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Abstract

Mixed transition metal oxides with adjustable composition and structures are widely used in electro chemical cell applications

such as lithium-ion batteries and supercapacitors their high theoretical capacity, high energy density, high cyclic durability, and

environment friendliness compared to mono metal oxides. Different routes like sol gel, combustion, solvothermal, sonication,

hydrothermal are used for their synthesis. This chapter gives an overview of some of the key MTMOs in different structural

and forms like layer, core-shall, nanorods, nanosheets etc and in the forms of composites with materials like PANI, rGO, CNT,

CNF etc
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Abstract 

Mixed transition metal oxides with adjustable composition and structures are widely used in electro 

chemical cell applications such as lithium-ion batteries and supercapacitors their high theoretical 

capacity, high energy density, high cyclic durability, and environment friendliness compared to mono 

metal oxides. Different routes like sol gel, combustion, solvothermal, sonication, hydrothermal are 

used for their synthesis. This chapter gives an overview of some of the key MTMOs in different 

structural and forms like layer, core-shall, nanorods, nanosheets etc and in the forms of composites 

with materials like PANI, rGO, CNT, CNF etc 
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1. Introduction 

Mixed transition metal oxides (MTMOs, also known as AxB3xO4)-based electrode materials 

have been the subject of extensive research in recent years for electrochemical storage 

technology [1-6]. Lithium-ion batteries (LiB), and supercapacitors (SC) are used in portable 

electronics to EV’s and HEV’s. [7-9]. Their structure and composition can be tuned, making 

them demand in electrochemical energy-storage devices. LiBs have high energy density, high 

power density, long cycle life, minimal self-discharge, and low temperature performance [10]. 

The selectivity of anode and cathode materials has a significant impact on how Lithium-ion 

battery function. Graphite and silicon graphite-based electrodes materials are used in 

commercial Lithium-ion battery cell pack (for anode side) and Lithium-iron phosphate, 

lithium manganese oxide, Lithium Cobalt oxide are used as a cathode. However, Graphite 

electrodes exhibit minimal theoretical capacity and generally subpar rate performance. Instead 

of using traditional graphite, transition metal oxides are used [11]. The combination of oxides 

of the transition metals (Fig 1) is used in energy storage devices. The different Transition 

Metal oxides, Mixed Metal Oxides and Nanocomposite materials along with their synthesis 

procedures and application or performance discussed are listed in Table 1 

 

 

2. Electrode materials for Li ion batteries  

 

For lithium-ion batteries, transition metal oxides are seen as potential negative electrode 

materials. TMOs for anode materials including SnO2, Mn3O4, Fe2O3, Co3O4 and ZnO have 

been the subject of substantial research by numerous groups up to this point [12-16]. The next 

generation of MTMO’s, such as ZnCo2O4 [17], NiCo2O4 [18] and ZnMn2O4 [19], are 
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becoming more and more important because to their high theoretical capacity, high energy 

density, high cyclic durability, environmental compatibility, and comparably low cost to Ni 

and Co species. These materials contain a lot of manganese species. The low oxidation 

potentials of Zn and Mn, provide another advantage. Lithium-ion battery can be substituted 

with potassium and sodium ions. The difficulties however they face is the insufficient anodic 

materials and therefore rely on biomass and waste materials [20]. Transition 

metal molybdates and phosphates like Cu-nickel molybdate (CuNiMo) showed high capacity. 

The high surface area and porous nature in NiCo2O4/rGO on Ni foam gives more active sites 

with high energy density. The porous carbon network acts as nucleation sites for Nanorod 

network of NiCo2O4/Au which are used as flexible/transparent supercapacitors with good 

energy density along with power density [21-24]. 

 

 

 

 
 

     Fig 1. Transition metals in the Periodic Table of elements  

 

3. Different morphologies of MTMOs  

The morphologies of MTMOs include tetragonal or hexagonal nanosheets, nanorods, 

microspheres, nanoplatelets, and spherical nanoparticles. MTMOs have a variety of oxidation 

states, making them excellent electrode materials. Electrical conductivity and the specific 

surface area for the faradaic redox reaction are improved by hybridising MTMOs with 

graphene [25]. By including oxalic acid, porous NiCo2O4/NiO/Co3O4 nanoflowers were 

synthesized with improved specific capacitance, power densities and energy densities [26]. 

3D Co3O4@NiO organized nanowire arrays showed a specific capacitance useful for 

supercapacitors [27]. Molybdenum sulphide (MoS2) blended with reduced graphene oxide 

(rGO) on 3D nickel foam showed improved performance over the bare MoS2 electrode was 

synthesised using layer-by-layer (LBL), followed by solution-based ionic layer adsorption 

and reaction (SILAR) showed substantial improvement in capacitance [28].  

There are numerous possible uses for the NiCo2O4 microspheres as supercapacitor 

electrode materials [29]. Hybridization of MTMO with graphene nanosheets has garnered a 

lot of scientific interest because of the special intrinsic properties of graphene, which enhance 

electrical conductivity and increase the specific surface area of the nanocomposite for 

Faradaic redox reaction [30]. Through direct nanoparticle nucleation and growth on nitrogen 

doped, rGO sheets and cation substitution of spinel Co3O4 nanoparticles, a spinel structure of 

MnCo2O4@graphene hybrid electrode was demonstrated as a highly effective electrocatalyst 

for the O2 reduction reaction in alkaline conditions [31]. 2D holey MTMO nanosheets 

composed of connected MTMO nanocrystals are produced using reduced graphene oxide 

(rGO) templates (Fig 2) [32].  
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Fig 2. – Reproduced from Peng, L., Xiong, et al. Holey two-dimensional transition metal oxide nanosheets for efficient 

energy storage. Nat Commun 8, 15139 (2017). under CC -BY License [32] (a) Holey mixed transitional meatal oxide 

nano sheets synthesis by with the help Graphene Oxide and Transitional Metal Cations. (b) STEM image of ZMO 

precursor/rGO shows sheets-like morphology. (c) STEM image of 2D holey ZMO nanosheets shows holey nanosheets 

composed of interconnected ZMO nanocrystals. Scale bars, 200nm (b, c)  

 

4. ZnMn2O4 (ZMO) and ZMO/rGO 

 

Sol-gel thermolysis was used to create ZnMn2O4 (ZMO) nano powder. The ZnMn2O4 nano powder 

was found to have a pure phase and tetragonal structure with 20 nm crystallite size. The materials 

showed impressive specific capacity.  ZMO nanoparticles got coagulated with some porosity (Fig3) 

[33]. The porous nature obtained from combustion synthesis of was advantageous for electrolytic mobility and 

showed a larger discharge capacity than ZMO due to graphene's increased conductivity. The CV tests of 

ZMO/rGO also had a greater specific capacitance than ZMO substitute. [34]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 

 

 

Fig 3.  (a) FE-SEM images of ZnMn2O4 at (c) lower magnification, d) higher magnification. (e) EDAX analysis of ZMO 

Elemental analysis (f) Cyclic Voltammetry of ZMO and (g) Cyclic numbers of ZMO.  Reproduces with with permission 

from Elsevier [33]  
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Fig 3.  (a) Cyclic Voltammetry of ZMO and (b) Cyclic numbers of ZMO. Reproduces with 

with permission from Elsevier [33]  
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