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Abstract

The intermediate infrared region (IMIR, 4 – 8 μm) provides significant advantages over the visible-shortwave infrared and

mid-infrared for quantitative determination of mafic mineral composition. In particular, olivine’s sharp spectral features in

IMIR spectra exhibit systematic shifts in wavelength position with iron-magnesium content. Previous IMIR studies have used

laboratory data, with signal-to-noise ratios (SNRs) and spectral resolutions greater than those expected of imaging spectrom-

eters. Here we employ a feature fitting algorithm to quantitatively assess the influence of SNR and sampling rate on olivine

detection and compositional interpretation from IMIR data. We demonstrate that olivine is easily distinguished from pyroxene

and other lunar-relevant minerals across IMIR wavelengths, with the feature-fitting algorithm effectively determining olivine

composition for various synthetic, terrestrial, Martian, and lunar samples with an average error of only 6.4 mol%. We then apply

the feature-fitting routine to degraded spectra with reduced SNRs and sampling rates, establishing data-quality thresholds for

accurate determination of olivine composition. Spectra for the sample most relevant to lunar exploration, an Apollo 74002

drive tube consisting of microcrystalline olivine and glass-rich pyroclastics, required SNRs [?] 200 for sampling rates [?] 25 nm

to predict composition within ±11 Mg# (molar Mg/[Mg+Fe] * 100) of the sample’s true composition. Derived limits on SNRs

and sampling rates will serve as valuable inputs for the development of IMIR imaging spectrometers, enabling comprehensive

knowledge of olivine composition across the lunar surface and providing valuable insight into the Moon’s crustal history and

thermal evolution.
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Key Points: 10 

 We use a feature fitting routine to predict olivine composition from degraded spectral 11 

data in the intermediate infrared region (4 – 8 µm).  12 

 Accurate prediction of olivine composition is observed at data qualities expected of 13 

imaging spectrometers.   14 
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Abstract 15 

The intermediate infrared region (IMIR, 4 – 8 µm) provides significant advantages over the 16 

visible-shortwave infrared and mid-infrared for quantitative determination of mafic mineral 17 

composition. In particular, olivine’s sharp spectral features in IMIR spectra exhibit systematic 18 

shifts in wavelength position with iron-magnesium content. Previous IMIR studies have used 19 

laboratory data, with signal-to-noise ratios (SNRs) and spectral resolutions greater than those 20 

expected of imaging spectrometers. Here we employ a feature fitting algorithm to quantitatively 21 

assess the influence of SNR and sampling rate on olivine detection and compositional 22 

interpretation from IMIR data. We demonstrate that olivine is easily distinguished from 23 

pyroxene and other lunar-relevant minerals across IMIR wavelengths, with the feature-fitting 24 

algorithm effectively determining olivine composition for various synthetic, terrestrial, Martian, 25 

and lunar samples with an average error of only 6.4 mol%. We then apply the feature-fitting 26 

routine to degraded spectra with reduced SNRs and sampling rates, establishing data-quality 27 

thresholds for accurate determination of olivine composition. Spectra for the sample most 28 

relevant to lunar exploration, an Apollo 74002 drive tube consisting of microcrystalline olivine 29 

and glass-rich pyroclastics, required SNRs ≥ 200 for sampling rates ≤ 25 nm to predict 30 

composition within ±11 Mg# (molar Mg/[Mg+Fe] * 100) of the sample’s true composition. 31 

Derived limits on SNRs and sampling rates will serve as valuable inputs for the development of 32 

IMIR imaging spectrometers, enabling comprehensive knowledge of olivine composition across 33 

the lunar surface and providing valuable insight into the Moon’s crustal history and thermal 34 

evolution. 35 

Plain Language Summary 36 

An understanding of olivine composition can reveal the history of large-scale geologic processes. 37 

Here we explore olivine spectra in the intermediate infrared region (IMIR), where systematic 38 

trends in olivine’s absorption bands are indicative of composition. We degrade laboratory olivine 39 

spectra to data qualities that are more realistic of imaging spectrometers used in planetary 40 

exploration and derive constraints on the signal-to-noise ratio and sampling rates required to 41 

accurately prediction olivine composition. These constraints will be useful in the development of 42 

IMIR imaging spectrometers.  43 

1 Introduction 44 

Olivine is an important rock forming mineral whose composition and early crystallization from 45 

silicate melts make it useful for discerning distinct crustal terranes and understanding the origin 46 

and evolution of magmatic sources. Geologically significant olivine-group minerals have 47 

compositions falling on the Fe-Mg solid-solution series, varying in Mg# (molar Mg/[Mg+Fe] * 48 

100) between an Fe-rich endmember (fayalite, Mg# 0) and an Mg-rich endmember (forsterite, 49 

Mg# 100), with high-Mg compositions indicative of more primitive primary magmas. For the 50 

Moon and other planetary bodies, widespread characterization of olivine composition can 51 

provide insight into the planet’s bulk thermal and chemical evolution.  52 

 53 

Spectral features of olivine are known to exhibit consistent trends with Mg# and have been used 54 

to estimate olivine composition for certain locations on the Moon (e.g. Isaacson et al., 2011) and 55 

globally on Mars (e.g. Koeppen & Hamilton, 2008). To date, remote determination of olivine 56 

composition from spectroscopic data has been restricted to visible-near infrared (VNIR, 0.5 - 2 57 
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µm) and mid-infrared (MIR, 8 - 15 µm) wavelengths. In the VNIR, the position of three 58 

overlapping 1 µm bands arising from electronic transitions of Fe
2+ 

are diagnostic of Mg# (e.g. 59 

Dyar et al., 2009) and can be inverted via the modified gaussian model (Sunshine et al., 1990) to 60 

ascertain composition (e.g. Clénet et al., 2011). In the MIR, restrahlen bands exhibit systematic 61 

shifts in band strength and linear trends in band position with changing cation ratios (Hamilton 62 

2009, Lane 2011).  63 

 64 

More recently, Kremer et al., 2020 demonstrated that the position of olivine overtone-65 

combination bands at ~5.6 µm and ~6.0 µm exhibit systematic shifts to longer wavelengths with 66 

increasing Mg#, establishing applications for the intermediate infrared region (IMIR, 4 - 8 µm) 67 

in the remote determination of olivine composition. Additional advantages of IMIR spectroscopy 68 

include the capacity for remote determination of pyroxene composition (Kremer et al., 2023), as 69 

well as the presence of a 6.1 µm molecular water absorption and diminished effects from space 70 

weathering (Kremer et al., 2022).  71 

 72 

To date, the IMIR region has been underutilized in the characterization of planetary surfaces due 73 

in part to previous engineering constraints that limited the viability of IMIR detectors as well as 74 

an array of strong atmospheric absorptions that preclude obtaining spectral information from the 75 

surface of bodies with non-negligible atmospheres. In addition, the IMIR region lies between the 76 

well-studied visible-short wavelength infrared region that relies primarily on solar radiation and 77 

the well studied mid-infrared wavelength region that relies primarly on emissivity. Currently the 78 

only hyperspectral instruments that cover IMIR wavelengths are the James Webb Space 79 

Telescope and the Stratospheric Observatory for Infrared Astronomy (SOFIA), an Earth-based 80 

airborne telescopic observatory operating at stratospheric altitudes (Stutzki 2006) that has ceased 81 

operations. SOFIA measurements of the lunar surface have been used to confirm the presence of 82 

molecular water on the Moon via the detection of a 6.1 µm fundamental H2O absorption 83 

(Honniball et al., 2020), highlighting the potential of IMIR data in the surface characterization of 84 

airless bodies. Recent advances in engineering have resulted in infrared detectors capable of 85 

IMIR measurements (Ting et al., 2012, Cañas et al., 2020), positioning IMIR spectrometers as 86 

valuable tools for lunar exploration.  87 

 88 

The relationship between band position and olivine chemistry in the IMIR region was established 89 

using laboratory data (Kremer et al., 2022), with spectral resolutions and signal-to-noise ratios 90 

(SNR) exceeding those expected of imaging spectrometers. The SNR of data acquired onboard 91 

spacecraft is known to decrease due to noise from electronic, optical, and thermal effects, and 92 

instrument limitations restrict sampling rates when compared to laboratory measurements. 93 

Variations in SNR and sampling rate may influence spectral interpretation by masking or 94 

modifying absorption features at low SNRs or poorly resolving absorption features at lower 95 

sampling rates (Swayze et al., 2003). In the case of remote determination of olivine composition 96 

from IMIR datasets, SNR and sampling rates will influence both the detection and compositional 97 

prediction of olivine.  98 

 99 

Previous work that has studied the impact of data quality on spectral interpretation established 100 

limits for mineral identification in the VNIR using spectra that had been convolved to the band-101 

passes and sampling intervals of various imaging spectrometers and further degraded with 102 

random noise (Swayze et al., 2003). The authors used Tetracorder’s feature fitting algorithm 103 
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(Clark et al., 2003) to determine best-fit matches between degraded input spectra and an 104 

extensive spectral library that included a wide range of minerals and natural materials (Swayze et 105 

al., 2003). The motivation behind employing a feature fitting algorithm was twofold; it takes 106 

advantage of the full suite of spectral information within a given wavelength range and 107 

normalizes first-order differences in band strength and background absorption for a given 108 

spectral feature. This allows for direct comparison between spectra acquired under different 109 

optical conditions and with varying sample characteristics. To determine the relationship 110 

between band position and olivine composition in the IMIR region, Kremer et al. (2022) 111 

measured the band minima position of the two strongest absorption features at ~5.6 µm and ~6.0 112 

µm. Additional features at ~4.9 µm, ~5.2 µm, and ~5.4 µm attributed to olivine were not used 113 

due to their weaker band strengths. In contrast, feature fitting makes use of the entire suite of 114 

spectral features, analyzing all absorption bands simultaneously to understand the influence of 115 

complete band shape on spectral interpretation. 116 

 117 

Here we use a simplified feature fitting algorithm modeled after Tetracorder to determine the 118 

effects of SNR and sampling interval on the identification and compositional determination of 119 

olivine from IMIR spectra. Given the relevance of IMIR datasets to outstanding questions 120 

regarding lunar exploration, we build our spectral library around a variety of lunar-relevant 121 

minerals including a suite of synthetic olivine and pyroxene spectra of known compositions as 122 

well as spectra of anorthite, spinel, and ilmenite. We analyze feature fitting results from 123 

degraded spectra of olivine samples of known chemistry whose mineralogy and composition we 124 

predict from feature fitting against library spectra. These samples, which we refer to as ‘test 125 

spectra’ throughout, consist of 34 olivine samples of terrestrial, lunar, Martian, and synthetic 126 

origin. Library and test spectra are described further in Section 2.1. We explore a range of data 127 

qualities, degrading test spectra to SNRs of 50, 100, 150, 200, 300, 400, 500, and 600 and 128 

sampling rates of 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 40 nm, 50 nm, and 60 nm. Methods for 129 

noise superposition and downsampling are described in Section 2.2. Data quality constraints 130 

required for accurate olivine detection and compositional prediction derived from this study will 131 

feed forward into IMIR imaging spectrometer requirements.  132 

2 Materials and Methods 133 

2.1 Spectral Database 134 

Spectra used in this study were acquired from the PDS Geosciences Node Spectral Library and 135 

the USGS Spectral Library. Spectra from the PDS Geosciences Node were measured at the 136 

NASA Reflectance Experiment Laboratory (RELAB) at Brown University using a Thermo-137 

Nicolet Nexus 870 FTIR spectrometer (800 – 25,000 nm) and scaled to VNIR bidirectional 138 

reflectance spectra (300-2600 nm). Spectra compiled from the USGS Spectral Library were 139 

measured using either a Nicolet 740 FTIR or Magna-IR 762 FTIR and scaled to VNIR 140 

reflectance spectra measured with a Beckman 5270 spectrometer.  141 

 142 

Sample and measurement properties for all spectra used in this study are listed in Tables 1 & 2, 143 

with spectra referred to by their sample # (TX for test spectra, LX for library spectra) or sample 144 

name throughout the study. 145 
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 146 
Figure 1. SUNY suite olivines. Note the trends in band position and muting of features with 147 

decreasing Mg#.  148 

 149 

2.1.1 Library spectra 150 

Our spectral library is composed of reflectance data of synthetic olivine of varying composition 151 

as well as a suite of lunar-relevant minerals including pyroxene, anorthite, spinel, and ilmenite. 152 

We include 11 spectra of synthetic olivine (SUNY suite) synthesized by Donald Lindsley and 153 

described in detail by Dyar et al., 2009. The suite consists of samples of high purity covering the 154 

complete Mg-Fe solid solution series. We include spectra of synthetic olivine at approximately 155 

10 Mg# intervals ranging from 0 to 100 and decide to forego inclusion of synthetic samples with 156 

Mg#s 55, 65, and 75 to maintain a consistent interval between available library compositions 157 

across the entire solid-solution series (Fig. 1, Table 1). The synthetic SUNY sample with a 158 

composition between Mg# 80 and Mg# 100 falls slightly of the 10 Mg# interval with an Mg# of 159 

89.5 instead of 90.   160 

 161 

We also include a subset of spectra from a synthetic pyroxene suite synthesized by Donald 162 

Lindsley (Fig. S1). The full suite consists of 43 samples covering a range of pyroxene 163 

compositions spanning molar Ca content from 0 to 51 and Mg# from 0 to 100, and have been 164 

used in previous infrared studies of pyroxene (e.g. Klima et al., 2010, Kremer et al., 2023). To 165 

increase computational efficiency while still accounting for the influence of pyroxene 166 

composition on spectral features in the IMIR region (Kremer et al., 2023), we chose to include 167 

eight representative spectra from the larger 43-spectra dataset which covered endmember and 168 
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intermediate compositions across the pyroxene quadrilateral (Fig S1). Our spectral library also 169 

includes a spectrum of Miyake-jima anorthite with a Ca-composition (An# 98) comparable to 170 

that of the lunar anorthositic crust (e.g. Wood et al., 1970). We also provide endmember spectra 171 

(0.1 wt% FeO and 15.3 wt% FeO) from a suite of synthetic high-Mg spinel with lunar relevant 172 

compositions described in Jackson et al., 2014, as well as a spectrum of ilmenite separated from 173 

an Apollo 17 basalt. Library spectra are shown in Figs. 1 and 2 and sample characteristics and 174 

sources are listed in Table 1.  175 

 176 

 177 
Figure 2. a) High-Ca synthetic pyroxenes covering the Mg-Fe solid-solution series. b) Mid and 178 

low-Ca synthetic pyroxenes covering the Mg-Fe solid solution series. c) Spinel, ilmenite, and 179 

anorthite. All spectra were acquired from RELAB and are described in Table 1.  180 

 181 

 182 

Table 1. Library Spectra 183 

Sample 

# 
Mineral  Origin Composition 

Particle size 

(µm) 

Native Sampling 

Rate 

Sample Identifier 

(Source) 

L1 Olivine Synthetic (SUNY) Mg# 0 <45 3 nm – 12 nm 
DD-MDD-098 

(RELAB) 

L2 Olivine Synthetic (SUNY) Mg# 10 <45 3 nm – 12 nm 
DD-MDD-097 

(RELAB) 

L3 Olivine Synthetic (SUNY) Mg# 20 <45 3 nm – 12 nm 
DD-MDD-096 

(RELAB) 

L4 Olivine Synthetic (SUNY) Mg# 30 <45 3 nm – 12 nm 
DD-MDD-095 

(RELAB) 

L5 Olivine Synthetic (SUNY) Mg# 40 <45 3 nm – 12 nm 
DD-MDD-094 

(RELAB) 

L6 Olivine Synthetic (SUNY) Mg# 50 <45 3 nm – 12 nm 
DD-MDD-093 

(RELAB) 

L7 Olivine Synthetic (SUNY) Mg# 60 <45 3 nm – 12 nm 
DD-MDD-091 

(RELAB) 

L8 Olivine Synthetic (SUNY) Mg# 70 <45 3 nm – 12 nm 
DD-MDD-089 

(RELAB) 
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L9 Olivine Synthetic (SUNY) Mg# 80 <45 3 nm – 12 nm 
DD-MDD-087 

(RELAB) 

L10 Olivine Synthetic (SUNY) Mg# 89.5 <45 3 nm – 12 nm 
DD-MDD-086 

(RELAB) 

L11 Olivine Synthetic (SUNY) Mg# 100 <45 3 nm – 12 nm 
DD-MDD-085 

(RELAB) 

L12 Pyroxene Synthetic 
Mg# 100 

Wo 0 
<45 3 nm – 12 nm 

DL-CMP-001 

(RELAB) 

L13 Pyroxene Synthetic 
Mg# 50 

Wo 0 
<45 3 nm – 12 nm 

DL-CMP-004 

(RELAB) 

L14 Pyroxene Synthetic 
Mg# 0 

Wo 0 
<45 3 nm – 12 nm 

DL-CMP-061 

(RELAB) 

L15 Pyroxene Synthetic 
Mg# 48 

Wo 25 
<45 3 nm – 12 nm 

DL-CMP-057 

(RELAB) 

L16 Pyroxene Synthetic 
Mg# 8 

Wo2 3 
<45 3 nm – 12 nm 

DL-CMP-054 

(RELAB) 

L17 Pyroxene Synthetic 
Mg# 88 

Wo 49 
<45 3 nm – 12 nm 

DL-CMP-043 

(RELAB) 

L18 Pyroxene Synthetic 
Mg# 53 

Wo 49 
<45 3 nm – 12 nm 

DL-CMP-036 

(RELAB) 

L19 Pyroxene Synthetic 
Mg# 2 

Wo 49 
<45 3 nm – 12 nm 

DL-CMP-082 

(RELAB) 

L20 Spinel Synthetic 0.1 wt% FeO <45 3 nm – 12 nm 
SP-CMP-073-B 

(RELAB) 

L21 Spinel Synthetic 15.3 wt% FeO <45 3 nm – 12 nm 
SP-CMP-083-B 

(RELAB) 

L22 Plagioclase Miyake-jima An# 98 45-75 3 nm – 12 nm 
PL-CMP-151-C 

(RELAB) 

L23 Ilmenite Apollo 17 -- <45 3 nm – 12 nm 
LR-CMP-222 

(RELAB) 

 184 

2.1.2 Test spectra 185 

Test spectra consisted of reflectance data measured from a diverse range of synthetic, terrestrial, 186 

and extraterrestrial olivine with known compositions. These spectra were previously used to 187 

establish the relationship between band position and olivine chemistry in the IMIR region by 188 

Kremer er al., 2020. With the exception of the Apollo 74002 drive tube (T24-28), all test spectra 189 

were measured as particulate samples and consisted of pure olivine.  190 

 191 

We include a second suite of synthetic olivine spectra (Bristol suite) which were synthesized by 192 

Richard Brooker and are described in Dyar et al., 2009 (Fig. 3a). We chose the SUNY suite as 193 

library spectra and the Bristol suite as test spectra based on the SUNY suite’s greater chemical 194 

purity and comprehensive coverage of Mg# values at regular intervals. The Bristol suite, by 195 

contrast, had minor contamination of up to 18.7% Fe
3+

 and Mg# values ranging from 0 to 90 196 

(Darby et al., 2009). Test spectra of terrestrial samples included olivine specimens from Dish 197 

Hill, California (Fig. 3b) and San Carlos, Arizona (Fig. 3c), as well as samples from the 198 

Kiglapait intrusion in Labrador, South Point, Hawaii, and Twin Sister Peak, Washington (Fig. 199 

3d). Spectra of extraterrestrial samples included Martian meteorites Yamato 984028, Chassigny, 200 

NWA 2737, ALH 77005, and EETA 79001 (Fig. 3e). Lunar samples (Fig. 3f) included olivine 201 

extracted from a mare basalt (Apollo return sample 15555) as well as five spectra from different 202 

depths of the Apollo 74002 drive tube, a sample composed of ilmenite-rich pyroclastic beads 203 

hosting microscopic inclusions of olivine (Heiken & McKay, 1978). 204 
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 205 
Figure 3. Test spectra included in this study. a) Synthetic Bristol suite. b) Dish Hill, California. 206 

c) San Carlos, Arizona. d) Twin Sister Peak, WA, South Point, HI, and Kiglapait intrusion. e) 207 

Martian meteorite samples NWA2737, EETA79001, ALH77005, Chassigny, Yamato-984028. f) 208 

Lunar samples 15555 separate and drive tube 74002. With the exception of the spectra in panel d 209 

which were acquired from the USGS spectral library, all spectra were acquired from RELAB and 210 

are described in Table 2.  211 

 212 

Table 2. Test Spectra 213 

Sample 

# 
Sample Name Origin 

True 

Mg# 

Predicted 

Mg#* 

Particle 

size (µm) 

Sampling 

Rate (nm) 

Sample 

Identifier 

(Source) 

IBD 

T1 Bristol-046 Synthetic (Bristol) 0 20 <45 3 - 12 
DD-MDD-046 

(RELAB) 
0.099 

T2 Bristol-045 Synthetic (Bristol) 10 20 <45 3 - 12 
DD-MDD-045 

(RELAB) 
0.101 

T3 Bristol-044 Synthetic (Bristol) 20 20 <45 3 - 12 DD-MDD-044 0.113 
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(RELAB) 

T4 Bristol-043 Synthetic (Bristol) 30 30 <45 3 - 12 
DD-MDD-043 

(RELAB) 
0.146 

T5 Bristol-042 Synthetic (Bristol) 40 30 <45 3 - 12 
DD-MDD-042 

(RELAB) 
0.165 

T6 Bristol-041 Synthetic (Bristol) 50 50 <45 3 - 12 
DD-MDD-041 

(RELAB) 
0.161 

T7 Bristol-040 Synthetic (Bristol) 60 70 <45 3 - 12 
DD-MDD-040 

(RELAB) 
0.142 

T8 Bristol-039 Synthetic (Bristol) 65 70 <45 3 - 12 
DD-MDD-039 

(RELAB) 
0.181 

T9 Bristol-038 Synthetic (Bristol) 80 80 <45 3 - 12 
DD-MDD-038 

(RELAB) 
0.188 

T10 Bristol-037 Synthetic (Bristol) 90 89.5 <45 3 - 12 
DD-MDD-037 

(RELAB) 
0.202 

T11 KI3377 Kiglapait 18 10 <60 10 
KI3377 

(USGS) 
0.222 

T12 KI3291 Kiglapait 29 10 <60 10 
KI3291 

(USGS) 
0.213 

T13 KI3188 Kiglapait 51 40 <60 10 
KI3188 

(USGS) 
0.201 

T14 KI3054 Kiglapait 66 60 <60 10 
KI3054 

(USGS) 
0.190 

T15 GDS70.d South Point, HI 89 80 <60 10 
GDS70.d  

(USGS) 
0.226 

T16 GDS71.b 
Twin Sisters Peak, 

WA 
91 89.5 <60 10 

GDS71.b  

(USGS) 
0.393 

T17 DishHill-078 Dish Hill, CA 89 89.5 <45 3 - 12 
DD-MDD-078 

(RELAB) 
0.226 

T18 DishHill-076 Dish Hill, CA 91 89.5 <45 3 - 12 
DD-MDD-076 

(RELAB) 
0.205 

T19 DishHill-077 Dish Hill, CA 92 89.5 <45 3 - 12 
DD-MDD-077 

(RELAB) 
0.201 

T20 SanCarlos-080A San Carlos, AZ 91 80 <63 3 - 12 

PO-CMP-

080A 

(RELAB) 

0.247 

T21 SanCarlos-080B San Carlos, AZ 91 89.5 63-125 3 - 12 

PO-CMP-

080B 

(RELAB) 

0.283 

T22 SanCarlos-080C San Carlos, AZ 91 100 125-250 3 - 12 

PO-CMP-

080C 

(RELAB) 

0.415 

T23 15555 Separate Moon 55 70 <45 3 - 12 
LR-CMP-212 

(RELAB) 
0.099 

T24 74002.332 Moon 70.5 70 <500 3 - 12 
LR-CMP-130 

(RELAB) 
0.063 

T25 74002.2216 Moon 70.5 60 <501 3 - 12 
LR-CMP-131 

(RELAB) 
0.072 

T26 74002.2217 Moon 70.5 60 <502 3 - 12 
LR-CMP-132 

(RELAB) 
0.065 

T27 74002.2218 Moon 70.5 60 <503 3 - 12 
LR-CMP-133 

(RELAB) 
0.081 

T28 74002.2219 Moon 70.5 70 <504 3 - 12 
LR-CMP-134 

(RELAB) 
0.084 

T29 Y-984028-I Mars 65 70 <45 3 - 12 DD-MDD-121 0.108 
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(RELAB) 

T30 Y-984028-E Mars 66 70 <45 3 - 12 
DD-MDD-122 

(RELAB) 
0.138 

T31 Chassigny Mars 69 70 <50 3 - 12 
DD-MDD-001 

(RELAB) 
0.343 

T32 ALH77005 Mars 71 60 <50 3 - 12 
DD-MDD-009 

(RELAB) 
0.166 

T33 EETA79001 Mars 75 70 <50 3 - 12 
DD-MDD-060 

(RELAB) 
0.268 

T34 NWA2737 Mars 78 70 <45 3 - 12 
DD-AHT-065 

(RELAB) 
0.170 

*Mg# predicted from feature fitting on laboratory-quality data 214 

 215 

2.2 Spectral Degradation: 216 

We explore the influence of noise and spectral resolution on spectral interpretation by degrading 217 

test spectra to a range of SNRs and sampling rates. For a given round of feature fitting, the test 218 

spectrum and library spectra were resampled to a given sampling rate (Section 2.2.1) and further 219 

degraded with the superposition of noise (Section 2.2.2). Degraded test spectra were then 220 

subjected to a feature fitting algorithm and compared against library spectra (Section 2.3), with 221 

best-fit library matches recorded and used to evaluate the impact of noise and sampling on 222 

spectral interpretation. 223 

 224 

2.2.1 Resampling 225 

To explore the effect of sampling rate on spectral interpretation, Swayze et al., 2003 used band 226 

pass and sampling interval information from four imaging spectrometers (AVIRIS, HYDICE, 227 

MIVIS, and VIMS) to reproduce the spectrometer’s spectral resolution. Here we focus on a 228 

simple downsampling of the laboratory data by calculating resampled reflectance values as a 229 

weighted sum of the fraction of reflectance values in the original wavelength domain that fall 230 

under the resampled wavelength domain. We resample test spectra before the superposition of 231 

noise.   232 

 233 

We limit our resampling to uniform sampling intervals beginning at 4 µm and resample spectra 234 

to intervals of 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 40 nm, 50 nm, and 60 nm. Sampling rates 235 

for laboratory spectra acquired from the USGS and RELAB databases were 10 nm and 3 nm – 236 

12 nm across IMIR wavelengths, respectively.  237 

 238 

2.2.2 Noise 239 

Increasing levels of scaled gaussian noise were superimposed on test spectra uniformly across all 240 

wavelengths. Noise spectra were randomly sampled from a normal distribution with a mean of 241 

zero and a set standard deviation. Following Swayze et al., 2003, we define SNR for a surface of 242 

50% reflectance, where a reflectance level of 0.5 is divided by the standard deviation of the noise 243 

spectrum.  244 

 245 

Each noise spectrum defined by an SNR represets a random draw from the given distribution, 246 

with individual outcomes varying. To ensure statistical precision for each round of feature fitting 247 

we downsampled and degraded all test spectra to the lowest data qualities explored in this study 248 

(SNR 50, sampling rate 60 nm) and calculated the variance in olivine detection rates and average 249 

Mg# prediction across an increasing number of runs. After ~1500 runs, variations in olivine 250 
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detection rates were well within ± 2.5% and variations in average Mg# prediction were well 251 

within ± 2.5 Mg#, with minimal increases in precision observed over a greater number of runs 252 

(Fig. 4). For each round of feature fitting we degrade test spectra to a given sampling rate and 253 

SNR for 3000 rounds. For each iteration, the test spectrum is degraded via the superposition of a 254 

new noise spectrum which is randomly sampled from the gaussian distribution defined by that 255 

round’s SNR.  256 

 257 
Figure. 4 a) Olivine detection rate and b) average Mg# of olivine detections for all test spectra across an increasing 258 

number of runs. *Data has been demeaned for clarity. Raw data is shown in Fig. S2. 259 

 260 

We degrade spectra to SNRs of 50, 100, 150, 200, 300, 400, 500, and 600. Our choice to define 261 

SNR relative to a surface of 50% reflectance allows us to standardize discussion of SNR 262 

throughout the work, however equivalent SNRs will have different relative effects on test spectra 263 

depending on the samples spectral contrast. To place SNR in context with the test spectrum’s 264 

spectral contrast, we calculate integrated band depths (IBDs) following Milliken & Mustard, 265 

2005 (eq. 1), where R(𝜆) represents the reflectance value of the absorption, Rc(𝜆) represents the 266 

reflectance value of the continuum, and 𝑑𝜆 is the sampling interval. IBD values serve as an 267 

approximation of the cumulative energy represented by all absorptions occurring within the 268 

integrated spectral range (Milliken & Mustard, 2005). For uniformity, all test spectra were 269 

resampled to 10 nm for the IBD calculations listed in Table 2. 270 

 271 

𝐼𝐵𝐷 =  
∫ 1−

𝑅(𝜆)

𝑅𝐶(𝜆)
∗𝑑𝜆 

𝜆𝑚𝑎𝑥
𝜆𝑚𝑖𝑛

𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛
    (1) 272 

 273 

An example of degraded test spectra across the range of SNRs and sampling rates explored in 274 

this study are shown in Fig. 5. 275 
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 276 
Figure 5. Bristol Mg# 30 spectra degraded to various combination of SNR and sampling rate 277 

explored in this study. RELAB sampling rates range from 3 nm – 12 nm across IMIR 278 

wavelengths. 279 

 280 

 281 

2.3 Feature Fitting:  282 

We calculate best-fit matches between artificially degraded olivine spectra of known 283 

composition and a spectral library of lunar-relevant minerals as described in Section 2.1.1. Test 284 

spectra consisted of synthetic and natural olivine samples as described in Section 2.1.2. 285 

 286 

For a single round of feature fitting, we start by isolating the spectral feature of interest by 287 

removing a continuum defined by the spectra’s convex-hull (Fig. 6b). The feature fitting routine 288 

requires that a continuum be removed using a set of fixed channels bounding the feature of 289 

interest. We determine band positions for the continuum boundaries from the convex hull of the 290 

SUNY Mg#100 library spectrum since high-Mg olivine endmembers exhibit the strongest 291 

spectral features in this wavelength range. The resulting continuum bounds were found to be 292 

4.69 µm and 6.56 µm on the original wavelength domain. In rounds where spectra were 293 

resampled, the bands closest to those values were selected.  294 

 295 

In the IMIR region, smaller particle sizes result in greater spectral contrast (e.g. Fig. 3c, T20-296 

T22). We account for the first order effects of grain size and band saturation via a linear gain and 297 

offset measurement (Clark et al., 2003). The linear gain and offset adjustment serves to 298 

normalize spectral contrast between the test spectrum and library spectra and its simplicity 299 
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enables rapid digestion of large spectral datasets (Fig. 6c). An adjusted library spectrum is 300 

calculated by using an additive constant, k 301 

 302 

𝑅′(𝜆) =
𝑅𝐶𝑅(𝜆) + 𝑘

1.0 + 𝑘
           (2) 

 303 

where 𝑅𝐶𝑅 represents the continuum-removed library reflectance values. The linear form of eq. 2 304 

can be written as follows:  305 

 306 

𝑅′ =
𝑘

1.0 + 𝑘
+

1.0

1.0 + 𝑘
𝑅𝐶𝑅          (3) 

 307 

A standard linear least-squares regression is then used to determine the optimal k value to fit the 308 

adjusted library spectrum to the degraded test spectrum.  309 

 310 

 311 
Figure 6. Simplified example of a feature fitting routine with degraded Bristol-041 spectrum 312 

(200 SNR, 20 nm sampling) and three library spectra, SUNY Mg# 20, 50, and 80. a) Laboratory 313 

reflectance data of degraded test and library samples. b) Continuum-removed reflectance. c) 314 

Library spectra fit to degraded Bristol spectra following a linear-gain and offset adjustment.   315 

 316 

The library spectrum that provides the best overall fit is determined by calculating the Root 317 

Mean Square Error (RMSE) between the continuum-removed test spectrum and each optimized 318 

library spectra (Fig. 7). Each round serves as a unique spectral interpretation with the best-fit 319 

library spectra taken as a mineral detection. We refrain from specifying an RMSE threshold 320 

required for identification since there was no value that would serve to minimize the number of 321 

false detections while not concurrently negating a large number of true detections. In this regard, 322 

this study serves to identify upper limits on SNRs and sampling rates required for olivine 323 

detection and accurate interpretation of olivine chemistry from IMIR data. 324 

 325 

Because the composition of all the olivine samples included as both test and library spectra are 326 

known, in rounds where olivine was detected the composition of the best-fit library spectra was 327 

further considered as an Mg# prediction for the degraded test spectra (Fig. 7). Identification rates 328 

were then calculated for test spectra degraded to various data qualities.  329 
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 330 
Figure. 7 RMSE calculation of three library spectra after feature fitting a) SUNY Mg#20, b) 331 

SUNY Mg# 50, c) SUNY Mg# 80. Here, SUNY Mg#50 had the lowest RMSE and is considered 332 

the best-fit mineral and subsequent Mg# prediction for the degraded Bristol-048 spectrum whose 333 

true Mg# is 50.  334 

3 Results 335 

3.1 Olivine Identification Rates 336 

For each round of feature fitting we consider the best-fit library spectra as a mineral detection 337 

regardless of composition. For all test spectra degraded to any combination of SNR and sampling 338 

rate, olivine was the predominant mineral detection across a set of feature fitting runs. The 339 

parameter space required to achieve 100% olivine detection across all test spectra are shown in 340 

Fig. S3.  341 

 342 

With the exception of Chassigny, test spectra with high spectral contrast were correctly identified 343 

as olivine over all feature fitting runs across all combinations of SNR and sampling rates 344 

explored (Fig. S3). Notably, the Chassigny test spectrum, which had a relatively large IBD of 345 

0.343, was falsely identified as anorthite up to 15% of the time when degraded to the lowest data 346 

qualities. While olivine detections dominated regardless of test spectrum or data quality, for 347 

samples with lower IBDs (e.g. low-Mg synthetic samples (T1-2), lunar samples (T23-28), and 348 

sample Y-984928-I (T29)), test spectra degraded to low-SNRs and high-sampling rates would 349 

occasionally be falsely-identified as ilmenite or anorthite, with minimal false detections of spinel 350 

or pyroxene. Across the over 6.5 million feature fitting runs covering all SNRs, sampling rates, 351 

and test spectra explored here, pyroxene was falsely detected only 540 times. False detections of 352 

ilmenite and anorthite  were confined to SNRs ≤150 and accounted for only 0.30% and 0.20% of 353 

all detections, respectively.  354 

 355 

The sample that required the finest data qualities (highest SNRs and finest sampling rates) to 356 

reach 100% olivine detection was the Apollo drive tube sample 74002.332 (T24 – 28). In order 357 

to achieve 100% olivine detection for this sample, spectra had to have an SNR of 100 for a 358 

sampling rate of 10 nm, SNRs ≥ 150 for sampling rates under 30 nm, and SNRs ≥ 200 for 359 

sampling rates of 40 - 60 nm. 360 

 361 

3.2 Compositional Prediction of Olivine Using Feature Fitting on Laboratory-Quality Data 362 
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We first investigate the accuracy of our feature fitting routine on compositional determination of 363 

laboratory-quality data. Across the 34 test spectra, the average absolute error in Mg# prediction 364 

was 6.39 mol%, reinforcing the utility of IMIR wavelengths in the determination of olivine 365 

composition as well as the application of our feature fitting routine for compositional prediction. 366 

35% of test spectra (12 out of 34 samples) were predicted within ± 2 Mg# of their true 367 

compositions, 91% of test spectra (31 out of 34 samples) were predicted to be within ± 11 Mg# 368 

of their true compositions, and the remaining three test spectra were predicted to be within ± 20 369 

Mg# of their true compositions (Fig. 8).  370 

 371 

 372 
Figure 8. Undegraded test spectra true Mg# plotted against Mg# prediction from feature fitting. 373 

*For USGS samples, all spectra were resampled to 10 nm since test spectra and library spectra 374 

had different native sampling domains.  375 

 376 

3.3 Effects of SNR and Sampling Rate on Olivine Mg# Interpretation 377 

We then study the effects of spectral degradation on compositional interpretation for the 31 test 378 

spectra predicted within ±11 Mg# of their true composition on laboratory quality data. We 379 

forego analysis of Bristol-046 (T1), KI3291 (T12), and the 15555 Separate (T23) since their 380 

compositional predictions fell outside of this range (Section 3.2).  381 

 382 

Significant variations in the accuracy of compositional predictions were observed among test 383 

spectra that had been degraded to a given SNR and sampling rate. The Dish Hill (T17 -19), San 384 

Carlos (T20 – 22), Bristol-038 (T9), GDS71.b (T16) samples, all of which displayed well-385 

defined absorptions with high IBDs, were predicted within ±11 Mg# of their true composition 386 

across all runs for the data qualities explored here (Fig. S4). Nine other samples (T5, T7, T8, 387 

T13. T14, T20, T32, T33) were predicted within ±11 Mg# of their true composition for ≥ 90% of 388 

runs for SNRs ≥ 50. The lunar drive tube samples (T24 – 28) required SNRs greater than 200 to 389 

achieve ≥ 90% compositional prediction within ±11 Mg# for the sampling intervals explored 390 

here (Fig. 9).  391 
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 392 

The only test spectrum that did not reach ≥ 90% compositional prediction within ±11 Mg# across 393 

the parameter space explored here was Y-984028-E (T30), which has an Mg# of 66 and was 394 

predicted as Mg# 70 on laboratory quality data using the feature fitting routine. At high SNRs (≥ 395 

400) and low sampling rates (≤ 20 nm), best-fit predictions for Y-984028-E oscillated between 396 

Mg# 70 and Mg# 50. At the least-degraded data quality (SNR 600 and sampling rate of 10 nm), 397 

~76% of best-fit library matches were Mg# 70 (4 mol% from true value), while the remaining 398 

detections interpreted the composition as Mg# 50 (16 mol% from true value).  399 

 400 

 401 
Figure. 9 Identification rates within ±11 Mg# of test spectrum’s true composition. Each grid space represents the 402 

result of 3000 feature fits, with each iteration generating a new degraded test spectra from randomly sampled noise 403 

defined by that grid’s SNR and resampled to the grid’s sampling rate.  404 

4 Discussion 405 

4.1 Olivine Detection in the IMIR Region  406 

In the VNIR, olivine interpretation is complicated both by the fact that olivine has 3 overlapping 407 

features at 1 µm and by the fact that the 3-band composite feature overlaps with a broad 0.9 µm 408 

pyroxene absorption arising from electronic transitions. In contrast, in the IMIR region, olivine 409 

absorptions are the result of multiple, discrete overtone-combination bands (Kremer et al., 2020). 410 

The spectral complexity results in readily distinguishable spectral signatures for olivine when 411 

compared to pyroxene and other lunar-relevant minerals across IMIR wavelengths (e.g. Figs. 1 & 412 

2). For the test spectra explored here, olivine was by far the most common best-fit library 413 

mineral for a given set of feature fitting runs when compared to pyroxene, anorthite, spinel, and 414 

ilmenite.  415 

 416 

4.2 Successful Compositional Prediction via Feature Fitting 417 

The low absolute error in Mg# prediction across laboratory-quality data strengthens the validity 418 

of utilizing IMIR wavelengths for remote determination of olivine composition and emphasizes 419 

the practicality of employing a feature fitting approach for predictive compositional analysis.  420 

 421 

The synthetic olivine suite included in our spectral library was limited to samples covering the 422 

solid-solution series at intervals of roughly 10 Mg#. Prediction accuracy for a given round of 423 

feature fitting is constrained by the available olivine compositions in the spectral library (e.g. a 424 

test spectra of known Mg# 65 could at best be predicted with an error of 5 mol%, as either Mg# 425 

60 or Mg# 70). Accuracy of the feature fitting routine is thus directly tied to the spectral library, 426 

and can be improved upon with synthetic suites that cover the solid-solution series at finer 427 
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intervals, or expanded upon for other applications, for example with library spectra of lunar-428 

relevant mixtures. This is in contrast to the band-minima technique employed by Kremer et al., 429 

2020, where the prediction accuracy is limited instead by spectral resolution and can be strongly 430 

effected by SNR. For a sampling rate of just 20 nm, the resolution in Mg# prediction using the 431 

band minima equations derived by Kremer et al., 2020 would be ~17 Mg# for the 5.6 µm band 432 

and ~19 Mg# for the 6 µm band.  433 

 434 

4.3 Effects of Degradation on Compositional Prediction  435 

Mineral detection requires sufficient spectral contrast to detect absorption features diagnostic of 436 

a mineral’s crystal structure. With regards to remote determination of olivine Mg# from 437 

degraded IMIR spectra, spectral contrast will influence the degradation thresholds required for 438 

accurate mineral detection as well as any subsequent compositional predictions. Since we define 439 

our SNR relative to a surface of 50% reflectance, test spectra with smaller IBDs generally 440 

required higher SNRs before reaching a given identification threshold.  441 

 442 

4.3.1 Insights From Synthetic Samples 443 

The Bristol suite highlights a general trend in both increasing olivine detection rates and 444 

increasing accuracy of compositional interpretation with increasing Mg#. In the IMIR region, 445 

absorption strengths increase with magnesium concentration. Consequently, targets with higher 446 

Mg# exhibit increased spectral contrast, making them favorable for detection and compositional 447 

analysis. This carries significant implications for the exploration of Mercury, whose surface 448 

lacks significant amounts of ferrous iron resulting in an absence of detectable spectral features in 449 

VNIR data (McCord & Clark 1979, Nittler et al., 2011). The Mg# of returned lunar samples has 450 

been relatively high, with ferroan anorthosites and alkali-suite samples falling in the range of 451 

~30 to ~70 Mg# and Mg-suite samples having Mg#s greater than ~60 (Shearer et al., 2015).  452 

 453 

4.3.2 Insights From Natural Samples 454 

The variability in identification rates across terrestrial, Martian, and lunar test spectra reveals the 455 

numerous factors that play a role in spectral interpretation when examining natural samples. 456 

Band strengths and band shapes will vary with olivine composition, grain size, and mineral 457 

abundance in mixtures. Spectral shape and spectral contrast will further be influenced by the 458 

presence of alteration products, chemical impurities and minor cation substitutions, and, for lunar 459 

samples, space weathering effects.  460 

 461 

A strength of the band-minima approach employed by Kremer et al., 2020 is that compositional 462 

prediction relies solely on the band minima position of the ~5.6 µm and ~6.0 µm bands and is 463 

therefore less impacted by overall band shape. While the feature fitting routine normalizes first-464 

order differences in band strength via a linear scaling routine, the various physical and chemical 465 

parameters affecting band strength will also influence the overall spectral shape and subsequent 466 

mineralogic and compositonal interpretations.  467 

 468 

An example can be seen in the three San Carlos samples (T20 – T22), which were identical in 469 

composition (Mg #91) and sample characteristics besides grain size. Reflectance measurements 470 

are highly grain size dependent as grain size dictates the internal path length traveled by photons 471 

and the proportions of the photons that are absorbed versus scattered (Clark & Roush 1984, 472 

Clark 1999). The three San Carlos samples were estimated to have Mg#s of 80, 89.5 and 100 on 473 
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undegraded data using the feature fitting routine for grain sizes of <63 µm, 63 – 125 µm, and 125 474 

– 250 µm, respectively. While all three estimations, regardless of grain size, fell within ±11 Mg# 475 

of the sample’s true composition, it demonstrates how feature fitting accuracy is dependent on all 476 

factors controlling the overall spectral shape, of which composition is only one.   477 

 478 

4.3.3 Olivine Separates and Bulk Measurements 479 

 480 

Of the 34 test spectra used in this study, 30 were olivine samples which had been separated from 481 

their original matrix. In the context of planetary exploration, a given pixel measured by an 482 

imaging spectrometer will almost certainly represent a mixture of materials in contact as either 483 

regolith or rock. The resulting spectra will be a non-linear combination of the end-member 484 

components of the mixture, which will affect the overall band shape and may influence 485 

compositional predictions via the feature fitting routine. Four test spectra acquired from the 486 

Apollo 74002 drive tube (T25-28) were measured as bulk samples of ilmenite-rich pyroclastic 487 

samples comprising of glass-rich beads containing microcrystalline olivine (Heiken & McKay, 488 

1978). All four of these test spectra were predicted within ±11 Mg# of their true composition via 489 

feature fitting on laboratory-quality data. When degraded, the samples had similar identification 490 

rates for a given SNR and sampling intervals, requiring SNRs  ≥ 200 for sampling rates ≤ 25 nm 491 

and SNRs ≥ 300 for sampling rates between 30 nm and 60nm to reach >90% identification 492 

within ±11 Mg#. These results suggest that compositional predictions derived from feature 493 

fitting of IMIR data are accurate for lunar regolith and pyroclastic targets.  494 

5 Conclusions 495 

We investigate the utility of feature fitting on IMIR data for the remote determination of olivine 496 

composition and quantitatively identify SNR and sampling rate thresholds required for accurate 497 

remote determination of olivine Mg#. We show that:  498 

 499 

1. Olivine absorptions in the IMIR range are easily distinguishable from other lunar-500 

relevant minerals, with 100% of runs detected as olivine across all test spectra for SNRs 501 

≥ 150 and sampling rates ≤ 30 nm. 502 

 503 

2. Comparison of complete band shape via feature fitting is effective at predicting olivine 504 

composition using laboratory IMIR data for synthetic, terrestrial, Martian, and lunar 505 

samples, with an overall absolute error in compositional prediction of 6.39 Mg# across all 506 

test spectra and 91% of test spectra predicted with ±11 Mg# of their true composition. 507 

 508 

3. Applications with more idealized measurements (e.g. minimized spectral mixing over a 509 

given pixel; rover/lander spectrometer, laboratory studies) have more lenient data 510 

constraints, with some test spectra detected within ±11 Mg# for 100% of their true 511 

compositions across all runs, despite being degraded to the worst data qualities (30 SNR, 512 

60 nm sampling).  513 

 514 
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4. SNRs  ≥ 200 for sampling rates ≤ 25 nm and SNRs ≥ 300 for larger sampling rates are 515 

optimal to accurately estimate the composition of a lunar drive tube sample of ilmenite 516 

and glass-rich beads within ±11 Mg# of their true composition across ≥  90% of runs.  517 

 518 
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Supplementary Figures 654 

 655 

 656 
Figure S1. Synthetic pyroxene suite synthesized by Donald Lindsley (beige markers) and 657 

compositionally representative selection of samples that are included in spectral library (green 658 

markers).  659 
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Figure S2. a) Olivine detection rate and b) average Mg# of olivine detections for all test spectra 663 

across and increasing number of runs. Raw data.  664 

 665 

 666 
Figure S3. Parameter space required to achieve 100% olivine detection across 3000 runs for all test spectra. Green 667 

grid space denotes data qualities (SNR and sampling rate) where 100% olivine detection was achieved, gray grid 668 

spaces denote data qualities where 100% olivine detection was not achieved. Each grid space represents the result of 669 

3000 feature fits, with each iterations generating a new degraded test spectra with randomly sampled noise defined 670 

by that grid’s SNR and resampled to the grid’s sampling rate. 671 

 672 
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 673 
Figure S4. Identification rates within ±12 Mg# of test spectrum’s true composition across a set of feature fitting 674 

runs for all data qualities explored in this study. Each grid space represents the result of 3000 feature fits, with each 675 

iterations generating a new degraded test spectra with randomly sampled noise defined by that grid’s SNR and 676 

resampled to the grid’s sampling rate. 677 

 678 


