X,Y, t =
0) is specified in wavenumber space

b̃s(k, t = 0) = A
km/4

(k + k0)m/2
(19)

Here, we follow (Hakim et al., 2002; Ragone & Badin, 2016) taking m = 20 and k0 =130

14 and assigning a random phase to each mode k such that the random initial field can131

have a prescribed spectrum structure. The amplitude A is tuned such that the initial132

RMS velocity is fixed at 1 m/s for all our simulations; this velocity magnitude is typ-133

ical for oceanic fronts (Gula et al., 2016).134

Eq. (A9) is integrated in time using the 4th-order Runge-Kutta scheme. The non-
linear Jacobian JXY is discretized in the (X,Y ) plane using (Arakawa, 1966)’s scheme,
which conserves both the kinetic energy and enstrophy. Then, it is transformed into the
(kX , kY ) space for the time integration. This semi-pseudo scheme was shown to be able
to capture the development of sharp fronts (Constantin et al., 2012). To remove the alias-
ing errors introduced by the nonlinearity, b̃s(k, t) is multiplied by a low-pass filter (Hou
& Li, 2007):

exp[−α(| kX
knq

|β + | kY
knq

|β)] (20)

where knq = π/∆X is the Nyquist wavenumber and α = 512 and β = 20 as in (Ragone135

& Badin, 2016). Not unlike the Orszag 2/3 cutoff, this exponential filter suppresses the136

highest 1/3 wavenumbers. Moreover, it can capture extra 15% more effective wavenum-137

bers than the Orszag 2/3 cutoff, thus providing a better representation for the small-scale138

structures.139

Substituting the updated bs(k, t) into Eq. (A7) we obtain Φ̃(k, Z, t) at the next time140

step; its vertical derivative gives b̃(k, Z). To obtain bs(X,Y, Z) and Φ(X,Y, Z) in the geostrophic141

coordinates, an inverse Fourier transform in the horizontal plane at each depth is per-142

formed. The flow is then transformed into the physical space (x, y, z) using a fixed-point143

iteration method (Ragone & Badin, 2016).144

Six simulations were performed where the characteristic Rossby number ε was var-145

ied between 0 and 0.2. Note that when ε = 0, the SSG solution Eq. (A7) reduces to146

the SQG solution Eq. (7). In that case, the geostrophic coordinate system becomes iden-147

tical to the physical coordinate system, and no coordinate transformation is needed. Non-148

dimensional surface buoyancy, bs, and time, T , can be restored to their dimensional form149

using factors NU and (εf0)
−1, respectively.150

–6–
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Figure 1. (Colour online) Surface buoyancy bs(x, y) in the simulations with ε = 0.05 (a), 0.1

(b), 0.15 (c), and 0.2 (d) at T = 50.

4 Results151

4.1 Flow evolution152

We restrict our analyses to an early-time evolution of the SSG flows when there153

is an abundance of small-scale filaments and vortices with strong nonlinear interactions.154

Figure 1 shows the buoyancy bs at the surface captured at T = 50 in simulations155

with different ε. Patches of cold (blue color) water induce cyclonic vortices, while warm156

patches (yellow color) induce anticyclones. Numerous filaments fill the area between the157

vortices. The filaments are embedded in strong shear and are unstable; they roll into smaller158

vortices. When ε is relatively small, the cyclones and anticyclones populate the flow field159

in approximately equal numbers (Fig. 1(a) and (b)). As ε increases, the cold cyclones160

in Fig. 1(c) shrink in size while warm anticyclonic vortices expand. This effect is a man-161

ifestation of the pressure terms in the coordinate transform (second equality in Eq. (9)(a)162

and (b)) and is due to the lateral divergence and convergence of the velocity (Hoskins,163

1975). The area between coherent vortices is now filled with predominantly warm fila-164

ments (Fig. 1(d)). Their accumulation at the surface results in a warming trend with165

increasing ε. Similar scenarios have been shown previously in the simulations by (Ragone166

& Badin, 2016; Hakim et al., 2002). They pointed out that the preference for cold cy-167

clones and the dominance of warm filaments are due to the inclusion of the ageostrophic168

component.169

–7–
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Figure 2. (Colour online) The median values for surface buoyancy perturbation bms (a), rela-

tive vorticity ζm(b), strain rate σm (c), and absolute horizontal divergence |δ|m(d) as functions of

ε at different times.
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The median value of bs(x, y) versus ε at different times is shown in Fig. 2(a). When170

ε = 0.01, the high-order ageostrophic correction term in Eq. (A7) the SSG model is neg-171

ligible, and the SSG flow becomes indistinguishable from the SQG flow. The distribu-172

tion of cyclones and anticyclones becomes symmetric and the median value of the sur-173

face buoyancy perturbation, bms , is close to zero. As ε increases, bms shifts to positive val-174

ues. It corresponds to the surface warming shown in Fig. 1(c,d). The warming effect de-175

creases with time as the flows decay.176

Accumulation of warm water at the surface leads to a general anticyclonic circu-
lation, such that the median value of the relative vorticity becomes negative, ζm < 0,
Fig. 2(b). Here the (vertical component of) relative vorticity is ζ = ∂v/∂x − ∂u/∂y.
This mean anticyclonic circulation strengthens as ϵ increases. The median value of the
strain rate σm also increases with ϵ because of the enhanced stirring created by the abun-
dant small-scale filaments and vortices, Fig. 2(c). Here the strain rate is defined as:

σ =

[(
∂v

∂x
+

∂u

∂y

)2

+

(
∂u

∂x
− ∂v

∂y

)2
]1/2

. (21)

Since vertical motions concentrate in these small-scale structures (Fig. 3(b)) where177

the local convergence/divergence is large, the median value of the lateral divergence, |δ|,178

also increases with ε (Fig. 2(d)).179

Oceanic fronts are characterized by a relatively large vertical velocity of approx-180

imately 1 mm/s (Mahadevan & Tandon, 2006; McWilliams, 2016; Ruiz et al., 2019). In181

the SSG model, vertical velocity can be diagnosed by solving the so-called ”Ω-equation”182

(Hoskins & West, 1979). An analytical solution of the ”Ω-equation” in the wavenum-183

ber space is given in Appendix B. Vertical velocity fields right below the surface at z =184

−0.1 are shown in Fig. 3 for two simulations with different ε. In vortices, vertical veloc-185

ity appears as a quadrupolar structure Fig. 3(a). In filaments, positive and negative stripes186

of w are created. At larger ε, the magnitude of w increases; the difference between Fig. 3(a)187

and (b) is approximately one order of magnitude. Vertical motions become concentrated188

at the periphery of vortices and the bands of upwelling (w > 0, yellow color) become189

stronger than the bands of downwelling (w < 0, blue color).190

Vertical profiles of w(x, y) (not shown here) show that the magnitude of w(x, y)
is maximum in a subsurface layer at zmax ≈ −0.1. Below this level, w(x, y) decays mono-
tonically with depth. Vertical derivative of w is related to the lateral divergence of ve-
locity, δ, as:

δ =
∂u

∂x
+

∂v

∂y
= −∂w

∂z
. (22)

Since w vanishes at the surface, the lateral divergence can be approximated as δ ≈ w(zmax)/zmax.191

Fronts/filaments are associated with strong buoyancy gradients in the cross-front
direction and strain-dominated confluent flows which act to enhance the gradients. In
an elongated front where the variation of velocity in the along-front direction is negli-
gible, δ is related to the relative vorticity, ζ, and the rate-of-strain, σ as:

δ2 = σ2 − ζ2. (23)

The relation between these quantities was previously discussed for oceanic and numer-192

ical flows by (Shcherbina et al., 2013; Chavanne et al., 2010; Balwada et al., 2020; Maalouly193

et al., 2023). Chavanne et al. (2010) reported a negative linear correlation between δ and194

ζ for an oceanic front during an active phase of its evolution. Their observation is in agree-195

ment with the prediction by (Hoskins & Bretherton, 1972) that δ ∝ −σ̄ζ where σ̄ is196

the large-scale strain rate. Thus, cyclonic circulations in a strain field create lateral con-197

vergence while anticyclonic ones create lateral divergence. To obtain a ζ−δ relation for198

our flows, we computed the joint probability density function (PDF) in the two-dimensional199

–9–
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Figure 3. (Colour online) Vertical velocity w(x, y) at z = −0.1 (a, b), normalized relative vor-

ticity ζ/f0 (c, d), and normalized strain rate σ/f0 (e, f) for the flows with ε = 0.01 (left column)

and ε = 0.2 (right column) at T = 50.

–10–
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parameter space spanned by ζ and δ. ζ and δ were normalized by the Coriolis param-200

eter f0, they were then sorted according to their normalized values into bins of size 0.01201

by 0.01. After that, the joint PDF can be obtained by counting the number of occur-202

rences when ζ(x, y) and δ(x, y) drop into each bin. Finally, the joint PDFs were tem-203

porally averaged over a period from T = 45 to T = 55.204

Figure 4(a) shows that the joint PDF of ζ and δ is aligned along a straight line with205

a negative slope. White dashed line in Fig. 4(a) is δ = − 1
2 σ̄ζ, where σ̄ = 0.04 is the206

spatial mean of σ averaged over the parameter region where PDF> 3; σ̄ represents a207

typical value of the large-scale strain rate. This relation was previously proposed in (Davies208

& Muller, 1988; Lapeyre & Klein, 2006b) for the surface-intensified currents decaying209

exponentially with depth, which is consistent with the SSG model employed here.210

Fig. 4(b) shows the joint PDF in the ζ−σ parameter space. The PDF is aligned211

along the lines σ = ±ζ, which indicates a pure shear relationship. This also suggests212

that a contribution of δ in Eq. (23) is small.213

To show the relation between δ, σ, and ζ in a single diagram, we computed δ av-214

eraged over each bin in the ζ−σ parameter space. This procedure gives a conditional-215

mean lateral divergence shown in Fig. 4(c). Note that this diagram can also be interpreted216

in terms of vertical velocity in the subsurface layer. Strong divergence/upwelling (yel-217

low color) is mainly associated with anticyclonic vorticity while convergence/downwelling218

(blue color) is associated with the cyclonic vorticity in the strain-dominated areas located219

above the line σ = |ζ|. In the vorticity-dominated areas below the line σ = |ζ|, the220

divergence is generally of the same sign as vorticity, opposite to that in the strain-dominated221

areas. However, the signal there is weaker and noisier than that in the strain-dominated222

areas. Note that according to a frontogenesis model by Barkan et al. (2019) the three223

quantities in Eq. (23) are of the same order of magnitude in a submesoscale front. In our224

simulations, this can be locally satisfied in strong filaments. High levels of δ create grain-225

iness in Fig. 4 (c).226

4.2 Spectral characteristics227

Kinetic and potential energy spectra at depth Z are defined as

K(k, Z) = k2Φ̃(k, Z)Φ̃∗(k, Z), (24a)

P(k, Z) = b̃s(k, Z)b̃∗s(k, Z), (24b)

where k = (kx, ky) and the superscript ∗ denotes the complex conjugate. One-dimensional228

(1D) spectra K(k, Z) and P (k, Z) are computed by averaging the above equations over229

the azimuthal angle θ = tan−1(ky/kx) in the wavenumber space. Fig. 5 shows 1D ki-230

netic energy spectra Ks(k) and Ps(k) for the flows at the surface at different ε. At larger231

ε, the fraction of total kinetic or potential energy at smaller scales (larger k) increases232

while the fraction at larger scales (smaller k) decreases. This shift in the energy distri-233

bution across scales is a manifestation of abundant and energetic small-scale features in-234

cluding filaments at larger ε. As a result, the spectral slope becomes less steep at larger235

ε; it varies between -2.2 and -1.7 for both Ks and Ps for ε varying between 0.01 and 0.2.236

A middle point of this spectral seesaw is at approximately k = 20.237

Previously, Ragone and Badin (2016) made an observation that energy accumu-238

lation at small scales strongly depends on ε. However, their -3 slope of Ks was steeper239

than the -2 slope in our flows. This difference might be due to the fact that their anal-240

yses were performed at a later time T = 100 when the flow is dominated by the long-241

lived coherent vortices rather than filaments. The presence of these vortices could steepen242

the spectral slope. In our case, the nonlinear interactions are strong at T = 30 and fil-243

aments are abundant. A similar -2 slope was previously measured during an early stage244

of the SQG flow simulation by (Capet et al., 2008).245
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Figure 4. (Colour online) Joint PDF in the ζ-δ parameter space (a); that in the ζ-σ param-

eter space (b); and δ/f0 conditioned in the ζ-σ parameter space (c) for the flow with ϵ = 0.2.

The color scales are logarithmic and areas with zero PDF are left blank. White dashed line in (a)

corresponds to δ = −σ̄/2ζ. Black dashed lines in (b) and (c) correspond to σ = ±ζ.
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Figure 5. (Colour online) One-dimensional kinetic energy spectra Ks(k) (a) and potential

energy spectra Ps(k) (b) for the flows with ε varying between 0.01 and 0.2 at T = 30. The solid,

dotted, and dashed curves in panel (c) show the one-dimensional PDS for ζ̃(k), δ̃(k), and σ̃(k),

respectively. Note that σ̃(k) is dominated by ζ̃(k), the dashed lines coincide with the solid ones.

The insert shows the wavenumber kmax for the peak in δ̃(k), where a linear fit is shown by the

straight line.

Boyd (1992) investigated spectral characteristics of a one-dimensional front using246

the Burger’s equation ut + uux = 0. He showed that the kinetic energy spectrum of247

the solution follows a k−2 scaling law shortly after the formation of the front. We be-248

lieve that the approximately -2 slope in Fig. 5 is due to the nonlinear advection term in249

Eq. (A9). At later times, when filaments are getting destroyed in the strain field of co-250

herent vortices, a -3 or even steeper spectral slope emerges in all of our simulations (not251

shown here). An approximately -5/3 slope is observed at larger ε = 0.15, 0.2. This re-252

sult is in agreement with that of the simulations by Ragone and Badin (2016) and with253

the theoretical result by (Blumen, 1978) who predicted the -5/3 slope for an inertial range254

of the potential energy.255

Comparison of Fig. 5 (a) and (b) shows that the slopes of Ps(k) are approximately
equal to those of Ks(k). This feature was also observed in the SQG flows in an infinitely
deep ocean (Lapeyre & Klein, 2006a). In that case, the SQG solution Eq. (7) becomes

ϕ̃(k, z, t) =
1

k
b̃s(k, z) exp(−kz) (25)

Substitution of the above equation into Eq. (24) shows that

Ps(k) = Ks(k) (26)

is satisfied at the surface z = 0. Our computations suggest that this result is also valid256

for the SSG flows.257

To assess the spectral characteristics of the small-scale filaments we computed the258

power spectral density (PSD) for the gradient fields, namely the relative vorticity ζ, lat-259

eral divergence δ and strain rate σ, Fig. 5(c). An approximately flat (”white”) spectrum260

is observed in the wavenumber range where the kinetic energy slope is about −2. The261

almost geostrophic flow (ε = 0.01) is non-divergent such that δ̃(k) is negligible (dot-262

ted blue curve) and the PSD of ζ̃ and σ̃ (solid and dashed blue curves) are almost iden-263

tical. Although δ̃ increases significantly with ε it remains much smaller than ζ̃ or σ̃. At264

larger ε, the flat spectrum extends to higher wavenumbers due to the growing contribu-265

tion of small-scale energetic filaments. An inset in Fig. 5(c) shows the wavenumber kmax266

at which the maximum magnitude of δ̃(k) is reached. kmax can be considered as a char-267

acteristic wavenumber of submesoscale filaments in our flows. It grows approximately268
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linearly with ε (thick-black line). This is a consequence of the linear dependence of the269

high-order correction term in Eq. (A7), which determines the lateral divergence, on ε.270

Energy spectra are sustained by transfers of energy across the scales, an energy cas-
cade. However, the spectra themselves do not allow us to determine the magnitude or
the direction of the cascade. The investigation of the cascades requires a different ap-
proach. Here we employ the spatial filtering technique developed by (Germano, 1992;
Chen et al., 2006; Aluie et al., 2018) and used in previous studies of rotating shallow-
water and baroclinic turbulence (Afanasyev & Craig, 2013; Zhang & Afanasyev, 2016).
Fluxes of the kinetic energy and the potential energy are defined as:

Πl
u(x, y) = −[(vivj)

l − vliv
l
j ]
∂vli
∂xj

, (27a)

Πl
b(x, y) = −[(vjb)

l − vljb
l]
∂bl

∂xj
, (27b)

where vi is the ith component of the horizontal velocity, and summation over repeated271

indices is implied. The superscript l denotes a spatial scale. Πl
u and Πl

b are computed272

using low-pass filtering which is performed by convolving the correspondent fields with273

a Gaussian kernel G(l) = 9/(2πl2) exp(−9r2/2l2). Positive values of Πu or Πb indicate274

a forward cascade, i.e., energy transfers from larger to smaller scales while negative val-275

ues indicate the cascade in the opposite direction, the inverse cascade. The cut-off scale276

l can be related to the non-dimensional wavenumber as k = 2π/l.277

Figure 6 shows Πl
u(x, y) and Πl

b(x, y) computed for two wavenumbers k = 85 and278

k = 18. At the larger wavenumber, both kinetic and potential energy fluxes are con-279

centrated predominantly along filaments and at the periphery of the vortices. Positive280

and negative fluxes alternate; both forward and inverse energy transfers are present. Note281

that Πl
u is relatively small at k = 85 in Fig. 6 (a). The potential energy flux in Fig. 6282

(b) is of a quadrupolar structure around vortices while in the filaments away from the283

vortices, it is mainly positive. At the smaller wavenumber, the fluxes are mainly concen-284

trated within vortices and are quadrupolar Fig. 6 (c) and (d). Note that the quadrupo-285

lar structure of energy fluxes was observed in numerical simulations by Xiao et al. (2009)286

as well as in laboratory experiments by Afanasyev and Craig (2013). The quadrupolar287

structure appears to be due to vorticity gradient stretching by strain fields Kimura and288

Herring (2001). Interestingly, the kinetic energy flux appears to be concentrated in in-289

tense cold cyclones (Fig. 6 (c)) while the potential energy flux reaches its largest mag-290

nitude in warm anticyclones (Fig. 6 (d)).291

When both positive and negative fluxes are present in the flow, the overall direc-292

tion of the energy cascades can be revealed by spatial averaging over the flow domain.293

Figure 7 shows mean fluxes Π̄u and Π̄b versus wavenumber k for simulations with vary-294

ing ε. The kinetic energy flux is negative across the entire range of wavenumbers which295

indicates the energy transfers to larger scales, an inverse cascade. Maximum magnitudes296

of the flux are achieved at k ≈ 18 Figure 7(a); the overall magnitude of the flux decreases297

with increasing ϵ. This decrease is most likely caused by the joint effect of the ageostrophic298

correction term in Eq. (A8) and the coordinates transform Eq. (9). When ε increases299

the cyclones become smaller and separated farther away from each other; their mergers300

then become less likely. Potential energy cascades forward at all wavenumbers above k ≈301

20 (Fig. 7(b)). Maximum values of Π̄b are achieved at k ≈ 85 and the magnitude of the302

flux increases with increasing ε. Since the potential energy flux mainly occurs at large303

wavenumbers, it is clearly related to small-scale elements of the flows including cyclones304

and filaments. These elements become more abundant and energetic with increasing ε.305

To further explore the relation between the flux of potential energy with the ve-306

locity field we plotted the isolines of Πl
b(x, y) computed at k = 85 together with the ver-307

tical velocity field, w, just below the surface (at z = −0.01) (Fig. 8(a)). w appears to308

be positively correlated with Πl
b(x, y); filaments formed by upwelling water are associ-309
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Figure 6. (Colour online) Kinetic energy flux Πl
u(x, y) (a, c) and potential energy flux

Πl
b(x, y) (b, d) for the surface flow with ε = 0.1 at T = 30(contours). The fluxes are across

the wavenumbers k = 85 (top row) and k = 18 (bottom row). Gray-scale background shows the

surface buoyancy in the range between -1.2 and 1.2.

Figure 7. (Colour online) (a) Surface kinetic energy flux Π̄l
u and (b) potential energy flux Π̄l

b

versus k in the flows with different ε at T = 30.
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ated with the forward-cascading potential energy, while areas of downwelling exhibit an310

inverse cascade. This observation appears to be consistent with (Hakim et al., 2002)’s311

conclusion that the contraction of warm filaments develops faster than that of cold ones.312

4.3 Finite-scale Lyapunov exponents313

To study stirring in the SSG flows we compute trajectories of numerical particles
in our flows. The trajectories can be used to obtain finite-scale Lyapunov exponents (FSLEs)
which are a useful metric of stirring (d’Ovidio et al., 2004). FSLEs are inversely propor-
tional to time τ it takes a pair of particles initially separated by a distance δi to reach
a prescribed final separation δf :

λ(x, y, t, δi, δf ) =
1

τ
log

δf
δi
. (28)

Trajectories of particles are computed by integrating velocity fields over time using the314

fourth-order Runge-Kutta scheme. The velocity at particle locations is obtained by a bi-315

linear interpolation at each time step. Particles are initially seeded in between the nodes316

of the computational grid such that their smallest initial separation is half of the grid317

spacing, δi = 0.5∆x. Each particle is surrounded by four neighboring particles in the318

shape of a diamond. The separations between particles in the diamond in x- and y-directions319

are calculated at each time step; when the maximum separation reaches δf , the time τ320

is obtained. The velocity is integrated either forward or backward in time to obtain two321

sets of the exponents λ+ and λ−, respectively. High values of λ+ indicate areas where322

particles separate from each other due to lateral divergence. High values of λ−, on the323

other hand, indicate areas of convergence where particles accumulate.324

Spatial distributions of FSLEs can be used for detecting the so-called Lagrangian325

structures, the structures formed by Lagrangian particles. High values of both exponents326

often manifest themselves as filament-like structures in the ocean(d’Ovidio et al., 2004;327

Calil & Richards, 2010; Siegelman et al., 2020). A typical spatial pattern of the expo-328

nents in our simulations is shown in Figure 8(b) where both λ+ (yellow color) and λ−329

(blue color) are plotted together. It is an illustration of stirring by strong vortices. Cy-330

clonic vortices created by cold patches (black color) create a fine structure of filaments331

wrapped around their cores. Two pairs of cyclones located in the part of the computa-332

tional domain shown in Figure 8(b) create two figure-eight patterns where attracting lines333

(blue color) intersect repelling lines (yellow color) at a hyperbolic point in the area be-334

tween the vortices. It is in this area the strain rate is as important as the relative vor-335

ticity. Two warm anticyclones (white color) do not seem to create distinct patterns of336

filaments in their cores but contribute to strain in the areas between them and other vor-337

tices.338

Domain-averaged FSLEs can be used to identify regimes of dispersion at different339

scales. Here, we compute a spectrum of the mean exponent λ̄ = 0.5(λ+ + λ−) aver-340

aged over the surface area of the domain. In this computation, the initial separation be-341

tween the particles in diamond patterns was varied in a wide range between δi = ∆x342

and δi = 110∆x. The particles were followed until the separation between them reached343

a prescribed final value δf =
√
2δi (Lacorata et al., 2001). λ̄ as a function of δi is shown344

in Fig. 9 for simulations with different ε. Note that the range of dimensionless δi in Fig. 9345

corresponds to the range of the dimensionless wavenumber, k = L/2δi, from 256 down346

to 3 for comparison with the energy spectra in Fig. 5. The slope of the λ̄ spectrum varies347

continuously with δi such that there is no extended interval where it remains constant.348

At the smallest scales up to approximately δi = 4∆x the spectrum is almost flat, λ̄ ≈349

constant. The flat spectrum indicates that the distance between particle trajectories in-350

creases exponentially in time. At larger scales, the slope varies from approximately -1/2351

to -2.352
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Figure 8. (Colour online) Typical patterns of the potential energy flux Πl
b(x, y) (a) and the

FSLEs λ+ and λ− (b) in the flows ε = 0.1. Contours of Πl
b(x, y) across wavenumber k = 85 are

superposed over the vertical velocity field w(x, y) (gray-scale) in the range between −5 × 10−3

and 5 × 10−3. Contours of the FSLEs are superposed over the buoyancy field bs(x, y) (gray-scale)

in the range between −0.6 and 0.6. Black arrows indicate the direction of the velocity around one

of the cyclone pairs.

Figure 9. (Colour online) FSLE spectra for five simulations with different ε at T = 30.
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Scaling theory for turbulent flows where the kinetic energy spectrum is Ks(k) ∝353

k−α predicts the power-law scale dependence of the FSLE, λ̄ ∝ δ−β
i , and the power-354

law time dependence of the separation between particles, δ2(t) ∝ t2/β where β = (3−355

α)/2 (Morel & Larceveque, 1974). These power-law equations are applicable when the356

kinetic energy spectrum is not too steep, α < 3. In this case, the dispersion regime is357

local, the separation of particles at a certain scale is only determined by the velocity gra-358

dient components at the same scale. Otherwise, the dispersion regime is non-local; the359

power-law is not applicable and the separation between particles grows exponentially in360

time.361

In our flows, α ≈ 2 at intermediate values of the wavenumber (Fig. 5). In this in-362

terval, a local dispersion regime with β ≈ 1/2 is expected. The separation between par-363

ticles grows quite fast, δ2(t) ∝ t4, and the regime can be called hyper-ballistic. β then364

keeps increasing with δi up to β = 2. In this range, several distinct regimes of disper-365

sion can be pointed out. When β = 2/3 the dispersion obeys the Richardson’s law which366

describes another case of the hyper-ballistic dispersion where δ2(t) ∝ t3; in this case,367

the energy spectrum has Kolmogorov’s -5/3 slope. When β = 1 and δ2(t) ∝ t2 the368

motion of particles is ballistic as if they move with constant speed away from one an-369

other. Finally, when β = 2 the regime is a normal diffusion, δ2(t) ∝ t is similar to that370

of the Brownian motion. In our flows, the normal diffusion is due to the scattering of371

particles by the energetic warm and cold eddies at large scales.372

5 Conclusions373

In this work, turbulent flows were simulated at different values of the Rossby num-374

ber, ε, using the SSG model. The simulated flows exhibited typical ageostrophic effects,375

including a cyclone-anticyclone asymmetry with a cyclonic preference for vortices and376

an anticyclonic preference for filaments. The magnitude of the ageostrophic effects in-377

creased with ε due to the increasing higher-order ageostrophic term in the SSG solution378

(Equation A7). As ε increased from 0.01 to 0.2 between the simulations, the number of379

warm filaments on the surface increased, resulting in a surface warming trend.380

The magnitude of the vertical velocity and, consequently, the lateral divergence also381

increased with ε. Vertical motions occurred mostly in small-scale filaments and at the382

periphery of vortices rather than in their cores. However, in all our simulations, the lat-383

eral divergence remained much smaller than the relative vorticity or the strain rate. This384

contrasted with the results of (Balwada et al., 2021), where the authors used primitive385

equations and obtained lateral divergence values comparable to those of relative vortic-386

ity and strain rate. We believe this difference is mainly due to the distinct forcing used387

in their simulations compared to buoyancy-only initial forcing in ours. Our results demon-388

strated a negative correlation between lateral divergence and relative vorticity, δ = −σ̄/2ζ389

(Figure 4). This indicates that cyclonic and anticyclonic motions are often associated390

with local convergence and divergence, respectively. This effect is most pronounced in391

strain-dominated areas where σ > |ζ|.392

Spectral analyses showed that the kinetic and potential energy spectra exhibited393

similar slopes, varying between -2.2 and -1.7 as ε increased from 0.01 to 0.2. Notably,394

the latter value of the slope is approximately equal to -5/3, in agreement with previous395

SSG simulations by (Ragone & Badin, 2016) and SQG+1 simulations by (Capet et al.,396

2008). The similarity of the kinetic and potential energy spectra is a well-known feature397

of SQG turbulence, where it is caused by the thermal-wind coupling between the veloc-398

ity field and the buoyancy field at the surface. In the SSG flow, this coupling seems largely399

unaffected by the inclusion of the ageostrophic component.400

Spectra of gradient fields, including relative vorticity ζ and strain rate σ (Figure401

5(c)), were approximately flat in the wavenumber range where the kinetic energy slope402
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was approximately -2. The spectra of another gradient field, lateral divergence δ, how-403

ever, showed a maximum at a relatively large wavenumber kmax, which increased almost404

linearly with ε.405

In addition to energy spectra, energy fluxes across different scales were computed.406

The fluxes showed that kinetic energy is transferred towards larger scales, constituting407

an inverse cascade. However, the cascade rate was not constant across scales; it reached408

a peak at a scale l = 2π/k = 0.35, corresponding to wavenumber k = 18. This scale409

roughly agreed with the typical distance between cold cyclones. Visual inspection of the410

flux fields showed that kinetic energy flux concentrated in and around cold cyclones (Fig-411

ure 6(c)). Interestingly, the magnitude of the flux decreased as ε increased, and the flows412

became more ageostrophic and three-dimensional. One of the effects slowing down the413

inverse cascade was warm filaments wrapping around cold cyclones, shielding them, and414

preventing mergers. Potential energy, on the other hand, cascaded forward towards smaller415

scales at all wavenumbers greater than k ≈ 20. The potential energy flux was maxi-416

mum at k ≈ 85. Comparison of the flux with the vertical velocity field (Figure 8(a))417

showed that the forward cascade was mainly associated with warm filaments created by418

upwelling. The magnitude of the potential energy flux increased with ε, a consequence419

of the growing number of filaments in ageostrophic flows.420

To explore lateral stirring and dispersion of particles by eddies and filaments in our421

flows, we computed the trajectories of numerical particles and obtained forward and back-422

ward FSLEs. Inspection of the FSLE fields showed that interacting cold cyclones cre-423

ated Lagrangian coherent structures in between them (Figure 8(b)). The relative dis-424

persion of particles was scale-dependent in our flows. To study the regimes of dispersion,425

mean FSLEs were computed for different initial separations of particles δi. The results426

showed (Figure 9) that at the smallest scales, the relative dispersion of a pair of parti-427

cles was exponential in time and non-local. At larger scales, the dispersion regime was428

local, and the mean FSLE, λ̄, satisfied a power law, λ̄ ∝ δ−β
i , where β varied smoothly429

from approximately 1/2 to 2 with increasing δi. The variation of β reflected a transition430

from a hyper-ballistic dispersion regime (β ≈ 1/2) to Richardson’s dispersion (β ≈ 2/3)431

and then to a ballistic regime (β ≈ 1) and finally to normal diffusion (β ≈ 2). The432

smooth transition of β from 1/2 to 2 was a robust feature in all our simulations for dif-433

ferent ε. A similar transition of the exponent β was previously found in SQG+1 turbu-434

lence (Maalouly et al., 2023, their figure 4) and observed for drifters in the Antarctic Cir-435

cumpolar Current (Balwada et al., 2021, their figure 9).436

Appendix A Solution of the SSG equations437

Eq. (18), can be written in non-dimensional form as:

∇2Φ = εDΦ, (A1)

where ∇2 is the three-dimensional Laplacian operator in the geostrophic space and

DΦ =
∂2Φ

∂X2

∂2Φ

∂Y 2
−
(

∂2Φ

∂X∂Y

)2

(A2)

is the nonlinear differential operator. Horizontal Fourier transform can then be used to
obtain a forced Helmholtz equation in the vertical direction which can be solved numer-
ically by iteration: (

∂

∂Z2
− k2

)
Φ̃(n) = εD̃Φ(n−1). (A3)
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The iteration is performed for each wavevector k = (kX , kY ) in the (geostrophic) wavenum-
ber space. Boundary conditions Eq. (4) can be written as:

∂Φ̃(k, Z)

∂Z
= b̃s at Z = 0,

∂Φ̃(k, Z)

∂Z
= 0 at Z = −1.

(A4)

Equation (A3) with the boundary conditions Eq. (A4) has a solution in the form of the
Green’s function:

Φ̃(n)(k, Z) = b̃s(k, t)Gk(Z, 0) + ε

∫ 0

−1

Gk(Z,Z
′)D̃Φ(n−1)(k, Z ′)dZ ′ (A5)

where

Gk(Z,Z
′) =

{
cosh(kZ) cosh[k(Z ′ + 1)]/(k · sinh k), Z ≥ Z ′

cosh[k(Z + 1)] cosh(kZ ′)/(k · sinh k), Z < Z ′.
(A6)

The first-order approximation of the solution is given by

Φ̃(1)(k, Z) = Φ̃(0)(k, Z) + ε

∫ 0

−1

Gk(Z,Z
′)D̃Φ(0)(k, Z ′)dZ ′ (A7)

where the zeroth-order approximation

Φ̃(0)(k, Z) = b̃s(k, t)Gk(Z, 0) =
cosh[(Z + 1)k]

k sinh(k)
b̃s(k, t) (A8)

is the SQG solution Eq. (7). Following (Ragone & Badin, 2016) who showed that when438

ε is small, the first-order approximation provides reasonably accuracy we use Eq. (A7)439

for the numerical solution of the SSG problem.440

Buoyancy, bs, is a conserved quantity such that:

dbs
dt

=
∂bs
∂t

+ ug
∂bs
∂X

+ vg
∂bs
∂Y

= 0. (A9)

Given an initial buoyancy perturbation field bs(X,Y ) in the geostrophic space, one can441

calculate the Bernoulli function Φ(X,Y ) using Equation (A5). Geostrophic velocity, (ug, vg),442

is then given by Eq. (11). Finally Eq. (A9) can be marched in time numerically.443

Appendix B Vertical velocity444

In the SSG model, a re-scaled vertical velocity w∗ = J ·w can be obtained from
the so-called ”Ω-equation” (Hoskins & West, 1979; Ragone & Badin, 2016):

∂2w∗

∂X2
+

∂2w∗

∂Y 2
+

∂2w∗

∂Z2
= −2ε∇ ·Q, (B1)

where

J = 1− ε

(
∂vg
∂X

− ∂ug

∂Y

)
(B2)

is the re-scaling factor and

Q = (Q1, Q2) =

(
∂ug

∂X

∂b

∂X
+

∂vg
∂X

∂b

∂Y
,
∂ug

∂Y

∂b

∂X
+

∂vg
∂Y

∂b

∂Y

)
(B3)

is the forcing vector. These two quantities can be calculated using Eqs. (11) and (A7).
Applying Fourier transform in the horizontal direction, Eq. (B1) can be written as

−k2w̃∗ +
∂2w̃∗

∂Z2
= Q̃(k, Z), (B4)

–20–
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where Q̃(k, Z) is the Fourier transform of the RHS of Eq. (B1). For each geostrophic wavenum-
ber k =

√
k2X + k2Y ̸= 0, Eq. (B4) subject to the boundary conditions w̃∗ = 0 at Z =

0 and Z = −1 has the following solution:

w̃∗(k, Z) = exp(kZ)

∫ Z

0

δ3(k, z
′)dz′ − exp(−kZ)

∫ Z

0

δ4(k, z
′)dz′ + 2

δ2(k)

δ1(k)
sinh(kZ) (B5)

where

δ1(k) = −2 sinh(k), (B6a)

δ2(k) = exp(k)

∫ −1

0

δ4dz
′ − exp(−k)

∫ −1

0

δ3dz
′, (B6b)

δ3(k, z
′) = exp(−kz′)

Q̃(k, z′)

2k
, (B6c)

δ4(k, z
′) = exp(kz′)

Q̃(k, z′)

2k
. (B6d)

The above analytical solution is provided by the symbolic math toolbox in MATLAB.445

Inverse Fourier transform of Eq. (B5) then gives the vertical velocity in the geostrophic446

coordinates, w(X,Y, Z).447
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Key Points:6

• An asymmetry between cyclonic cold vortices and anticyclonic warm filaments char-7

acterizes the surface semi-geostrophic turbulence.8

• The ageostrophic component strengthens the forward potential energy cascade by9

exciting warm filaments but suppresses the inverse kinetic energy cascade by pre-10

venting cyclone mergers.11

• Horizontal dispersion transforms from a hyper-ballistic regime at small scales to12

a normal dispersion regime at large scales.13
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Abstract14

Surface semi-geostrophic turbulence is examined in this study. In our simulations, the15

strength of the ageostrophic component of the flows is controlled by the Rossby num-16

ber ε, varying from 0.01 to 0.2. The flows manifest a cyclone-anticyclone asymmetry with17

a cyclonic preference for cold vortices and an anticyclonic preference for warm filaments.18

This asymmetry becomes especially pronounced in the flows with large ε, where an abun-19

dance of warm filaments is observed. Strong vertical motions concentrate in the small-20

scale filaments and at the periphery of the vortices. There, the lateral divergence becomes21

significant. A negative correlation between the divergence and the relative vorticity is22

identified using joint probability density functions. Slopes of the kinetic and potential23

energy spectra vary between -2.2 and -1.7 at intermediate scales. Analyses of spectral24

fluxes demonstrate an inverse kinetic energy cascade and a forward cascade of potential25

energy. As ε increases, the filaments become more numerous in the flows. They wrap around26

cyclones, weakening their interactions and subsequent mergers, thus suppressing the in-27

verse cascade of kinetic energy. We characterize lateral dispersion in the SSG flows us-28

ing the finite-scale Lyapunov exponents (FSLEs). They are used to identify Lagrangian29

coherent structures, such as those created by the interaction of vortices. The FSLEs are30

also used to investigate the regimes of dispersion at different scales. The results show31

a smooth transition from hyper-ballistic diffusion at small scales to normal diffusion at32

large scales.33

Plain Language Summary34

The generation of submesoscale structures by mesoscale currents is one of the im-35

portant pathways of energy dissipation in the ocean. It can be modeled with an ideal-36

ized surface semi-geostrophic (SSG) equations. The SSG model is able to reproduce ageostrophic37

effects, including a cyclone-anticyclone asymmetry. In this study, we simulate a turbu-38

lent SSG flow and demonstrate that, as the ageostrophy increases, warm filaments be-39

come more numerous. The filaments contribute to transporting the potential energy to-40

wards smaller scales. Meanwhile, the cold cyclones shrink in size and become more iso-41

lated from each other due to the shielding by warm filaments wrapping around them.42

As a result, cyclone interaction and the subsequent mergers are weakened, and the in-43

verse cascade of the kinetic energy towards larger scales is suppressed.44

1 Introduction45

Oceanic turbulence comprises flows of different scales, including ocean-wide gyres,46

mesoscale eddies, submesoscale eddies, fronts, and filaments. At the lowest end of the47

scale, submesoscale flows become more familiar due to new evidence provided by field48

measurements (Shcherbina et al., 2013; Mensa et al., 2018; Pearson et al., 2019; Balwada49

et al., 2016) and high-resolution numerical simulations (Balwada et al., 2021; Jing et al.,50

2021). Submesoscale flows are characterized by an O(1) Rossby number and consequently51

exhibit significant ageostrophy, including large vertical velocity and horizontal divergence52

(McWilliams, 2016). Thus, they provide a pathway for energy transfer from almost two-53

dimensional (2D) quasi-geostrophic (QG) turbulence to three-dimensional (3D) turbu-54

lence.55

Over the years, several theoretical models that go beyond QG but still retain cer-56

tain physical simplicity—referred to as ”intermediate models” in the terminology of McWilliams57

and Gent (1980)—have been developed. Some of these models exclusively address flows58

generated by buoyancy perturbations at the surface of the ocean, such as the surface quasi-59

geostrophic (SQG) model (Blumen, 1978; Held et al., 1994) and the surface semi-geostrophic60

(SSG) model (Ragone & Badin, 2016). The SQG model has been investigated by dif-61

ferent authors (Isern-Fontanet et al., 2006; Klein et al., 2008; Qiu et al., 2016) with re-62

spect to its capability to describe upper ocean currents using only surface data, such as63
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those obtained by satellite altimetry and thermal radiometry. It has been demonstrated64

that SQG flows generate submesoscale structures (Capet et al., 2008; Carton et al., 2016).65

Numerical simulations by (Capet et al., 2008) showed that these structures are due to66

frontogenesis processes, which occur when forward-cascading surface potential energy67

transfers into inversely-cascading kinetic energy. Spectra of kinetic energy exhibited an68

approximately -5/3 slope. Similar spectral slopes were obtained from altimetry data by69

(Traon et al., 2008) and in realistic numerical simulations by (Klein et al., 2008; Chas-70

signet & Xu, 2017). For a comprehensive review of SQG dynamics, readers are referred71

to (Lapeyre, 2017). The SQG theory relies on the assumption of a small Rossby num-72

ber, ε = U/(f0LD) < 1, where U is the characteristic velocity scale, LD is the length73

scale, and f0 is the Coriolis parameter. However, at submesoscales, ε can approach or74

exceed unity (Thomas et al., 2008). Ageostrophic effects become significant at the sub-75

mesoscale; one example is that strong vortices in the upper ocean are predominantly cy-76

clonic (Shcherbina et al., 2013; Munk, 2000; Griffa et al., 2008). As ε approaches unity,77

anticyclones become more vulnerable to frontal instability than cyclones (Hoskins & Brether-78

ton, 1972). Another manifestation of the ageostrophic effects is the vertical motion driven79

by frontogenesis. It can release the available potential energy of the system, re-stratify80

the upper ocean, and cause a warming trend at the surface. These features were real-81

ized in simulations based on the primitive equations (Roullet & Klein, 2010; Klein et al.,82

2008).83

To include the ageostrophic effects, Hakim et al. (2002) extended the SQG model84

to the next order of approximation. Their model, called SQG+1, exhibited ageostrophy,85

including an asymmetry between cold and warm filaments and a preference for cyclonic86

vortices. However, the SQG+1 model was still constrained by a requirement for a glob-87

ally small ε. To alleviate this constraint, Ragone and Badin (2016) reformulated the SQG88

dynamics in a geostrophic coordinate system and proposed a surface semi-geostrophic89

(SSG) model. The geostrophic coordinate system was previously introduced by Eliassen90

(1948); Fjørtoft (1962). It is a moving coordinate system that follows the geostrophic91

current. The total velocity in the advection term is retained rather than being approx-92

imated by the geostrophic velocity. SSG simulations by Ragone and Badin (2016) showed93

features similar to those in the SQG+1 simulations, including a cyclone-anticyclone asym-94

metry and a surface warming trend. Besides, the SSG simulations demonstrated an im-95

proved ability to capture frontogenesis and showed an abundance of small-scale fronts/filaments96

in the simulated flows due to the improved representation of the nonlinear advection term.97

In what follows, we employ the SSG model to investigate the dynamics of surface-98

intensified flows generated by buoyancy forcing at the surface. The flows are ageostrophic99

to a significant degree and exhibit frontogenesis and three-dimensional effects. We fo-100

cus on characterizing vertical velocity and lateral divergence, especially concerning their101

relation to the relative vorticity and strain rate in filaments and eddies. Spectral char-102

acteristics of the flows are also investigated; we go beyond energy spectra and study an103

energy cascade by computing energy fluxes across the scales. The last objective of this104

work is a characterization of the Lagrangian dynamics. We compute the finite-size Lya-105

punov Exponents (FSLEs) to identify the regimes of lateral dispersion at different scales.106

In Section 2, we briefly review the SQG and SSG models. Section 3 describes the107

numerical methods and control parameters employed in this study. The results of the108

simulations are reported in Section 4, and conclusions are given in Section 5.109

2 SQG and SSG models revisited110

Buoyancy perturbation b(x, y, z, t) = −gρ′/ρ0, where g is the acceleration due to
gravity and ρ′ is the density perturbation with respect to the constant reference density
ρ0, it is a conserved quantity in both SQG and SSG models. b is related to the (pertur-
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bation) geopotential, ϕ = p/ρ0, where p is the pressure, via hydrostaticity such that

b =
∂ϕ

∂z
. (1)

The above equation combined with the geostrophic relation

f0(vg, −ug) =

(
∂ϕ

∂x
,
∂ϕ

∂y

)
, (2)

where f0 is the Coriolis parameter, gives the thermal wind equation(
∂b

∂x
,
∂b

∂y

)
= f0

(
∂vg
∂z

, −∂ug

∂z

)
. (3)

The ocean surface is subject to external heating or cooling. To model this effect,
we specify the surface buoyancy perturbation bs(x, y) at the initial moment t = 0 and
then allow the flow to evolve freely. Here, the subscript s denotes a surface quantity. It
is assumed that b vanishes in the ocean interior at depth z = −H, where H is the ver-
tical scale of the motion driven by the buoyancy perturbation. Vertical boundary con-
ditions for the geopotential can then be written as

∂ϕ

∂z
= bs(x, y, t) at z = 0, (4a)

∂ϕ

∂z
= 0 at z = −H. (4b)

Note that the background stratification is taken to be linear such that the Brunt-Vaisalla111

frequency is N = const. The buoyancy perturbation is assumed to remain relatively small112

such that N remains approximately constant at all times (Hoskins & West, 1979; Ragone113

& Badin, 2016).114

2.1 SQG model115

Quasi-geostrophic potential vorticity (q, PV) remains undisturbed in the interior
of the fluid layer at all times such that

q =
∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

f2
0

N2

∂2ϕ

∂z2
= 0. (5)

The above equation takes the form of the Laplace’s equation

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= 0, (6)

when non-dimensionalized using the deformation radius LD = NH/f0 as the horizon-
tal scale, H as the vertical scale and U as the velocity scale. All quantities in Eq. (6) are
dimensionless, but we keep the same notations. Vertical structure of the flow subject to
the boundary conditions Eq. (4) can be obtained in the wavenumber space (Tulloch &
Smith, 2006)

ϕ̃(k, z, t) =
cosh[(z + 1)k]

k sinh(k)
b̃s(k, t) (7)

where the tilde sign denotes the horizontal Fourier transform and k = (kx, ky) is the

horizontal wavenumber vector whose magnitude is k =
√

k2x + k2y. On the surface, bs
is advected by the geostrophic current,

∂bs
∂t

+ Jxy(ϕs, bs) = 0, (8)

where Jxy(A,B) = AxBy−AyBx represents the nonlinear advection term in Jacobian116

form.117
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2.2 SSG model118

As we traverse the scales of the flows from mesoscale down to submesoscale, the
Rossby number ε increases, and the ageostrophic component of velocity becomes signif-
icant. To study flows beyond the validity of the quasi-geostrophy, a coordinate system
that follows the geostrophic component of the current was introduced (Hoskins & Brether-
ton, 1972; Hoskins, 1975). The relations between the physical coordinates (x, y, z) and
geostrophic coordinates (X,Y, Z) are

x = X − 1

f0
vg = X − 1

f2
0

∂ϕs

∂x
, (9a)

y = Y +
1

f0
ug = Y +

1

f2
0

∂ϕs

∂y
(9b)

z = Z. (9c)

In this system, the horizontal advection by the total velocity (u, v) which includes the
ageostrophic component, can be expressed using the geostrophic velocity (ug, vg)

Dg

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
=

∂

∂t
+ ug

∂

∂X
+ vg

∂

∂Y
. (10)

In the geostrophic coordinate system, the Bernoulli function Φ = ϕ + (u2
g + v2g)/2 as-

sumes the role of the geopotential ϕ such that(
∂Φ

∂X
,
∂Φ

∂Y
,
∂Φ

∂Z

)
=

(
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

)
= (f0vg,−f0ug, b). (11)

A full set of equations of the SSG model then includes the conservation of buoyancy b
and the potential vorticity qsg (

Dg

Dt
+ w

∂

∂Z

)[
b
qsg

]
= 0. (12)

The potential vorticity is defined as:

qsg = − g

f0ρ0
ζsg · ∇ρ, (13)

where the absolute vorticity

ζsg =

(
−∂vg

∂z
,
∂ug

∂z
, f0 +

∂vg
∂x

− ∂ug

∂y

)
+

1

f0
(Jyz(ug, vg), Jzx(ug, vg), Jxy(ug, vg)) (14)

includes nonlinear terms in the second bracket (Hoskins & Draghici, 1977). In the ocean
at rest, ug = vg = 0, the potential vorticity and the absolute vorticity reduce to their
background values:

qsg = − g

ρ0

∂ρ

∂z
= N2, (15a)

ζsg = f0k, (15b)

where k is the unit vector in the vertical direction. In the presence of the flow, the ver-
tical component of the absolute vorticity,

ζsg = [f0 +
∂vg
∂x

− ∂ug

∂y
+

1

f0
Jxy(ug, vg)]k. (16)

remains dominant. The reciprocal of the Jacobian of a transformation from physical to
geostrophic coordinates may be written as (Hoskins, 1976)

J−1
g =

f0
ζsg

= 1− 1

f2
0

(
∂2Φ

∂X2
+

∂2Φ

∂Y 2

)
+

1

f4
0

[
∂2Φ

∂X2

∂2Φ

∂Y 2
+ (

∂2Φ

∂X∂Y
)2

]
. (17)
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and qsg = ζsg/f0Φzz. An assumption of negligible potential vorticity in the fluid in-
terior leads to a nonlinear Monge-Ampére equation:

1

N2

∂2Φ

∂Z2
+

1

f2
0

(
∂2Φ

∂X2
+

∂2Φ

∂Y 2

)
− 1

f4
0

[
∂2Φ

∂X2

∂2Φ

∂Y 2
+

(
∂2Φ

∂X∂Y

)2
]
= 0. (18)

The above equation replaces the linear Laplace’s equation Eq. (6) in the SQG model.119

To solve Eq. (18) we follow a numerical technique developed by Ragone and Badin (2016).120

For further details, readers are referred to Appendix A.121

3 Numerical method122

The model domain is discretized in the geostrophic space (X,Y, Z). The domain123

is periodic in both horizontal directions and contains Nx = 512 grid points in each di-124

rection. The non-dimensional horizontal domain size is set to L/LD = 6, where L is125

the dimensional horizontal domain size, and LD is the deformation radius. This results126

in a non-dimensional horizontal grid size of approximately ∆X ≈ 0.01. In the verti-127

cal direction, the domain is bounded by rigid walls and contains Nz = 20 levels which128

are spaced exponentially with the majority of grid points close to the top surface.129

To initialize the simulation, an initial surface buoyancy perturbation bs(X,Y, t =
0) is specified in wavenumber space

b̃s(k, t = 0) = A
km/4

(k + k0)m/2
(19)

Here, we follow (Hakim et al., 2002; Ragone & Badin, 2016) taking m = 20 and k0 =130

14 and assigning a random phase to each mode k such that the random initial field can131

have a prescribed spectrum structure. The amplitude A is tuned such that the initial132

RMS velocity is fixed at 1 m/s for all our simulations; this velocity magnitude is typ-133

ical for oceanic fronts (Gula et al., 2016).134

Eq. (A9) is integrated in time using the 4th-order Runge-Kutta scheme. The non-
linear Jacobian JXY is discretized in the (X,Y ) plane using (Arakawa, 1966)’s scheme,
which conserves both the kinetic energy and enstrophy. Then, it is transformed into the
(kX , kY ) space for the time integration. This semi-pseudo scheme was shown to be able
to capture the development of sharp fronts (Constantin et al., 2012). To remove the alias-
ing errors introduced by the nonlinearity, b̃s(k, t) is multiplied by a low-pass filter (Hou
& Li, 2007):

exp[−α(| kX
knq

|β + | kY
knq

|β)] (20)

where knq = π/∆X is the Nyquist wavenumber and α = 512 and β = 20 as in (Ragone135

& Badin, 2016). Not unlike the Orszag 2/3 cutoff, this exponential filter suppresses the136

highest 1/3 wavenumbers. Moreover, it can capture extra 15% more effective wavenum-137

bers than the Orszag 2/3 cutoff, thus providing a better representation for the small-scale138

structures.139

Substituting the updated bs(k, t) into Eq. (A7) we obtain Φ̃(k, Z, t) at the next time140

step; its vertical derivative gives b̃(k, Z). To obtain bs(X,Y, Z) and Φ(X,Y, Z) in the geostrophic141

coordinates, an inverse Fourier transform in the horizontal plane at each depth is per-142

formed. The flow is then transformed into the physical space (x, y, z) using a fixed-point143

iteration method (Ragone & Badin, 2016).144

Six simulations were performed where the characteristic Rossby number ε was var-145

ied between 0 and 0.2. Note that when ε = 0, the SSG solution Eq. (A7) reduces to146

the SQG solution Eq. (7). In that case, the geostrophic coordinate system becomes iden-147

tical to the physical coordinate system, and no coordinate transformation is needed. Non-148

dimensional surface buoyancy, bs, and time, T , can be restored to their dimensional form149

using factors NU and (εf0)
−1, respectively.150
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Figure 1. (Colour online) Surface buoyancy bs(x, y) in the simulations with ε = 0.05 (a), 0.1

(b), 0.15 (c), and 0.2 (d) at T = 50.

4 Results151

4.1 Flow evolution152

We restrict our analyses to an early-time evolution of the SSG flows when there153

is an abundance of small-scale filaments and vortices with strong nonlinear interactions.154

Figure 1 shows the buoyancy bs at the surface captured at T = 50 in simulations155

with different ε. Patches of cold (blue color) water induce cyclonic vortices, while warm156

patches (yellow color) induce anticyclones. Numerous filaments fill the area between the157

vortices. The filaments are embedded in strong shear and are unstable; they roll into smaller158

vortices. When ε is relatively small, the cyclones and anticyclones populate the flow field159

in approximately equal numbers (Fig. 1(a) and (b)). As ε increases, the cold cyclones160

in Fig. 1(c) shrink in size while warm anticyclonic vortices expand. This effect is a man-161

ifestation of the pressure terms in the coordinate transform (second equality in Eq. (9)(a)162

and (b)) and is due to the lateral divergence and convergence of the velocity (Hoskins,163

1975). The area between coherent vortices is now filled with predominantly warm fila-164

ments (Fig. 1(d)). Their accumulation at the surface results in a warming trend with165

increasing ε. Similar scenarios have been shown previously in the simulations by (Ragone166

& Badin, 2016; Hakim et al., 2002). They pointed out that the preference for cold cy-167

clones and the dominance of warm filaments are due to the inclusion of the ageostrophic168

component.169
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Figure 2. (Colour online) The median values for surface buoyancy perturbation bms (a), rela-

tive vorticity ζm(b), strain rate σm (c), and absolute horizontal divergence |δ|m(d) as functions of

ε at different times.
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The median value of bs(x, y) versus ε at different times is shown in Fig. 2(a). When170

ε = 0.01, the high-order ageostrophic correction term in Eq. (A7) the SSG model is neg-171

ligible, and the SSG flow becomes indistinguishable from the SQG flow. The distribu-172

tion of cyclones and anticyclones becomes symmetric and the median value of the sur-173

face buoyancy perturbation, bms , is close to zero. As ε increases, bms shifts to positive val-174

ues. It corresponds to the surface warming shown in Fig. 1(c,d). The warming effect de-175

creases with time as the flows decay.176

Accumulation of warm water at the surface leads to a general anticyclonic circu-
lation, such that the median value of the relative vorticity becomes negative, ζm < 0,
Fig. 2(b). Here the (vertical component of) relative vorticity is ζ = ∂v/∂x − ∂u/∂y.
This mean anticyclonic circulation strengthens as ϵ increases. The median value of the
strain rate σm also increases with ϵ because of the enhanced stirring created by the abun-
dant small-scale filaments and vortices, Fig. 2(c). Here the strain rate is defined as:

σ =

[(
∂v

∂x
+

∂u

∂y

)2

+

(
∂u

∂x
− ∂v

∂y

)2
]1/2

. (21)

Since vertical motions concentrate in these small-scale structures (Fig. 3(b)) where177

the local convergence/divergence is large, the median value of the lateral divergence, |δ|,178

also increases with ε (Fig. 2(d)).179

Oceanic fronts are characterized by a relatively large vertical velocity of approx-180

imately 1 mm/s (Mahadevan & Tandon, 2006; McWilliams, 2016; Ruiz et al., 2019). In181

the SSG model, vertical velocity can be diagnosed by solving the so-called ”Ω-equation”182

(Hoskins & West, 1979). An analytical solution of the ”Ω-equation” in the wavenum-183

ber space is given in Appendix B. Vertical velocity fields right below the surface at z =184

−0.1 are shown in Fig. 3 for two simulations with different ε. In vortices, vertical veloc-185

ity appears as a quadrupolar structure Fig. 3(a). In filaments, positive and negative stripes186

of w are created. At larger ε, the magnitude of w increases; the difference between Fig. 3(a)187

and (b) is approximately one order of magnitude. Vertical motions become concentrated188

at the periphery of vortices and the bands of upwelling (w > 0, yellow color) become189

stronger than the bands of downwelling (w < 0, blue color).190

Vertical profiles of w(x, y) (not shown here) show that the magnitude of w(x, y)
is maximum in a subsurface layer at zmax ≈ −0.1. Below this level, w(x, y) decays mono-
tonically with depth. Vertical derivative of w is related to the lateral divergence of ve-
locity, δ, as:

δ =
∂u

∂x
+

∂v

∂y
= −∂w

∂z
. (22)

Since w vanishes at the surface, the lateral divergence can be approximated as δ ≈ w(zmax)/zmax.191

Fronts/filaments are associated with strong buoyancy gradients in the cross-front
direction and strain-dominated confluent flows which act to enhance the gradients. In
an elongated front where the variation of velocity in the along-front direction is negli-
gible, δ is related to the relative vorticity, ζ, and the rate-of-strain, σ as:

δ2 = σ2 − ζ2. (23)

The relation between these quantities was previously discussed for oceanic and numer-192

ical flows by (Shcherbina et al., 2013; Chavanne et al., 2010; Balwada et al., 2020; Maalouly193

et al., 2023). Chavanne et al. (2010) reported a negative linear correlation between δ and194

ζ for an oceanic front during an active phase of its evolution. Their observation is in agree-195

ment with the prediction by (Hoskins & Bretherton, 1972) that δ ∝ −σ̄ζ where σ̄ is196

the large-scale strain rate. Thus, cyclonic circulations in a strain field create lateral con-197

vergence while anticyclonic ones create lateral divergence. To obtain a ζ−δ relation for198

our flows, we computed the joint probability density function (PDF) in the two-dimensional199

–9–



manuscript submitted to JGR: Oceans

Figure 3. (Colour online) Vertical velocity w(x, y) at z = −0.1 (a, b), normalized relative vor-

ticity ζ/f0 (c, d), and normalized strain rate σ/f0 (e, f) for the flows with ε = 0.01 (left column)

and ε = 0.2 (right column) at T = 50.
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parameter space spanned by ζ and δ. ζ and δ were normalized by the Coriolis param-200

eter f0, they were then sorted according to their normalized values into bins of size 0.01201

by 0.01. After that, the joint PDF can be obtained by counting the number of occur-202

rences when ζ(x, y) and δ(x, y) drop into each bin. Finally, the joint PDFs were tem-203

porally averaged over a period from T = 45 to T = 55.204

Figure 4(a) shows that the joint PDF of ζ and δ is aligned along a straight line with205

a negative slope. White dashed line in Fig. 4(a) is δ = − 1
2 σ̄ζ, where σ̄ = 0.04 is the206

spatial mean of σ averaged over the parameter region where PDF> 3; σ̄ represents a207

typical value of the large-scale strain rate. This relation was previously proposed in (Davies208

& Muller, 1988; Lapeyre & Klein, 2006b) for the surface-intensified currents decaying209

exponentially with depth, which is consistent with the SSG model employed here.210

Fig. 4(b) shows the joint PDF in the ζ−σ parameter space. The PDF is aligned211

along the lines σ = ±ζ, which indicates a pure shear relationship. This also suggests212

that a contribution of δ in Eq. (23) is small.213

To show the relation between δ, σ, and ζ in a single diagram, we computed δ av-214

eraged over each bin in the ζ−σ parameter space. This procedure gives a conditional-215

mean lateral divergence shown in Fig. 4(c). Note that this diagram can also be interpreted216

in terms of vertical velocity in the subsurface layer. Strong divergence/upwelling (yel-217

low color) is mainly associated with anticyclonic vorticity while convergence/downwelling218

(blue color) is associated with the cyclonic vorticity in the strain-dominated areas located219

above the line σ = |ζ|. In the vorticity-dominated areas below the line σ = |ζ|, the220

divergence is generally of the same sign as vorticity, opposite to that in the strain-dominated221

areas. However, the signal there is weaker and noisier than that in the strain-dominated222

areas. Note that according to a frontogenesis model by Barkan et al. (2019) the three223

quantities in Eq. (23) are of the same order of magnitude in a submesoscale front. In our224

simulations, this can be locally satisfied in strong filaments. High levels of δ create grain-225

iness in Fig. 4 (c).226

4.2 Spectral characteristics227

Kinetic and potential energy spectra at depth Z are defined as

K(k, Z) = k2Φ̃(k, Z)Φ̃∗(k, Z), (24a)

P(k, Z) = b̃s(k, Z)b̃∗s(k, Z), (24b)

where k = (kx, ky) and the superscript ∗ denotes the complex conjugate. One-dimensional228

(1D) spectra K(k, Z) and P (k, Z) are computed by averaging the above equations over229

the azimuthal angle θ = tan−1(ky/kx) in the wavenumber space. Fig. 5 shows 1D ki-230

netic energy spectra Ks(k) and Ps(k) for the flows at the surface at different ε. At larger231

ε, the fraction of total kinetic or potential energy at smaller scales (larger k) increases232

while the fraction at larger scales (smaller k) decreases. This shift in the energy distri-233

bution across scales is a manifestation of abundant and energetic small-scale features in-234

cluding filaments at larger ε. As a result, the spectral slope becomes less steep at larger235

ε; it varies between -2.2 and -1.7 for both Ks and Ps for ε varying between 0.01 and 0.2.236

A middle point of this spectral seesaw is at approximately k = 20.237

Previously, Ragone and Badin (2016) made an observation that energy accumu-238

lation at small scales strongly depends on ε. However, their -3 slope of Ks was steeper239

than the -2 slope in our flows. This difference might be due to the fact that their anal-240

yses were performed at a later time T = 100 when the flow is dominated by the long-241

lived coherent vortices rather than filaments. The presence of these vortices could steepen242

the spectral slope. In our case, the nonlinear interactions are strong at T = 30 and fil-243

aments are abundant. A similar -2 slope was previously measured during an early stage244

of the SQG flow simulation by (Capet et al., 2008).245
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Figure 4. (Colour online) Joint PDF in the ζ-δ parameter space (a); that in the ζ-σ param-

eter space (b); and δ/f0 conditioned in the ζ-σ parameter space (c) for the flow with ϵ = 0.2.

The color scales are logarithmic and areas with zero PDF are left blank. White dashed line in (a)

corresponds to δ = −σ̄/2ζ. Black dashed lines in (b) and (c) correspond to σ = ±ζ.
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Figure 5. (Colour online) One-dimensional kinetic energy spectra Ks(k) (a) and potential

energy spectra Ps(k) (b) for the flows with ε varying between 0.01 and 0.2 at T = 30. The solid,

dotted, and dashed curves in panel (c) show the one-dimensional PDS for ζ̃(k), δ̃(k), and σ̃(k),

respectively. Note that σ̃(k) is dominated by ζ̃(k), the dashed lines coincide with the solid ones.

The insert shows the wavenumber kmax for the peak in δ̃(k), where a linear fit is shown by the

straight line.

Boyd (1992) investigated spectral characteristics of a one-dimensional front using246

the Burger’s equation ut + uux = 0. He showed that the kinetic energy spectrum of247

the solution follows a k−2 scaling law shortly after the formation of the front. We be-248

lieve that the approximately -2 slope in Fig. 5 is due to the nonlinear advection term in249

Eq. (A9). At later times, when filaments are getting destroyed in the strain field of co-250

herent vortices, a -3 or even steeper spectral slope emerges in all of our simulations (not251

shown here). An approximately -5/3 slope is observed at larger ε = 0.15, 0.2. This re-252

sult is in agreement with that of the simulations by Ragone and Badin (2016) and with253

the theoretical result by (Blumen, 1978) who predicted the -5/3 slope for an inertial range254

of the potential energy.255

Comparison of Fig. 5 (a) and (b) shows that the slopes of Ps(k) are approximately
equal to those of Ks(k). This feature was also observed in the SQG flows in an infinitely
deep ocean (Lapeyre & Klein, 2006a). In that case, the SQG solution Eq. (7) becomes

ϕ̃(k, z, t) =
1

k
b̃s(k, z) exp(−kz) (25)

Substitution of the above equation into Eq. (24) shows that

Ps(k) = Ks(k) (26)

is satisfied at the surface z = 0. Our computations suggest that this result is also valid256

for the SSG flows.257

To assess the spectral characteristics of the small-scale filaments we computed the258

power spectral density (PSD) for the gradient fields, namely the relative vorticity ζ, lat-259

eral divergence δ and strain rate σ, Fig. 5(c). An approximately flat (”white”) spectrum260

is observed in the wavenumber range where the kinetic energy slope is about −2. The261

almost geostrophic flow (ε = 0.01) is non-divergent such that δ̃(k) is negligible (dot-262

ted blue curve) and the PSD of ζ̃ and σ̃ (solid and dashed blue curves) are almost iden-263

tical. Although δ̃ increases significantly with ε it remains much smaller than ζ̃ or σ̃. At264

larger ε, the flat spectrum extends to higher wavenumbers due to the growing contribu-265

tion of small-scale energetic filaments. An inset in Fig. 5(c) shows the wavenumber kmax266

at which the maximum magnitude of δ̃(k) is reached. kmax can be considered as a char-267

acteristic wavenumber of submesoscale filaments in our flows. It grows approximately268
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linearly with ε (thick-black line). This is a consequence of the linear dependence of the269

high-order correction term in Eq. (A7), which determines the lateral divergence, on ε.270

Energy spectra are sustained by transfers of energy across the scales, an energy cas-
cade. However, the spectra themselves do not allow us to determine the magnitude or
the direction of the cascade. The investigation of the cascades requires a different ap-
proach. Here we employ the spatial filtering technique developed by (Germano, 1992;
Chen et al., 2006; Aluie et al., 2018) and used in previous studies of rotating shallow-
water and baroclinic turbulence (Afanasyev & Craig, 2013; Zhang & Afanasyev, 2016).
Fluxes of the kinetic energy and the potential energy are defined as:

Πl
u(x, y) = −[(vivj)

l − vliv
l
j ]
∂vli
∂xj

, (27a)

Πl
b(x, y) = −[(vjb)

l − vljb
l]
∂bl

∂xj
, (27b)

where vi is the ith component of the horizontal velocity, and summation over repeated271

indices is implied. The superscript l denotes a spatial scale. Πl
u and Πl

b are computed272

using low-pass filtering which is performed by convolving the correspondent fields with273

a Gaussian kernel G(l) = 9/(2πl2) exp(−9r2/2l2). Positive values of Πu or Πb indicate274

a forward cascade, i.e., energy transfers from larger to smaller scales while negative val-275

ues indicate the cascade in the opposite direction, the inverse cascade. The cut-off scale276

l can be related to the non-dimensional wavenumber as k = 2π/l.277

Figure 6 shows Πl
u(x, y) and Πl

b(x, y) computed for two wavenumbers k = 85 and278

k = 18. At the larger wavenumber, both kinetic and potential energy fluxes are con-279

centrated predominantly along filaments and at the periphery of the vortices. Positive280

and negative fluxes alternate; both forward and inverse energy transfers are present. Note281

that Πl
u is relatively small at k = 85 in Fig. 6 (a). The potential energy flux in Fig. 6282

(b) is of a quadrupolar structure around vortices while in the filaments away from the283

vortices, it is mainly positive. At the smaller wavenumber, the fluxes are mainly concen-284

trated within vortices and are quadrupolar Fig. 6 (c) and (d). Note that the quadrupo-285

lar structure of energy fluxes was observed in numerical simulations by Xiao et al. (2009)286

as well as in laboratory experiments by Afanasyev and Craig (2013). The quadrupolar287

structure appears to be due to vorticity gradient stretching by strain fields Kimura and288

Herring (2001). Interestingly, the kinetic energy flux appears to be concentrated in in-289

tense cold cyclones (Fig. 6 (c)) while the potential energy flux reaches its largest mag-290

nitude in warm anticyclones (Fig. 6 (d)).291

When both positive and negative fluxes are present in the flow, the overall direc-292

tion of the energy cascades can be revealed by spatial averaging over the flow domain.293

Figure 7 shows mean fluxes Π̄u and Π̄b versus wavenumber k for simulations with vary-294

ing ε. The kinetic energy flux is negative across the entire range of wavenumbers which295

indicates the energy transfers to larger scales, an inverse cascade. Maximum magnitudes296

of the flux are achieved at k ≈ 18 Figure 7(a); the overall magnitude of the flux decreases297

with increasing ϵ. This decrease is most likely caused by the joint effect of the ageostrophic298

correction term in Eq. (A8) and the coordinates transform Eq. (9). When ε increases299

the cyclones become smaller and separated farther away from each other; their mergers300

then become less likely. Potential energy cascades forward at all wavenumbers above k ≈301

20 (Fig. 7(b)). Maximum values of Π̄b are achieved at k ≈ 85 and the magnitude of the302

flux increases with increasing ε. Since the potential energy flux mainly occurs at large303

wavenumbers, it is clearly related to small-scale elements of the flows including cyclones304

and filaments. These elements become more abundant and energetic with increasing ε.305

To further explore the relation between the flux of potential energy with the ve-306

locity field we plotted the isolines of Πl
b(x, y) computed at k = 85 together with the ver-307

tical velocity field, w, just below the surface (at z = −0.01) (Fig. 8(a)). w appears to308

be positively correlated with Πl
b(x, y); filaments formed by upwelling water are associ-309

–14–



manuscript submitted to JGR: Oceans

Figure 6. (Colour online) Kinetic energy flux Πl
u(x, y) (a, c) and potential energy flux

Πl
b(x, y) (b, d) for the surface flow with ε = 0.1 at T = 30(contours). The fluxes are across

the wavenumbers k = 85 (top row) and k = 18 (bottom row). Gray-scale background shows the

surface buoyancy in the range between -1.2 and 1.2.

Figure 7. (Colour online) (a) Surface kinetic energy flux Π̄l
u and (b) potential energy flux Π̄l

b

versus k in the flows with different ε at T = 30.
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ated with the forward-cascading potential energy, while areas of downwelling exhibit an310

inverse cascade. This observation appears to be consistent with (Hakim et al., 2002)’s311

conclusion that the contraction of warm filaments develops faster than that of cold ones.312

4.3 Finite-scale Lyapunov exponents313

To study stirring in the SSG flows we compute trajectories of numerical particles
in our flows. The trajectories can be used to obtain finite-scale Lyapunov exponents (FSLEs)
which are a useful metric of stirring (d’Ovidio et al., 2004). FSLEs are inversely propor-
tional to time τ it takes a pair of particles initially separated by a distance δi to reach
a prescribed final separation δf :

λ(x, y, t, δi, δf ) =
1

τ
log

δf
δi
. (28)

Trajectories of particles are computed by integrating velocity fields over time using the314

fourth-order Runge-Kutta scheme. The velocity at particle locations is obtained by a bi-315

linear interpolation at each time step. Particles are initially seeded in between the nodes316

of the computational grid such that their smallest initial separation is half of the grid317

spacing, δi = 0.5∆x. Each particle is surrounded by four neighboring particles in the318

shape of a diamond. The separations between particles in the diamond in x- and y-directions319

are calculated at each time step; when the maximum separation reaches δf , the time τ320

is obtained. The velocity is integrated either forward or backward in time to obtain two321

sets of the exponents λ+ and λ−, respectively. High values of λ+ indicate areas where322

particles separate from each other due to lateral divergence. High values of λ−, on the323

other hand, indicate areas of convergence where particles accumulate.324

Spatial distributions of FSLEs can be used for detecting the so-called Lagrangian325

structures, the structures formed by Lagrangian particles. High values of both exponents326

often manifest themselves as filament-like structures in the ocean(d’Ovidio et al., 2004;327

Calil & Richards, 2010; Siegelman et al., 2020). A typical spatial pattern of the expo-328

nents in our simulations is shown in Figure 8(b) where both λ+ (yellow color) and λ−329

(blue color) are plotted together. It is an illustration of stirring by strong vortices. Cy-330

clonic vortices created by cold patches (black color) create a fine structure of filaments331

wrapped around their cores. Two pairs of cyclones located in the part of the computa-332

tional domain shown in Figure 8(b) create two figure-eight patterns where attracting lines333

(blue color) intersect repelling lines (yellow color) at a hyperbolic point in the area be-334

tween the vortices. It is in this area the strain rate is as important as the relative vor-335

ticity. Two warm anticyclones (white color) do not seem to create distinct patterns of336

filaments in their cores but contribute to strain in the areas between them and other vor-337

tices.338

Domain-averaged FSLEs can be used to identify regimes of dispersion at different339

scales. Here, we compute a spectrum of the mean exponent λ̄ = 0.5(λ+ + λ−) aver-340

aged over the surface area of the domain. In this computation, the initial separation be-341

tween the particles in diamond patterns was varied in a wide range between δi = ∆x342

and δi = 110∆x. The particles were followed until the separation between them reached343

a prescribed final value δf =
√
2δi (Lacorata et al., 2001). λ̄ as a function of δi is shown344

in Fig. 9 for simulations with different ε. Note that the range of dimensionless δi in Fig. 9345

corresponds to the range of the dimensionless wavenumber, k = L/2δi, from 256 down346

to 3 for comparison with the energy spectra in Fig. 5. The slope of the λ̄ spectrum varies347

continuously with δi such that there is no extended interval where it remains constant.348

At the smallest scales up to approximately δi = 4∆x the spectrum is almost flat, λ̄ ≈349

constant. The flat spectrum indicates that the distance between particle trajectories in-350

creases exponentially in time. At larger scales, the slope varies from approximately -1/2351

to -2.352
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Figure 8. (Colour online) Typical patterns of the potential energy flux Πl
b(x, y) (a) and the

FSLEs λ+ and λ− (b) in the flows ε = 0.1. Contours of Πl
b(x, y) across wavenumber k = 85 are

superposed over the vertical velocity field w(x, y) (gray-scale) in the range between −5 × 10−3

and 5 × 10−3. Contours of the FSLEs are superposed over the buoyancy field bs(x, y) (gray-scale)

in the range between −0.6 and 0.6. Black arrows indicate the direction of the velocity around one

of the cyclone pairs.

Figure 9. (Colour online) FSLE spectra for five simulations with different ε at T = 30.
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Scaling theory for turbulent flows where the kinetic energy spectrum is Ks(k) ∝353

k−α predicts the power-law scale dependence of the FSLE, λ̄ ∝ δ−β
i , and the power-354

law time dependence of the separation between particles, δ2(t) ∝ t2/β where β = (3−355

α)/2 (Morel & Larceveque, 1974). These power-law equations are applicable when the356

kinetic energy spectrum is not too steep, α < 3. In this case, the dispersion regime is357

local, the separation of particles at a certain scale is only determined by the velocity gra-358

dient components at the same scale. Otherwise, the dispersion regime is non-local; the359

power-law is not applicable and the separation between particles grows exponentially in360

time.361

In our flows, α ≈ 2 at intermediate values of the wavenumber (Fig. 5). In this in-362

terval, a local dispersion regime with β ≈ 1/2 is expected. The separation between par-363

ticles grows quite fast, δ2(t) ∝ t4, and the regime can be called hyper-ballistic. β then364

keeps increasing with δi up to β = 2. In this range, several distinct regimes of disper-365

sion can be pointed out. When β = 2/3 the dispersion obeys the Richardson’s law which366

describes another case of the hyper-ballistic dispersion where δ2(t) ∝ t3; in this case,367

the energy spectrum has Kolmogorov’s -5/3 slope. When β = 1 and δ2(t) ∝ t2 the368

motion of particles is ballistic as if they move with constant speed away from one an-369

other. Finally, when β = 2 the regime is a normal diffusion, δ2(t) ∝ t is similar to that370

of the Brownian motion. In our flows, the normal diffusion is due to the scattering of371

particles by the energetic warm and cold eddies at large scales.372

5 Conclusions373

In this work, turbulent flows were simulated at different values of the Rossby num-374

ber, ε, using the SSG model. The simulated flows exhibited typical ageostrophic effects,375

including a cyclone-anticyclone asymmetry with a cyclonic preference for vortices and376

an anticyclonic preference for filaments. The magnitude of the ageostrophic effects in-377

creased with ε due to the increasing higher-order ageostrophic term in the SSG solution378

(Equation A7). As ε increased from 0.01 to 0.2 between the simulations, the number of379

warm filaments on the surface increased, resulting in a surface warming trend.380

The magnitude of the vertical velocity and, consequently, the lateral divergence also381

increased with ε. Vertical motions occurred mostly in small-scale filaments and at the382

periphery of vortices rather than in their cores. However, in all our simulations, the lat-383

eral divergence remained much smaller than the relative vorticity or the strain rate. This384

contrasted with the results of (Balwada et al., 2021), where the authors used primitive385

equations and obtained lateral divergence values comparable to those of relative vortic-386

ity and strain rate. We believe this difference is mainly due to the distinct forcing used387

in their simulations compared to buoyancy-only initial forcing in ours. Our results demon-388

strated a negative correlation between lateral divergence and relative vorticity, δ = −σ̄/2ζ389

(Figure 4). This indicates that cyclonic and anticyclonic motions are often associated390

with local convergence and divergence, respectively. This effect is most pronounced in391

strain-dominated areas where σ > |ζ|.392

Spectral analyses showed that the kinetic and potential energy spectra exhibited393

similar slopes, varying between -2.2 and -1.7 as ε increased from 0.01 to 0.2. Notably,394

the latter value of the slope is approximately equal to -5/3, in agreement with previous395

SSG simulations by (Ragone & Badin, 2016) and SQG+1 simulations by (Capet et al.,396

2008). The similarity of the kinetic and potential energy spectra is a well-known feature397

of SQG turbulence, where it is caused by the thermal-wind coupling between the veloc-398

ity field and the buoyancy field at the surface. In the SSG flow, this coupling seems largely399

unaffected by the inclusion of the ageostrophic component.400

Spectra of gradient fields, including relative vorticity ζ and strain rate σ (Figure401

5(c)), were approximately flat in the wavenumber range where the kinetic energy slope402
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was approximately -2. The spectra of another gradient field, lateral divergence δ, how-403

ever, showed a maximum at a relatively large wavenumber kmax, which increased almost404

linearly with ε.405

In addition to energy spectra, energy fluxes across different scales were computed.406

The fluxes showed that kinetic energy is transferred towards larger scales, constituting407

an inverse cascade. However, the cascade rate was not constant across scales; it reached408

a peak at a scale l = 2π/k = 0.35, corresponding to wavenumber k = 18. This scale409

roughly agreed with the typical distance between cold cyclones. Visual inspection of the410

flux fields showed that kinetic energy flux concentrated in and around cold cyclones (Fig-411

ure 6(c)). Interestingly, the magnitude of the flux decreased as ε increased, and the flows412

became more ageostrophic and three-dimensional. One of the effects slowing down the413

inverse cascade was warm filaments wrapping around cold cyclones, shielding them, and414

preventing mergers. Potential energy, on the other hand, cascaded forward towards smaller415

scales at all wavenumbers greater than k ≈ 20. The potential energy flux was maxi-416

mum at k ≈ 85. Comparison of the flux with the vertical velocity field (Figure 8(a))417

showed that the forward cascade was mainly associated with warm filaments created by418

upwelling. The magnitude of the potential energy flux increased with ε, a consequence419

of the growing number of filaments in ageostrophic flows.420

To explore lateral stirring and dispersion of particles by eddies and filaments in our421

flows, we computed the trajectories of numerical particles and obtained forward and back-422

ward FSLEs. Inspection of the FSLE fields showed that interacting cold cyclones cre-423

ated Lagrangian coherent structures in between them (Figure 8(b)). The relative dis-424

persion of particles was scale-dependent in our flows. To study the regimes of dispersion,425

mean FSLEs were computed for different initial separations of particles δi. The results426

showed (Figure 9) that at the smallest scales, the relative dispersion of a pair of parti-427

cles was exponential in time and non-local. At larger scales, the dispersion regime was428

local, and the mean FSLE, λ̄, satisfied a power law, λ̄ ∝ δ−β
i , where β varied smoothly429

from approximately 1/2 to 2 with increasing δi. The variation of β reflected a transition430

from a hyper-ballistic dispersion regime (β ≈ 1/2) to Richardson’s dispersion (β ≈ 2/3)431

and then to a ballistic regime (β ≈ 1) and finally to normal diffusion (β ≈ 2). The432

smooth transition of β from 1/2 to 2 was a robust feature in all our simulations for dif-433

ferent ε. A similar transition of the exponent β was previously found in SQG+1 turbu-434

lence (Maalouly et al., 2023, their figure 4) and observed for drifters in the Antarctic Cir-435

cumpolar Current (Balwada et al., 2021, their figure 9).436

Appendix A Solution of the SSG equations437

Eq. (18), can be written in non-dimensional form as:

∇2Φ = εDΦ, (A1)

where ∇2 is the three-dimensional Laplacian operator in the geostrophic space and

DΦ =
∂2Φ

∂X2

∂2Φ

∂Y 2
−
(

∂2Φ

∂X∂Y

)2

(A2)

is the nonlinear differential operator. Horizontal Fourier transform can then be used to
obtain a forced Helmholtz equation in the vertical direction which can be solved numer-
ically by iteration: (

∂

∂Z2
− k2

)
Φ̃(n) = εD̃Φ(n−1). (A3)
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The iteration is performed for each wavevector k = (kX , kY ) in the (geostrophic) wavenum-
ber space. Boundary conditions Eq. (4) can be written as:

∂Φ̃(k, Z)

∂Z
= b̃s at Z = 0,

∂Φ̃(k, Z)

∂Z
= 0 at Z = −1.

(A4)

Equation (A3) with the boundary conditions Eq. (A4) has a solution in the form of the
Green’s function:

Φ̃(n)(k, Z) = b̃s(k, t)Gk(Z, 0) + ε

∫ 0

−1

Gk(Z,Z
′)D̃Φ(n−1)(k, Z ′)dZ ′ (A5)

where

Gk(Z,Z
′) =

{
cosh(kZ) cosh[k(Z ′ + 1)]/(k · sinh k), Z ≥ Z ′

cosh[k(Z + 1)] cosh(kZ ′)/(k · sinh k), Z < Z ′.
(A6)

The first-order approximation of the solution is given by

Φ̃(1)(k, Z) = Φ̃(0)(k, Z) + ε

∫ 0

−1

Gk(Z,Z
′)D̃Φ(0)(k, Z ′)dZ ′ (A7)

where the zeroth-order approximation

Φ̃(0)(k, Z) = b̃s(k, t)Gk(Z, 0) =
cosh[(Z + 1)k]

k sinh(k)
b̃s(k, t) (A8)

is the SQG solution Eq. (7). Following (Ragone & Badin, 2016) who showed that when438

ε is small, the first-order approximation provides reasonably accuracy we use Eq. (A7)439

for the numerical solution of the SSG problem.440

Buoyancy, bs, is a conserved quantity such that:

dbs
dt

=
∂bs
∂t

+ ug
∂bs
∂X

+ vg
∂bs
∂Y

= 0. (A9)

Given an initial buoyancy perturbation field bs(X,Y ) in the geostrophic space, one can441

calculate the Bernoulli function Φ(X,Y ) using Equation (A5). Geostrophic velocity, (ug, vg),442

is then given by Eq. (11). Finally Eq. (A9) can be marched in time numerically.443

Appendix B Vertical velocity444

In the SSG model, a re-scaled vertical velocity w∗ = J ·w can be obtained from
the so-called ”Ω-equation” (Hoskins & West, 1979; Ragone & Badin, 2016):

∂2w∗

∂X2
+

∂2w∗

∂Y 2
+

∂2w∗

∂Z2
= −2ε∇ ·Q, (B1)

where

J = 1− ε

(
∂vg
∂X

− ∂ug

∂Y

)
(B2)

is the re-scaling factor and

Q = (Q1, Q2) =

(
∂ug

∂X

∂b

∂X
+

∂vg
∂X

∂b

∂Y
,
∂ug

∂Y

∂b

∂X
+

∂vg
∂Y

∂b

∂Y

)
(B3)

is the forcing vector. These two quantities can be calculated using Eqs. (11) and (A7).
Applying Fourier transform in the horizontal direction, Eq. (B1) can be written as

−k2w̃∗ +
∂2w̃∗

∂Z2
= Q̃(k, Z), (B4)
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where Q̃(k, Z) is the Fourier transform of the RHS of Eq. (B1). For each geostrophic wavenum-
ber k =

√
k2X + k2Y ̸= 0, Eq. (B4) subject to the boundary conditions w̃∗ = 0 at Z =

0 and Z = −1 has the following solution:

w̃∗(k, Z) = exp(kZ)

∫ Z

0

δ3(k, z
′)dz′ − exp(−kZ)

∫ Z

0

δ4(k, z
′)dz′ + 2

δ2(k)

δ1(k)
sinh(kZ) (B5)

where

δ1(k) = −2 sinh(k), (B6a)

δ2(k) = exp(k)

∫ −1

0

δ4dz
′ − exp(−k)

∫ −1

0

δ3dz
′, (B6b)

δ3(k, z
′) = exp(−kz′)

Q̃(k, z′)

2k
, (B6c)

δ4(k, z
′) = exp(kz′)

Q̃(k, z′)

2k
. (B6d)

The above analytical solution is provided by the symbolic math toolbox in MATLAB.445

Inverse Fourier transform of Eq. (B5) then gives the vertical velocity in the geostrophic446

coordinates, w(X,Y, Z).447
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