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Abstract

The purpose of this work is to propose and analyze a new fractional-order two-stage species model with recruitment to discover

memory effects on population dynamics. This fractional-order model is constructed by incorporating a well-known integer-

order two-stage species model with the Caputo fractional derivative. Firstly, the positivity and boundedness of solutions of the

proposed model are investigated by using some standard comparison results for fractional differential equations. Next, a simple

approach is utilized to study stability properties of the fractional-order model. This approach is based on the Lyapunov stability

theory and Barbalat’s lemma in combination with some nonstandard techniques for fractional dynamical systems. More clearly,

we use general quadratic Lyapunov candidate functions and combine them with characteristics of quadratic forms associated

with real matrices to establish the stability properties. As an important consequence, global asymptotic stability, uniform

and Mittag-Leffler stability and therefore, population dynamics of the proposed fractional-order model are analyzed rigorously.

Finally, we extend the Mickens’ methodology to construct a dynamically consistent nonstandard finite difference (NSFD)

scheme for the purpose of numerical simulation of the fractional-order model. It is proved that the NSFD scheme preserves the

positivity and boundedness of the fractional-order model regardless of the values of the step size; moreover, it is also simple

and efficient. The theoretical results and advantages of the NSFD scheme are supported by illustrative numerical experiments.

The experiments provide strong evidence, which shows that the numerical results are consistent with the theoretical ones.
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1. Introduction

It is well-known that the fractional calculus (FC), which generalizes inte-

grals and derivatives of integer-order, has a long history. The FC has many
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useful applications in not only theory but also practice. In particular, fractional

differential equations (FDEs) have been strongly developed in recent decades

for the purpose of mathematical modeling and analysis of real-life problems

[12, 13, 18, 27, 52, 70]. It was proved in many recognized works that fractional-

order models can describe phenomena and processes arising in real-world appli-

cations more accurately than integer-order models due to the effective memory

function of fractional derivatives [4, 5, 6, 7, 37, 39, 49, 51, 72, 73, 74, 79, 80]. Re-

cently, we have considered some fractional-order systems that mathematically

model phenomena and processes arising in biology and ecology, in which the

stability problem was mainly focused [41, 42].

Population dynamics of the harvesting and fisheries has an important role

in ecology and environment and this topic has been widely studied by many

mathematicians as well as biologists and ecologists (see, for example, [14, 16, 17,

67] and references therein). In a previous work [53], Ladino and Valverde applied

basic ideas and technical hypotheses, which are motivated by biological and

ecological reasons, to propose a mathematical model for examining population

dynamics of a two-stage (migratory) fish population. This model is represented

by a pair of nonlinear ordinary differential equations of the form:

dx(t)

dt
= δ̃y(t)− α̃x(t)

β̃ + x(t)
− µ̃x(t),

dy(t)

dt
=

α̃x(t)

β̃ + x(t)
− (µ̃+ F̃ )y(t),

(1)

where

• x(t) is the pre-recruit population (eggs, larvae, and juvenile one) at the

time t;

• y(t) is the exploitable population (adult fishes) at the time t;

• du/dt denotes the first derivative with respect to the time variable t of a

given function u(t);

• all the parameters are positive because of biological reasons.
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We refer the readers to the benchmark work [53] for details of the derivation and

qualitative study of the model (1). To the best of our knowledge, the system

(1) was investigated and developed at some levels (see, for instance, [54]) but

their extended versions in the context of fractional derivatives have not been

considered.

Motivated and inspired by the important applications of population dynam-

ics of the harvesting and fisheries and advantages of fractional-order derivatives

over integer-order ones, we will study the integer-order system (1) in the context

of the Caputo fractional-order derivative [18]. More precisely, we will consider

the following system of fractional differential equations

C
0 D

q
tx(t) = δy(t)− αx(t)

β + x(t)
− µx(t),

C
0 D

q
t y(t) =

αx(t)

β + x(t)
− (µ+ F )y(t),

(2)

where C
0 D

q
t z(t) with t > 0 and q ∈ (0, 1) is the right-sided Caputo fractional

derivative of order q of the function z(t) (see, [18, 27, 52, 70]). Here, the di-

mension of the parameters in the fractional-order model (2) has been adjusted

to ensure that both sides have the same dimension (see [19, 29, 31, 40]). More

clearly,

δ = δ̃τ1−q, α = α̃τ1−q, β̃τ1−q, µ = µ̃τ1−q, F = F̃ τ1−q, β = β̃,

where τ is a parameter that has the dimension of time (see [19, 31, 40]).

Formally, the fractional-order system (2) is obtained from the integer-order

one (1) by replacing the first classical derivative in (1) by the Caputo fractional

one. However, the derivation of the proposed fractional-order model will be

explained in terms of memory effects on population dynamics in Section 3;

moreover, effects of order q on population dynamics of the model (2) will be

examined in numerical examples conducted in Section 5. It will be seen that

the fractional-order model is more flexible than the integer-order one. This is

completely consistent with analysis in [19, 29]. Besides, it is important to note

that the stability analysis of the fractional-order model (2) is now posed. This

is an important but not simple problem.
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Firstly, we investigate the positivity and boundedness of solutions of the

model (2) based on some standard comparison results for fractional differential

equations. The result is that we obtain the positivity and boundedness of solu-

tions. This is useful and plays an important role in analyzing stability properties

of the model (2).

Secondly, we analyze stability properties of the fractional-order model, in-

cluding local, global, uniform and Mittag-Leffler stability. Similarly to dynami-

cal systems governed by integer-order differential equations, the stability analy-

sis of fractional-order systems is very important but not a simple task in general.

In recent years, Lyapunov stability theory for fractional-order dynamical sys-

tems has been widely studied [3, 4, 15, 32, 55, 56, 74]. This can be considered as

one of the most powerful and successful approaches to the stability problem of

fractional dynamical systems. However, the main challenge when using the Lya-

punov stability theory is that we must construct suitable Lyapunov functions

but there is no universal method for constructing them. Although some classes

of Lyapunov candidate functions such as quadratic and Volterra-type Lyapunov

functions can be suitable with a broad range of fractional-order systems [32, 74],

finding Lyapunov functions is not easy in general.

In order to examine the stability properties of the model (2), we use a simple

approach that is based on the fractional Lyapunov stability theory and Bar-

balat’s lemma in combination with some nonstandard techniques for fractional

dynamical systems. More clearly, we use suitable quadratic Lyapunov functions

and characteristics of quadratic forms associated with real matrices to estab-

lish the stability properties. As an important consequence, local and global,

uniform and Mittag-Leffler stability and therefore, population dynamics of the

proposed fractional-order model are analyzed rigorously. It is worth noting that

the used approach can be extended for general dynamical systems described by

fractional-order differential equations.

After performing the dynamical analysis, we extend the Mickens’ methodol-

ogy [61, 62, 63, 64, 65] to construct a dynamically consistent nonstandard finite

difference (NSFD) scheme for the model (2) for the purpose of numerical simu-
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lation. By rigorous mathematical analysis and numerical experiments, we show

that the NSFD scheme can provide reliable numerical approximations, which

preserve essential dynamical properties of the fractional-order model (2) for all

the finite step sizes. It should be emphasized that NSFD schemes, which were

first introduced by Mickens, are a powerful and efficient approach for solving

differential equations [61, 62, 63, 64, 65]. It was proved that NSFD schemes have

the ability to preserve essential mathematical features of differential equation

models; therefore, they can compensate for drawbacks of standard finite differ-

ences [61, 62, 63, 64, 65, 68, 69]. On the other hand, NSFD schemes are simple,

effective and can be applied to solve a broad class of differential equations. For

these reasons, NSFD schemes have been widely used in solving differential equa-

tion models arising in real-world applications nowadays [1, 2, 8, 9, 10, 20, 21,

22, 30, 33, 34, 35, 66, 75, 77, 78]. In [23, 24, 25, 26, 43, 44, 45, 46, 47, 48],

we have constructed NSFD schemes for some classes of differential equations

of both integer and fractional orders, in which the positivity, boundedness and

stability of the NSFD schemes were mainly studied.

Lastly, a set of numerical experiments is conducted to support the theo-

retical results and to show advantages of the NSFD scheme over the standard

Grunwald-Letnikov (G-L) method. It is proved that the numerical results are

consistent with the theoretical ones. In particular, the NSFD scheme pre-

serves not only the positivity and boundedness of solutions but also the sta-

bility properties of the model (2) for all the values of the step size, meanwhile,

the Grunwald-Letnikov scheme can generate numerical approximations that are

negative and unstable for some specific step sizes.

The plan of this work is as follows:

Some concepts and preliminaries are presented in Section 2. Dynamical analysis

is performed in Section 3. The NSFD scheme is constructed and analyzed in

Section 4. A set of numerical experiments is reported in Section 5. Some

conclusions and open problems are discussed in the last section.
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2. Preliminaries

In this section, we provide preliminaries and auxiliary results that will be

used in the next sections.

2.1. Caputo fractional derivative and fractional dynamical systems

We recall from [18, 27, 52, 70] the definition of Caputo fractional derivatives

and some of its basic properties.

Let AC[a, b] (a < b) be the space of absolutely continuous functions on the

interval [a, b]. Caputo fractional derivatives of order α ∈ C of a function f(t) be-

longing to AC[a, b] are defined via the Riemann-Liouville fractional derivatives.

In particular, the right-sided Caputo fractional derivative of order α ∈ (0, 1)

can be given by (see [52, Theorem 2.1 in Section 2.4], or also [18, 27, 70])

C
aD

α

t f(t) =
1

Γ(1− α)

∫ t

a

f ′(τ)dτ

(t− τ)α
, t > a

Theorem 1. ([28, Theorem 2.2]) Assume that f ∈ C1[a, b] is such that CaD
α
t f(t) ≥

0 for all t ∈ [a, b] and all α ∈ (α0, 1) with some α0 ∈ (0, 1). Then, f is monotone

increasing. Similarly, if CaD
α
t f(t) ≤ 0 for all t and α mentioned above, then f

is monotone decreasing.

Consider a general dynamical system governed by the Caputo fractional

differential equations of the form

C
t0D

α
t y(t) = f(t, y), y(t0) = y0, α ∈ (0, 1). (3)

Definition 1. ([56]). A point y∗ is called an equilibrium point of the Caputo

fractional dynamical system (3) if and only if f(t, y∗) = 0.

Definition 2. (Class-K functions [50]) A continuous function α : [0, t) →

[0,∞) is said to belong to class-K if it is strictly increasing and α(0) = 0.

Theorem 2. (Lyapunov stability and uniform stability of fractional order sys-

tems [32]) Let x = 0 be an equilibrium point for the non-autonomous fractional-

order system (3). Let us assume that there exists a continuous Lyapunov func-

tion V (y(t), t) and a scalar class-K function γ1(.) such that, ∀y 6= 0

γ1(‖y(t)‖) ≤ V (y(t), t)
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and

C
t0D

β
t y(t) ≤ 0, with β ∈ (0, 1]

then the origin of the system (3) is Lyapunov stable (stable).

If, furthermore, there is a scalar class-K function γ2(.) satisfying

V (y(t), t) ≤ γ2(‖y‖)

then the origin of the system (3) is Lyapunov uniformly stable (uniformly sta-

ble).

Theorem 3. (Fractional order Barbalat’s lemma [76, Theorem 3]) If a scalar

function V (t, y(t)) is positive semi-definite and the Caputo fractional derivative

of V (t, y(t)) along the solution y(t) of the system (3) satisfies C
t0D

α
t V (t, y(t)) ≤

−ϕ(‖y(t)‖), where ϕ(.) belongs to class-K, then y(t) → 0 as t → +∞ if yi(t)

i = 1, 2, . . . , n are uniformly continuous.

Corollary 1. ([76, Corollary 3]) If a scalar function V (t, y(t)) is positive semi-

definite and the Caputo fractional derivative of V (t, y(t)) along the solution y(t)

of the system (3) satisfies C
t0D

α
t V (t, y(t)) is negative semi-define, then y(t)→ 0

as t→ +∞ if fi(t, y(t)) i = 1, 2, . . . , n for the system (3) are bounded.

Definition 3 (Mittag–Leffler Stability [56]). The solution of (3) is said to be

Mittag-Leffler stable if

‖y(t)‖ ≤ {m[y(t0)]Eα(−λ(t− t0)α)}b

where t0 is the initial time, α ∈ (0, 1), λ ≥ 0, b > 0, m(0) = 0, m(x) ≥ 0, and

m(x) is locally Lipschitz on x ∈ B ∈ Rn with Lipschitz constant m0.

Theorem 4 (Theorem 5.1 in [56]). Let y = 0 be an equilibrium point for the

system (3) and D ⊂ Rn be a domain containing the origin. Let V (t, y(t)) :

[0,∞) × D → R be a continuously differentiable function and locally Lipschitz

with respect to y such that

α1‖y‖a ≤ V (t, y(t)) ≤ α2‖y‖ab,
C
0 D

β
t V (t, y(t)) ≤ −α3‖y‖ab,

7



where t ≥ 0, x ∈ D, β ∈ (0, 1), α1, α2, α3, a and b are arbitrary positive con-

stants. Then x = 0 is Mittag-Leffler stable. If the assumptions hold globally on

Rn, then y = 0 is globally Mittag-Leffler stable.

Lemma 1. (A fractional comparison principle [56, Lemma 6.1]) Let x(0) =

y(0) and C
t0D

β
t x(t) ≥ C

t0D
β
t y(t), where β ∈ (0, 1). Then x(t) ≥ y(t).

Lemma 2. ([4, Lemma 1]). Let x(t) ∈ R be a continuous and derivable func-

tion. Then, for any time instant t ≥ t0

1

2
C
t0D

α
t x

2(t) ≤ x(t)Ct0D
α
t x(t), ∀α ∈ (0, 1).

2.2. The Grunwald-Letnikov definition and Grunwald-Letnikov numerical method

Assume that the function Dq
t z(τ) satisfies necessary conditions of smooth-

ness in every finite interval (0, t). We partition the interval [0, t] by

0 = τ0 < τ1 < . . . < τn+1 = t = (n+ 1)∆t, τn+1 − τn = ∆t.

Using the classical notation of finite differences

1

∆tq
∆q

∆tz(t) =
1

∆tq

(
z(τn+1)−

n+1∑
ν=1

cqνz(τn+1−ν)

)
,

cqν = (−1)q−1

(
q

ν

)
,

(
q

ν

)
:=

q(q − 1)(q − 2) . . . (q − ν + 1)

ν!
.

(4)

Then, the Grunwald-Letnikov definition reads [70]

C
0 D

q
t z(t) = lim

∆t→0

1

∆tq
∆q

∆tz(t).

Based on the Grunwald-Letnikov definition, we obtain the explicit Grunwald-

Letnikov (GL) method for the equation (3) ([71])

yn+1 −
n+1∑
ν=1

cqνyn+1−ν − rqn+1y0 = ∆tqf(tn, yn),

where

rqn+1 = γ1
0,−1(n+ 1)q, γqµ,k =

Γ(µq + 1)

Γ(kq + 1)

8



is a correction term, which tends to 0 as n → ∞. Note that the binomial

coefficients cqν can be recursively defined by

c1ν = q,

cqν =

(
1− q + 1

ν

)
cqν−1, ν > 1.

Properties of the explicit G-L can be found in [71].

2.3. Real quadratic forms

A quadratic form is a homogeneous polynomial of the second degree in n

variables x1, x2, . . . , xn and it always can be represented in the form (see [36,

Chapter X])

n∑
i,k=1

aikxixk, aik = aki; i, k = 1, 2, . . . , n,

where A = (aik)n×n is a symmetric matrix.

If we denote by x the column matrix (x1, x2, . . . , xn) and denote the quadratic

form by

A(x, x) =

n∑
i,k=1

aikxixk,

then, we have

A(x, x) = xTAx.

Definition 4 (Definitions 3 and 4, Chapter X in [36]). (i) A real quadratic

form A(x, x) =
∑n
i,k=1 aikxixk is called positive (negative) semidefinite if for

arbitrary of the variables:

A(x, x) ≥ 0, (≤ 0).

(ii) A quadratic form A(x, x) is called positive (negative) definite if for arbitrary

of the variables, not all zero, (x 6= 0)

A(x, x) > 0 (< 0).

9



For the sake of convenience, we now only focus on necessary and sufficient

conditions for 2× 2 matrices to be negative semidefinite/definite.

Let A(x, x) be a quadratic form associated with a 2×2 real matrix A = (aij)

(1 ≤ i, j ≤ 2). From Theorems 5 and 6 in Chapter X in [36] we obtain:

Theorem 5. (i) A quadratic form A(x, x) is negative definite if and only if the

following inequalities hold:

a11 < 0, det(A) > 0.

(ii) A quadratic form A(x, x) is negative semidefinite if and only if

a11 ≤ 0, a22 ≤ 0, det(A) ≥ 0.

2.4. Nonstandard finite difference schemes

Let

D∆t(yk) = F∆t(f ; yk), (5)

be a general finite difference scheme using a step size ∆t, which numerically

solves the initial value problem

dy

dt
= f(y), 0 ≤ t ≤ T, y(0) = y0 ∈ Rn. (6)

Here, D∆t(yk) ≈ dy/dt, F∆t(f ; yk) ≈ f(y) and tk = k∆t. We recall from

[60, 61, 62, 63, 64, 65] that an NSFD scheme for the equation (6) is a discrete

model constructed based on a set of six rules, which is originally proposed by

Mickens. In particular, NSFD schemes for (6) can be defined as follows [8, 9].

Definition 5. The finite difference scheme (5) is called an NSFD scheme if at

least one of the following conditions is satisfied:

• D∆t(yk) =
yk+1 − yk
φ(∆t)

, where φ(∆t) = ∆t + O(∆t2) is a non-negative

function and is called a nonstandard denominator function;

• F∆t(f ; yk) = g(yk, yk+1,∆t), where g(yk, yk+1,∆t) is a non-local approxi-

mation of the right-hand side of the system (6).
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The main advantage of NSFD schemes is that they can correctly preserve

important mathematical features of differential equations for all the values of

the step size. This advantage is shown in the following definitions.

Definition 6 ([9, 10]). Assume that the solutions of the equation (6) satisfy

some property P. The numerical scheme (5) is called (qualitatively) stable with

respect to property P (or P-stable), if for every value of ∆t > 0 the set of

solutions of (5) satisfies property P.

Definition 7 ([8, 9, 60]). Consider the differential equation dy/dt = f(y).

Let a finite difference scheme for the equation be yk+1 = F (yk; ∆t). Let the

differential equation and/or its solutions have property P. The discrete model

equation is dynamically consistent with the differential equation if it and/or its

solutions also have property P.

Similarly NSFD schemes for first-order integer-order systems, NSFD schemes

for fractional-order systems are also constructed based on the methodology in

Definition 5, namely using nonstandard denominator functions or non-local ap-

proximations for right-hand side functions (see, for example, [11]).

3. Qualitative dynamical study

3.1. Positivity and boundedness of solutions and equilibrium points and its local

asymptotic stability

In this subsection, we analyze positivity, boundedness and possible equilib-

rium points of the model (2). Note that the existence and uniqueness of solutions

can be obtained by directly applying [58, Theorem 3.1] and [58, Remark 3.2].

First, we explain the derivation of the model (2) in terms of memory effects

on population dynamics and point out the difference between the fractional-

order model and the original integer-order one. A simple approach for doing

this is the use of finite difference formulas to discretize the model (2).

Consider the models (1) and (2) on a finite time interval [0, T ]. We partition

11



this interval by a uniform mesh given by

0 = t0 < t1 < . . . < tN = T,

where ∆t = T/N is the step size and tn+1 = tn + ∆t for n ≥ 0. It follows from

the system (2) that

C
0 D

q
tx(t)

∣∣
t=tn

= δy(tn)− αx(tn)

β + x(tn)
− µx(tn),

C
0 D

q
t y(t)

∣∣
t=tn

=
αx(tn)

β + x(tn)
− (µ+ F )y(tn),

(7)

By using the Grunwald-Letnikov definition for the Caputo fractional derivative,

we obtain

C
0 D

q
tx(t) = lim

∆t→0

1

∆tq
∆q

∆tx(t),

C
0 D

q
t y(t) = lim

∆t→0

1

∆tq
∆q

∆ty(t),

(8)

Combining (8) with (7) we deduce that

1

∆tq

(
x(τn+1)−

n+1∑
ν=1

cqνx(τn+1−ν)

)
≈ δy(tn)− αx(tn)

β + x(tn)
− µx(tn),

1

∆tq

(
y(τn+1)−

n+1∑
ν=1

cqνy(τn+1−ν)

)
≈ αx(tn)

β + x(tn)
− (µ+ F )y(tn),

(9)

for ∆t small enough. Consequently,

x(τn+1) ≈
n+1∑
ν=1

cqνx(τn+1−ν) + ∆tq
(
δy(tn)− αx(tn)

β + x(tn)
− µx(tn)

)
,

y(τn+1) ≈
n+1∑
ν=1

cqνy(τn+1−ν) + ∆tq

(
αx(tn)

β + x(tn)
− (µ+ F )y(tn)

)
,

(10)

which implies that the values of x(τn+1) and y(τn+1) are determined by all the

past values of x(ti) and y(ti) for 0 ≤ i ≤ n. Meanwhile, for the integer-order

(1) we have

x(τn+1) ≈ x(τn) + ∆t

(
δy(tn)− αx(tn)

β + x(tn)
− µx(tn)

)
,

y(τn+1) ≈ y(τn) + ∆t

(
αx(tn)

β + x(tn)
− (µ+ F )y(tn)

)
,

(11)
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which indicates that the values x(τn+1) and y(τn+1) only depend on x(τn) and

y(τn). So, the difference between the models (2) and (1) is pointed out by finite

difference formulas.

Let us denote by

R2
+ = {(x, y) ∈ R2|x, y ≥ 0}.

Lemma 3 (Positivity and boundedness of solutions). The fractional-order model

(2) admits the set R2
+ as a positively invariant set, that is,

(
x(t), y(t)

)
∈ R2

+

for all t > 0 whenever
(
x(0), y(0)

)
∈ R2

+. Furthermore, the following estimate

holds

lim sup
t→∞

y(t) ≤ α

µ+ F
, lim sup

t→∞
x(t) ≤ δα

µ(µ+ F )
. (12)

Proof. First, it follows from the system (2) that

C
0 D

q
tx|x=0 = δy, C

0 D
q
t y|y=0 =

αx

β + x
.

It follows from Theorem 1 that if x(0) ≥ 0 and y(0) ≥ 0 then x(t) and y(t) cannot

escape from the hyperplanes of x = 0 and y = 0, and on each hyperplane the

vector field is tangent to that hyperplane or points toward the interior of R2
+.

So, x(t), y(t) ≥ 0 for t > 0.

Next, from the second quation of (2) we have

C
0 D

q
t y =

αx

β + x
− (µ+ F )y ≤ α− (µ+ F )y.

Consider the auxiliary linear differential equation

C
0 D

q
t z = α− (µ+ F )z, z(0) = y(0). (13)

Then, it follows from Lemma 1 that y(t) ≤ z(t) for t ≥ 0. On the other

hand, the equation (13) has a unique equilibrium point z∗ = α/(µ + F ). By

using representation formula of linear Caputo differential equations [70], we

obtain that x∗ is globally asymptotically stable. Hence, limt→∞ z(t) = z∗.

Consequently, due to the fact that y(t) ≤ z(t) we have

lim sup
t→∞

y(t) ≤ α

(µ+ F )
.
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Lastly, we deduce from the first equation of (13) that

C
0 D

q
tx = δy(t)− αx(t)

β + x(t)
− µx(t) ≤ δα

µ+ F
− µx

for t large enough. The second estimate of (12) is established by repeating the

above arguments for its first estimate.

From Definition 1 of equilibrium points of fractional-order dynamical sys-

tems, we see that the sets of equilibrium points of the models (2) and (1) are

identical. The analysis in [53] leads to the following result.

Lemma 4. The fractional-order (2) always has a trivial equilibrium point E0 =

(x0, y0) = (0, 0) for all the values of the parameters. In the case when
δ

µ+ F
−

µβ

α
> 1 the model has a non-trivial (positive) equilibrium point E∗ = (x∗, y∗),

where x∗ and y∗ are given by

x∗ =
α

µ

(
δ

µ+ F
− µβ

α
− 1

)
, y∗ =

α

δ − (µ+ F )

(
δ

µ+ F
− µβ

α
− 1

)
. (14)

Similar to [53], let us denote

R0 =
δ

µ+ F
− µβ

α
. (15)

As will be seen later, R0 plays not only as a threshold of the existence of the

equilibrium points but also a stability threshold of the model (2).

We now examine the local asymptotic stability of the possible equilibrium

points of the model (2). From the linearization theorem for fractional dynamical

systems [57], it is sufficient to consider linearized equations around equilibria

of the system (2). Then, by the stability results of linear systems [59], we will

obtain the local asymptotic stability of the equlibria. As a consequence, the

following result is obtained thanks to the local stability analysis for the integer-

order (1) presented in [53].

Lemma 5 (Local stability analysis). (i) The trivial equilibrium point is locally

asymptotically stable if R0 < 1 and is unstable if R0 > 1.

(ii) The positive equilibrium point E∗ of the fractional-order model (2) is locally

asymptotically stable provided that it exists.
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3.2. Global stability analysis

Our main investigation in this subsection is focused on the global stability of

the model (2). As a consequence of Lemma 3, it is sufficient to study dynamics

of the model (2) on a feasible set defined by

Ω =

{
(x, y) : 0 ≤ x ≤ δα

µ(µ+ F )
, 0 ≤ y ≤ α

µ+ F

}
. (16)

Theorem 6. If R0 < 1, then the trivial equilibrium point E0 is not only locally

asymptotically stable but also globally asymptotically stable.

Proof. Consider a Lyapunov function candidate defined by

V0(x, y) =
1

2
L1(x+ y)2 +

1

2
L2y

2, (17)

where L1 and L2 are undetermined positive real numbers that will be chosen

later. Then by Lemma 2, the derivative of V0 along solutions of (2) satisfies

C
0 D

q
tV0 ≤ L1(x+ y)

[
C
0 D

q
t (x+ y)

]
+ L2y

(
C
0 D

q
t y
)

= L1(x+ y)
[
(δ − F )y − µ(x+ y)

]
+ L2y

[
αx

β + x
− (µ+ F )y

]
= L1(δ − F )(x+ y)y − L1µ(x+ y)2 + L2

αxy

β + x
− L2(µ+ F )y2

≤ L1(δ − F )(x+ y)y − L1µ(x+ y)2 + L2
αxy

β
− L2(µ+ F )y2

= L1(δ − F )(x+ y)y − L1µ(x+ y)2 + L2
α(x+ y)y

β
− L2

αy2

β
− L2(µ+ F )y2

= vTAv,

where v and A are given by

v =


x+ y

y

 , A =


−L1µ

L1(δ − F ) + L2
α

β

2

L1(δ − F ) + L2
α

β

2
−L2(µ+ F )− L2

α

β


. (18)

We will show that there always exist L1 and L2 for which the quadratic form

vTAv associated with the matrix A is negative definite. Indeed, it is clear that
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D1 = −L1µ < 0 for all L1 > 0. On the other hand,

D2 = det(A) = − (δ − F )2

4
L2

1−
(α/β)2

4
L2

2−
[
µ(µ+F )+

µα

β
− (δ − F )α/β

2

]
L1L2.

Consider D2 as a function of L1. Then, its discrimination is given by

∆D2
=

[
µ(µ+ F ) +

µα

β

][
µ(µ+ F ) +

µα

β
− (δ − F )

α

β

]
L2

2.

It is important to note that ∆D2 > 0 for all L2 > 0 if and only if R0 < 1.

Consequently, ifR0 < 1 there always exist L1 and L2 for which vTAv is negative

define. Using Theorem 2 and Barbalat’s lemma (Corollary 1) we obtain the

global asymptotic stability of E0. The proof is complete.

Assume that R0 > 1. Then, x∗ > 0. For x ≥ 0, we define

A = −δ
2

4
,

B(x) = µ(µ+ F ) +
αβ(µ+ F )

(β + x)(β + x∗)
− 1

2

δαβ

(β + x)(β + x∗)
,

C(x) = −1

4

(αβ)2

(β + x)2(β + x∗)2
,

∆(x) = B2(x)− 4AC(x).

(19)

It it clear that A < 0 and C(x) < 0 for x ≥ 0.

Lemma 6. Let A, B(x) and C(x) be defined in (19). If R0 > 1, then the

following estimates hold:

∆(0) = 0,

∆(x) > 0 for x > 0,

B(x) > 0 for x ≥ 0.

Proof. First, it is easy to verify that

∆(x) =

[
µ(µ+F )+

αβ(µ+ F )

(β + x)(β + x∗)

][
µ(µ+F )+

αβ(µ+ F )

(β + x)(β + x∗)
− δαβ

(β + x)(β + x∗)

]
.

On the other hand, by simple algebraic manipulations

µ(µ+ F ) +
αβ(µ+ F )

(β + x)(β + x∗)
− δαβ

(β + x)(β + x∗)
=
µ(µ+ F )x

β + x
. (20)
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Consequently, we obtain the first two estimates.

Note that we deduce from (20) that B(x) > 0 for x ≥ 0. The proof is

complete.

For each x ≥ 0, we consider a quadratic polynomial of z given by

P2(z) = Az2 +B(x)z + C(x), (21)

where A, B(x) and C(x) are defined in (19). As a consequence of Lemma 6,

P2(z) has two distinct positive roots r1(x) < r2(x), where

r2(x) =
−B(x)−

√
B2 − 4AC

2A

= −
µ(µ+ F ) +

αβ(µ+ F )

(β + x)(β + x∗)
− 1

2

δαβ

(β + x)(β + x∗)

δ2

2

−

√[
µ(µ+ F ) +

αβ(µ+ F )

(β + x)(β + x∗)

][
µ(µ+ F ) +

αβ(µ+ F )

(β + x)(β + x∗)
− δαβ

(β + x)(β + x∗)

]
δ2

2

,

r1(x) =
−B(x) +

√
B2 − 4AC

2A

= −
µ(µ+ F ) +

αβ(µ+ F )

(β + x)(β + x∗)
− 1

2

δαβ

(β + x)(β + x∗)

δ2

2

+

√[
µ(µ+ F ) +

αβ(µ+ F )

(β + x)(β + x∗)

][
µ(µ+ F ) +

αβ(µ+ F )

(β + x)(β + x∗)
− δαβ

(β + x)(β + x∗)

]
δ2

2

,

(22)

In order to investigate the global asymptotic stability of the positive equilibrium

point E∗, we introduce the following technical hypothesis

r := max
x∈Ω1

r1(x) ≤ R := min
x∈Ω1

r2(x), Ω1 =

{
x : 0 ≤ x ≤ αδ

µ(µ+ F )

}
. (23)

Theorem 7. If R0 > 1 and the condition (23) is satisfied, then the positive

equilibrium point E∗ is not only locally asymptotically stable but also globally

asymptotically stable.
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Proof. Consider a Lyapunov function candidate V (x, y) : Ω→ R+ defined by

V (x, y) =
τ

2
(x− x∗)2 +

1

2
(y − y∗)2, (24)

where τ is a positive real number, which will be determined later. Since (x∗, y∗)

is a equilibrium point of the system (2), we have

δy∗ −
αx∗
β + x∗

− µx∗ = 0,
αx∗
β + x∗

− (µ+ F )y∗ = 0.

Hence, the system (2) can be rewritten in the form

C
0 D

q
tx = δ(y − y∗)−

αβ

(β + x)(β + x∗)
(x− x∗)− µ(x− x∗),

C
0 D

q
t y =

αβ

(β + x)(β + x∗)
(x− x∗)− (µ+ F )(y − y∗),

(25)

Then, by Lemma 2 and (25) the derivative of the function V along solutions of

(2) satisfies

C
0 D

q
tV (x, y) ≤ τ(x− x∗)(C0 D

q
tx) + (y − y∗)(C0 D

q
t y)

= τ(x− x∗)
[
δ(y − y∗)−

αβ

(β + x)(β + x∗)
(x− x∗)− µ(x− x∗)

]
+ (y − y∗)

[
αβ

(β + x)(β + x∗)
(x− x∗)− (µ+ F )(y − y∗)

]
= −

[
αβ

(β + x)(β + x∗)
τ + µτ

]
(x− x∗)2 − (µ+ F )(y − y∗)2

+

[
τδ +

αβ

(β + x)(β + x∗)

]
(x− x∗)(y − y∗)

:= zTPz,

(26)

where z and P are given by

z =


y − y∗

x− x∗

 , P =


−(µ+ F )

τδ +
αβ

(β + x)(β + x∗)

2

τδ +
αβ

(β + x)(β + x∗)

2
−
[

αβ

(β + x)(β + x∗)
τ + µτ

]
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We now show that there always exists a constant τ > 0 for which P (z, z) = zTPz

is negative semidefinite. Indeed, D1(P ) = −(µ+ F ) < 0 and

det(P ) = Aτ2 +B(x)τ + C(x),

where A, B(x) and C(x) are given in (19). Hence, for each x ≥ 0 there is a

positive real number τ(x) depending on x for which det(P ) ≤ 0. Here, r1(x) ≤

τ(x) ≤ r2(x), where r1(x) and r2(x) are defined in (22). The condition (23)

implies that there always exists a constant τ∗ ∈ [r,R] for which zTPz is negative

semidefinite. Consequently, it follows from the Barbalat’s lemma that

lim
t→∞

(
x(t), y(t)

)
= (x∗, y∗).

Combining this with the stability of E∗ established in Lemma 5 we conclude

that E∗ is globally asymptotically stable. The proof is complete.

We now reduce the condition (23) to a simple one that is easily to be verified.

Lemma 7. Assume that R0 > 1. Then, the condition (23) is satisfied if

δ

µ+ F
> 2. (27)

Proof. First, we have

B′(x) =

[
αβ(µ+ F )

β + x∗
− 1

2

δαβ

β + x∗

]
−1

(β + x)2
.

So, the condition (27) implies that B′(x) > 0 for x ≥ 0.

Next, the derivative of r2(x) is given by

r′2(x) =
1

2A

(
−B′(x)− B(x)B′(x)− 2AC ′(x)√

B2(x)− 4AC ′(x)

)
=
B′(x)(−B(x)−

√
B2(x)− 4AC(x))

2A
√
B2(x)− 4AC(x)

+
C ′(x)√

B2(x)− 4AC

= B′(x)r2(x)
1√

B2(x)− 4AC(x)
+

C ′(x)√
B2(x)− 4AC(x)

,

which implies that r′2(x) > 0 for x ≥ 0. Similarly, we have that

r′1(x) = −B′(x)r1(x)
1√

B2 − 4AC(x)
− C ′(x)√

B2 − 4AC(x)
.
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Consequently, r′1(x) < 0 for x ≥ 0.

We deduce from r′1(x) < 0 and r′2(x) > 0 for x ≥ 0 that

max
x≥0

r1(x) = r1(0) ≤ r2(0) = min
x≥0

r2(x).

This is the desired conclusion. The proof is complete.

Lemma 7 and Theorem 7 lead to the following result.

Theorem 8. If R0 > 1 and the condition (27) is satisfied, then the positive

equilibrium point E∗ is not only locally asymptotically stable but also globally

asymptotically stable.

Remark 1. The condition R0 > 1 can be written in the form

δ

µ+ F
> 1 +

µβ

α
. (28)

Therefore, the assumption of Theorem 8 is equivalent to

δ

µ+ F
> max

{
2, 1 +

µβ

α

}
. (29)

This condition is easy to be verified.

In numerical examples performed in Section 5, we will show that the condition

(23) is not in conflict with the condition R0 > 1.

3.3. Uniform stability and Mittag-Leffler stability

By combining the quadratic Lyapunov functions (17) and (24) proposed in

the proofs of Theorems 6 and 7 with Theorems 2 and 3, we obtain the uniform

stability and Mittag-Leffler stability of the fractional-order model (2) as follows.

Theorem 9 (Uniform stability and Mittag-Leffler stability). (i) If R0 < 1,

then the trivial equilibrium point E0 of the model (2) is uniform stability and

Mittag-Leffler stability.

(ii) If R0 > 1 and the condition (23) is satisfied, then the positive equilibrium

point E∗ is uniformly stable and Mittag-Leffler stable.

Theorem 10 (A simple condition for uniform stability and Mittag-Leffler sta-

bility of E∗). If the condition (29) holds, then the positive equilibrium point E∗

is uniform stability and Mittag-Leffler stability.
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4. Construction of positivity-preserving NSFD scheme

In this section, we utilize the Mickens’ methodology to construct a NSFD

scheme preserving the positivity of the model (2) and compare it with the G-L

method.

First, in order to obtain a positivity-preserving NSFD scheme, we modify the

system (9) by replacing its right-hand side function by a nonlocal approximation

given by

αx(tn)

β + x(tn)
− (µ+ F )y(tn) ≈ αxn

β + xn
− (µ+ F )yn+1,

δy(tn)− αx(tn)

β + x(tn)
− µx(tn) ≈ δyn+1 −

αxn+1

β + xn
− µxn+1.

(30)

Note that the order of variables x and y was changed in (30). Then, we obtain

an NSFD scheme

1

∆tq

(
yn+1 −

n+1∑
ν=1

cqνyn+1−ν

)
=

αxn
β + xn

− (µ+ F )yn+1,

1

∆tq

(
xn+1 −

n+1∑
ν=1

cqνxn+1−ν

)
= δyn+1 −

αxn+1

β + xn
− µxn+1,

(31)

The NSFD scheme (31) can be transformed to the explicit form

yn+1 =

n+1∑
ν=1

cqνyn+1−ν + ∆tq
αxn
β + xn

1 + ∆tq(µ+ F )
,

xn+1 =

n+1∑
ν=1

cqνxn+1−ν + ∆tqδyn+1

1 + ∆tq
α

β + xn
+ ∆tqµ

.

(32)

In the NSFD scheme (32), yn+1 is calculated first by the first equation and then,

it is immediately used in the second equation to evaluate xn+1.

By using mathematical induction, we obtain from (32) that xn+1 ≥ 0 and

yn+1 ≥ 0 whenever x0 ≥ 0 and y0 ≥ 0. In other words, the NSFD scheme (32)

preserves the positivity of the solutions of the model (2) for all the values of the

step size. On the other hand, it follows from the first equation of the system
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(31) that

1

∆tq

(
yn+1 −

n+1∑
ν=1

cqνyn+1−ν

)
=

αxn
β + xn

− (µ+ F )yn+1 ≤ α− (µ+ F )yn+1,

or equivalently

yn+1 ≤

n+1∑
ν=1

cqνyn+1−ν + ∆tqα

1 + ∆tq(µ+ F )
,

which implies that

lim sup
n→∞

yn ≤
α

µ+ F
.

Furthermore, from the second equation of (31) we obtain

1

∆tq

(
xn+1 −

n+1∑
ν=1

cqνxn+1−ν

)
= δyn+1 −

αxn+1

β + xn
− µxn+1 ≤

δα

µ+ F
− µxn+1

for n large enough. This implies that

lim sup
n→∞

xn ≤
αδ

µ(µ+ F )
.

Then, we obtain the following theorem.

Theorem 11. The NSFD scheme (31) preserves the positivity and boundedness

of the solutions of the model (2) for all the values of the step size. In other words,

it is dynamically consistent with respect to the positivity and boundedness of the

model (2).

Remark 2. (i) Note that the convergence of the NSFD scheme (31) can be

established similarly to the analysis in [21].

(ii) Following the Mickens’ methodology on non-local approximations, we can

obtain the following NSFD schemes for the model (2)

1

∆tq

(
xn+1 −

n+1∑
ν=1

cqνxn+1−ν

)
= δyn −

αxn+1

β + xn
− µxn+1,

1

∆tq

(
yn+1 −

n+1∑
ν=1

cqνyn+1−ν

)
=
αxn+1

β + xn
− (µ+ F )yn+1,

(33)
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and

1

∆tq

(
xn+1 −

n+1∑
ν=1

cqνxn+1−ν

)
= δyn −

αxn+1

β + xn
− µxn+1,

1

∆tq

(
yn+1 −

n+1∑
ν=1

cqνyn+1−ν

)
=

αxn
β + xn

− (µ+ F )yn+1,

(34)

It is easy to verify that the NSFD schemes (33) and (34) are all dynamically

consistent with the positivity of solutions. Similarly to the NSFD scheme (31),

the value of xk+1 determined by the first equation of (33) is immediately used in

the second equation (33) to calculate the value of yk+1. However, it is not easy to

establish the boundedness of this NSFD scheme comparing with (31). The NSFD

scheme (34) also preserves the boundedness of solutions as the NSFD scheme

(34), but xk+1 or yk+1 is not immediately utilized to compute the remaining

component.

We now apply the G-L method for the fractional-order model (2). Then, we

obtain

yn+1 =

n+1∑
ν=1

cqνyn+1−ν + rqn+1y0 + ∆tq
[
αxn
β + xn

− (µ+ F )yn

]
,

xn+1 =

n+1∑
ν=1

cqνxn+1−ν + rqn+1x0 + ∆tq
[
δyn −

αxn
β + xn

− µxn
]
.

(35)

Lemma 8. Let (x0, y0) with x0, y0 ≥ 0 be any initial data for the initial

value problem (2) and {(xn, yn)}n≥1 be the approximation generated by the G-L

scheme (35). Then, xn, yn ≥ 0 for n ≥ 1 provided that

∆t < q

√
min

{
cq1

α+ µ
,

cq1
µ+ F

}
. (36)

Proof. The lemma is provided thanks to the following estimates

αxn
β + xn

≤ α, xn ≥ 0

and due to the fact that if (36) holds then

cq1 −∆tq(α+ µ) > 0, cq1 −∆tq(µ+ F ) > 0.
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Remark 3. The condition (36) means that the G-L scheme only preserves the

positivity of the solutions of (2) if the step size is small enough. This leads to

large volumes of computations when investigate the model (2) over long time

periods. Meanwhile, the NSFD scheme has the ability to preserves the positivity

and boundedness of solutions for all the values of the step size.

5. Numerical experiments

In this section, we report some illustrative numerical examples to support

the theoretical results and advantages of the NSFD scheme.

5.1. Numerical dynamics of the NSFD and G-L schemes

In this section, we observe approximations generated by the NSFD and G-L

schemes to show advantages of the NSFD scheme. For this purpose, consider

the model (2) with the following set of the parameters:

α = 25, β = 70, µ = 0.8, F = 0.75, δ = 1.6, q = 0.5 (37)

associated with the initial data

x(0) = 25, y(0) = 10. (38)

In this case, R0 = −1.2077 < 1. Therefore, the trivial equilibrium point E0 =

(0, 0) is globally asymptotically stable and also uniformly and Mittag-Leffler

stable.

We first use the G-L scheme using the step size ∆t = 1.0 to solve the model

(2). The numerical approximations are depicted in Figures 1-3. It is clear

that these numerical approximations are negative and unstable, and oscillate

around the equilibrium position with increasing amplitude. Hence, the essential

mathematical features of the fractional-order model are not preserved. However,

we see from Figures 4 and 5 that the numerical approximations generated by the

NSFD scheme preserve the dynamical properties of the fractional-order model

even when using large values of the step size; furthermore, the dynamics of the
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NSFD scheme does not depend on the step size. So, the advantages of the NSFD

scheme are confirmed.
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G−L scheme, ∆t = 1.0

Figure 1: The x-component generated by the G-L method scheme for ∆t = 1.0 after 30

iterations.
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G−L scheme, ∆t = 1.0

Figure 2: The y-component generated by the G-L method for ∆t = 1.0 after 30 iterations.
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G−L scheme, ∆t = 1.0

Figure 3: The phase plane generated by the G-L method for ∆t = 1.0 after 30 iterations.
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Figure 4: The x-component generated by the NSFD scheme.
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Figure 5: The y-component generated by the NSFD scheme.
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5.2. Dynamics of the fractional-order model when R0 < 1

In this subsection, we observe the dynamics of the model (2) in the case

R0 < 1. For this reason, we consider the model (2) with the parameters given

in (37). We use the NSFD scheme with a small step size, namely ∆t = 10−3

for numerical simulation. The obtained phase planes corresponding to several

initial values are sketched in Figures 6-10. In these figures, each blue curve

represents a phase plane corresponding to an initial data while the red arrows

show the evolution of the solutions. Clearly, the numerical solutions provide

strong evidence for the dynamical analysis of the model (2) performed in Section

3. It is important to note that the dynamics of the model (2) depend on the

values of the order p.
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Figure 6: Dynamics of the fractional-order model (2) with α = 0.5.
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Figure 7: Dynamics of the fractional-order model (2) with α = 0.6.
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Figure 8: Dynamics of the fractional-order model (2) with α = 0.75.
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Figure 9: Dynamics of the fractional-order model (2) with α = 0.90.
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Figure 10: Dynamics of the fractional-order model (2) with α = 0.99.
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5.3. Dynamics of the fractional-order model when R0 > 1

This subsection provides some numerical examples to investigate the dy-

namics of the model (2) when R0 > 1. First, consider the model (2) with the

following values of the parameters

α = 20, β = 80, µ = 0.8, F = 0.6, δ = 9.

In this case, we have R0 = 3.2286 > 1 and the model has a unique positive

equilibrium point E∗ = (55.7143, 5.8647). It is clear that the condition (29) is

satisfied. Hence, E∗ is globally asymptotically stable and also is uniformly and

Mittag-Leffler stable. It is easy to determine the functions r1(x) and r2(x) by

simple calculations. Their graphs are depicted in Figures 11. Moreover, we have

max
x≥0

r1(x) = r1(0) = 0.0164 = min
x≥0

r2(x) = r2(0) = 0.0164.

So, we can choose τ = r1(0) = r2(0) for the Lyapunov function V given in (24).
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Figure 11: The graphs of the functions r1(x) and r2(x).
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Some phase planes with t ∈ [0, 100] provided by the NSFD schemes are

given in Figures 12-15. It is clear that the unique positive equilibrium point E∗

is stable. On the other hand, the long time behaviour of the fractional-order

model depends on the values of α.
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Figure 12: Long time behaviour of the fractional-order model (2) with α = 0.80.
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Figure 13: Long time behaviour of the fractional-order model (2) with α = 0.85.
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Figure 14: Long time behaviour of the fractional-order model (2) with α = 0.90.
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Figure 15: Long time behaviour of the fractional-order model (2) with α = 0.99.

6. Conclusions and discussions

As the main conclusion of this work, we have proposed a new fractional-order

two-stage species model with recruitment, which is derived from the well-known

integer-order model (1) and the Caputo fractional derivative, and have studied

dynamical analysis and numerical simulation of this model. The theoretical

results and advantages of the NSFD scheme are supported by illustrative nu-

merical experiments.

In the first part of this work, we have performed a rigorous mathemati-

cal analysis of qualitative dynamical properties of the proposed fractional-order

model. The main result is that we obtained the positivity, boundedness and

stability properties of solutions of the model. It is worth noting that the sta-

bility properties, including the global, uniform and Mittaf-Leffler stability were

established by using a simple approach, which is based on the Lyapunov stabil-

ity theory and Barbalat’s lemma in combination with some nonstandard tech-

niques for fractional dynamical systems. More clearly, we use general quadratic
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Lyapunov functions and combine them with characteristics of quadratic forms

associated with real matrices to establish the stability properties. The present

approach is simple and can be applied for a board range of fractional-order

dynamical systems.

In the second part of this work, we have extended the Mickens’ methodol-

ogy to construct a dynamically consistent nonstandard finite difference (NSFD)

scheme for the model (2) for the purpose of numerical simulation. By rigor-

ous mathematical analysis and numerical experiments, we show that the NSFD

scheme can provide reliable numerical approximations preserving all the essen-

tial dynamical properties of the fractional-order model (2) for all the finite step

sizes. Meanwhile, the Grunwald-Letnikov scheme can generate numerical ap-

proximations that are negative and unstable for some specific step sizes.

In the third part of this work, a set of illustrative numerical examples is re-

ported to support the theoretical results and advantages of the NSFD scheme.

The experiments provide strong evidence, which shows that the numerical re-

sults are consistent with the theoretical ones. It is important to note that the

numerical examples suggested that the behaviour of the fractional-order model

depends on the values of the order p. This is a main difference between the

fractional-order model and integer-order one and also means that the fractional-

order model is more flexible. This is very useful in the parameter estimation

problem.

In the near future, we will extend the present approach to study dynamical

analysis and numerical simulation of fractional-order systems that mathemat-

ically model important real-life problems. The combination of the Lyapunov

stability theory with real quadratic forms for studying stability problems of

fractional-order dynamical systems will be mainly focused. High-order NSFD

schemes for the model (2) in particular and for fractional-order systems in gen-

eral will be also considered.
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[34] I. Faragó, R. Mosleh, Some qualitative properties of the discrete models

for malaria propagation, Applied Mathematics and Computation 439(2023)

127628.

[35] H. Fatoorehchi, M. Ehrhardt, Numerical and semi-numerical solutions of a
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