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Abstract

This paper presents a new Multi Agent Collaborative Search Algorithm with Adaptive Weights (named MACSAW). MACS

is a memetic scheme for multi-objective optimization which contains two kind of actions, the local actions and social actions.

The former explore the neighborhood of some virtual agents and the latter push the individual towards the Pareto front. On

the base of the latest version of MACS, MACS2.1, we improve the old algorithm from three direction. First, a new kind of

utility function is introduced to enhance the convergence. Next, a new social action process which contains more operators and

adaptive parameters is embedded in MACSAW. Finally, MACS2.1 lacks the weight vectors adjustment process which leads to

diversity losing in some real problems and MACSAW adds it. Further, MACSAW is compared with some state-of-art algorithms

and MACS2.1 on some standard benchmarks. It gets competitive results. Two real optimization problems is tackled and the

results are analyzed in details.
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ABSTRACT
This paper presents a new Multi Agent Collaborative Search Algorithm with Adap-
tive Weights (named MACSAW). MACS is a memetic scheme for multi-objective
optimization which contains two kind of actions, the local actions and social ac-
tions. The former explore the neighborhood of some virtual agents and the latter
push the individual towards the Pareto front. On the base of the latest version of
MACS, MACS2.1, we improve the old algorithm from three direction. First, a new
kind of utility function is introduced to enhance the convergence. Next, a new social
action process which contains more operators and adaptive parameters is embedded
in MACSAW. Finally, MACS2.1 lacks the weight vectors adjustment process which
leads to diversity losing in some real problems and MACSAW adds it. Further,
MACSAW is compared with some state-of-art algorithms and MACS2.1 on some
standard benchmarks. It gets competitive results. Two real optimization problems
is tackled and the results are analyzed in details.

KEYWORDS
evolutionary algorithm; multi-objective optimization; multi agent collaborative
search; adaptive parameter; multiple operators; utility function; weight vector
adjusting

1. Introduction

Multi Agent Collaborative Search [1] is a memetic multi-objective optimization algo-
rithm. It has a long history of development and many gradually improved versions.

The oldest version of MACS is in 2005 [1], it has many agents which can take
actions, communicate, sense and perceive the environment. Every agent performs a
sequence of actions, and the algorithm takes those actions based on the local and
global information. And a global archive is used to store the best achieved locations
of each agent. The improved agents will be inserted in a list and communication is
performed between the list and current population.

More improvement is made in 2011 [2]. In the new algorithm, every agent updates
its position by a number of heuristics which are called collaborative actions. In order to
avoid crowding, one restart mechanism is implemented. And the population is divided
into two sub-populations, Puk and P lk. The P lk implements a mix of actions which

CONTACT Maocai Wang Email: cugwangmc@126.com



either improve their location or explore the neighborhood. For Puk , it implements
heuristics mentioned before.

The next version is proposed in 2013 [3]. This version utilizes Pareto dominance
and Tchebycheff scalarization function both as the criterion to select the solutions.

The latest version is proposed in 2019 [4] (called MACS2.1). A new archiving strat-
egy which is named Energy Based Archiving (EBA) is embedded here to get solutions
with better quality.

The MACS series display great performance on real optimization problems and
standard benchmarks. However, there are still some shortcomings in MACS2.1.

First, in some real problem, MACS2.1 can’t put the Pareto front to the same depth
in all direction. Inappropriate allocation of computing resources may lead to this short-
coming.

Next, in social action, MACS2.1 utilizes only one operator (’DE/current-to-rand/1’)
to generate new individuals. In addition to lack of operators, the related parameter
CR and F are fixed. Different kinds of operators and parameters have various charac-
teristics. Using only one operator and fixed parameter setting may be inappropriate
when we face different scenarios.

Finally, MACS2.1 initializes even vectors at the start. But if the problem has uneven
Pareto front (PF), we can’t get final solutions with good diversity [5].

A new algorithm is proposed in this paper to handle those drawbacks. Above all, we
try to use a new kind of utility function in MACSAW to put the Pareto front to the
same depth on all the directions. Secondly, a new social action which contains more
operators and adaptive parameter setting is applied. Finally, a weight vector adjusting
process is inserted to deal with the problems with uneven PF.

The paper has a structure as follows: In the first part, a brief description for multi-
objective optimization problems is given. In the second part, the existing faults of
MAC2.1, improvements for them and the new algorithm are discussed in details. Fur-
ther, the new algorithm is compared with some state-of-art algorithms on the standard
benchmarks, UF and ZDT. And the new algorithm is compared with original MACS2.1
on two real problems. Finally, some discussions and conclusions are made.

2. Problem formulation

This paper’s target is to find the feasible set for solutions of the following problem [3]:

minx∈Df(x) (1)

D is a hyperrectangle which is defined as:

D =
{
xj |xj ∈ [blj b

u
j ] ⊆ R, j = 1, ..., n

}
(2)

f is the objective vector function:

f : D → Rm,f(x) = [f1(x), f2(x), ..., fm(x)]T (3)

Optimality of one individual is defined by the concept of dominance: in problem
(1), a individual x ∈ D dominates y ∈ D if fl(x) ≤ fl(y) for all l = 1, ..,m and
there exists one k for fk(x) 6= fk(y). The symbol x ≺ y means that x dominates y.

2



If a individual in D is not dominated by any other individuals in D, the individual
is said to be Pareto optimal. Further, all the non-dominated individuals in decision
space form the Pareto set (PS) Dp and its corresponding image in objective space is
the Pareto Front (PF).

It is possible to calculate each individual’s scalar dominance index from the concept
of dominance:

Id(xi) = | {i∗|i, i∗ ∈ Np ∧ xi∗ ≺ xi} | (4)

where the | · | is the cardinality of a set and Np is the set of the indices of all the
solutions. All non-dominated and feasible solutions xi ∈D with i ∈ Np form the set:

X = {xi ∈D|Id(xi) = 0} (5)

X is Dp’s subset, and the solution of problem (1) translates into finding the elements
of X by the above process.

3. Current defects of MAC2.1

This section is about the defects in the MAC2.1.

3.1. Uneven exploration in each part of PF

If we pick the results of random three runs for Cassini problem by MACS2.1 in Figure
1, the defect of it is obviously shown.

Figure 1.: MACS2.1’s results of three random runs on Cassini.

The three runs are in blue, red and green respectively. In each run, MACS2.1 can’t
push the each part of PF into same degree. This phenomenon may damage convergence.

MACS2.1 allocates computing resources equally on all sub-problems, but the prob-
lems on different directions may need unequal resources. The unreasonable allocation

3



may bring uneven exploration. Further, as evolutionary process has randomness, the
distribution should be adaptive because it’s impossible for one sub-problem to evolve
on a fixed progress.

3.2. Insufficiency of mutation operators and defect of fixed parameters

Since the proposing of Differential Evolution operator (DE) [6], many new mutation
strategies on the base of it are still emerging for single-objective problem optimization.
For example, ’DE/target-to-best/1’[7] , ’DE/rand-to-best/2’ [8] and ’DE/current-to-
rand/1’ [9] are among them.

Diverse DE strategies may generate various offspring. Once we face problems with
different characteristics, one strategy among them may be the useful one correspond-
ingly. Many multi-operator methods have been proposed for solving different chal-
lenges. MSaDE [10] uses three forms of mutation strategies which provide dynamic
rates of exploration and exploitation by the switching between them. NDE [11] pro-
poses a novel triangular mutation rule to balance both the exploration capability and
the exploitation tendency. MLCCDE [12] applies a flexible framework which combines
multiple DEs. It efficiently and significantly improves the algorithm’s performance.
IMODE [13] is a multi-operator DE algorithm that updates several sub-populations
with different strategy. LSAOS-DE [14] considers the problem landscape information
and the performance histories of the operators for dynamically selecting the most
suitable operator.

Further, the parameter setting in DE operator also influences its ability. Many
previous researchers have tried different settings. In original DE [6], CR = 0.1 is
thought to be a good choice and CR = 1 or CR = 0.9 can promote convergence. In
[15], it says that the interval between 0.3 and 0.9 for CR seems better. And in [16], it
concludes that the number of trial solutions will be reduced dramatically with CR = 1.
As for F , in [17], [0.5, 1] is regarded as a appropriate value range. In [16], F ’s typical
value is 0.4−0.95 and F = 0.9 is a good initial value for it. Many algorithms which have
parameters that can be adjusted with the evolution process keep appearing. SHADE
[18], SaDE [8] and JADE [19] are among them.

As MACS2.1 [4] divides the multi-objective problem into many single-objective
problems. Multi-operator strategy and adaptive parameter method may be useful here.
But it only uses ’DE/current-to-rand/1’ strategy in social action, in view of rich op-
tional strategies pool, it’s not enough. Further, the CR and F parameter in MACS2.1
are fixed, it may damage the operator’s ability when we face different problems.

3.3. Uneven PF leads to diversity losing

MACS2.1 is also utilized to solve the 3imp problems [4], and the results are in Figure
2.

The PF in Figure 2 is not uniform and we get solutions with bad diversity.
If the PF is irregular and the initial weight vectors are even, a set of uneven solutions

will be obtained. It is a phenomenon [5] which may decrease the diversity of final
results. Adjusting the vectors is necessary here.

4



Figure 2.: MACS2.1’s results of one random run on 3imp.

4. New algorithm: MACSAW

4.1. Framework of the New Algorithm

The MACSAW’s pseudo code is in Alg. 1. The details of the new algorithm are as
follows.

At the start of the algorithm, some parameters are set. The maximum number
of fitness evaluation is set as nfeval,max and maxarch is the upper limit of archive
size. npop is the size of population. ρini, ρcontr and ρmax,contr are individual action
related parameters which will be explained later. MACSAW initializes npop individuals
randomly in the search domain D by Latin Hypercube Sampling as initial population.
The non-dominated individuals in the population are copied in the archive A to form
its first version (line 4). Then a set of nλ m-dimensional unit vectors λk are generated.
For bi and tri-objective space, they are sampled uniformly from a quarter of circle or
eighth of a sphere. The first m λk form a base in Rm. Each individual has a velocity
value Vi and it is initialized as zero.

The main loop starts (Line 7). The sub-problems on boundary [20] are updated at
first and MACSAW guarantees their evolution in each round (Line 8). Afterwards, the
sub-problems which will be solved by individual actions are decided by new utility
function as Algorithm 2 (Line 11). Behind the individual action, new kind of social
actions are performed on each individual gradually. Finally, two parameters that cor-
responds to convergence and diversity respectively are computed (line 15,16). If those
parameters meet the preset conditions, the weight vectors are adjusted by Algorithm
5. It’s worth noting that the A is updated when any new non-dominated solutions
appears by Algorithm 8.

After individualistic and social actions, each individual that in the population is
moved to the location of the element in the archive that best improves the corre-
sponding sub-problem, unless that location is already occupied by another individual
(line 18-32).
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Algorithm 1 Framework of MACSAW

1: Set nfeval,max, maxarch, npop, ρini, ρcontr, ρmax,contr
2: Initialise neighbourhood size ρi = ρini, ∀i ∈ 1, ..., npop
3: Initialise population Po, nfeval = 0
4: Copy the non-dominated elements of P0 in the archive A
5: Initialise nλ vectors λk for k ∈ 1, ..., nλ such that ‖λk‖ = 1
6: Initialise the vectors of each individual’s velocities Vi = 0, ∀v ∈ 1, ..., npop
7: while nfeval < nmax,feval do
8: Perform individualistic actions on boundary sub-problems through Algorithm 3
9: Update archive A with non dominated elements through Algorithm 8

10: Choose the sub-problems to be updated in next step by Algorithm 2
11: Perform individualistic actions on chosen sub-problems through Algorithm 3
12: Update archive A with non dominated elements through Algorithm 8
13: Perform social actions through Algorithm 4
14: Update archive A with non dominated elements through Algorithm 8
15: Calculate the diversity degree of current population by Equation. 43
16: Calculate the number no-dominated solutions in current population
17: Adjust the weight vectors by Algorithm 5
18: if there are at least as many individuals in the archive as objective functions

then
19: if the size of archive is same as objective functions number then
20: set nmove as number of objective functions
21: else
22: nmove = min(size of the archive, size of current population)
23: end if
24: create a pool of nmove individuals to be moved. Agents following exclusively

one of the objectives are always chosen.
25: for all agents in pool do
26: find the individual in the archive which best matches to current sub-

problems
27: if the individual’s position in the archive is better than current position

then
28: move the current individual to the position in the archive
29: hide that position in archive for current run of social actions, to prevent

multiple agents moving in the same position
30: end if
31: end for
32: end if
33: end while

4.2. the new utility function

The utility function was raised in MOEA/D-DRA [21] at first. It’s a computing re-
sources distribution approach.

As different sub-problems may have various computational difficulties, allocating
different computing resources on them is reasonable. At first, the relative decrease for
ith individual (∆i) need to be calculated by (assuming the problem is a minimization
problem):

6



relative decrease (∆i) =
old function value− new function value

old function value
(6)

A value πi is applied to decide which sub-problems will be handled next. If ∆i is
smaller than 0.001, the value of πi will be reduced. Specifically, the πi is computed by:

πi =

1 if ∆i>0.001

(0.95 + 0.05
∆i

0.001
)πi otherwise

(7)

Finally, the sub-problems with the highest πi from randomly selected sub-problem
set are chosen to be evolved.

This method focuses on the problems which have more improvement to enhance the
quality of the final solutions. But in MOEA/D-DRA, it only considers scalarisation
function values. In MACS2.1, the scalarisation function and dominance relationship
need to be taken into account both. Thus, a new utility function is raised here to
distribute resources. As individualistic actions tend to convergence [4] and improving
on convergence seems can upgrade the poor performance on Cassini, we use new utility
function on those actions.

The improvement on scalarisation function Scai and dominance relationship Domi

of ith individual are calculated by Equation. 8 and 9 respectively.

Scai =

0 otherwise
Tch(wi,yi,t−1)− Tch(wi,yi,t)

Tch(wi,yi,t−1)
if Tch(wi,yi,t−1)>Tch(wi,yi,t)

(8)

Domi =


0 otherwise∑m

j=1(yi,j,t−1 − yi,j,t)∑m
j=1(yi,j,t−1)

if yi,t dominates yi,t−1
(9)

where yi,t is the objective vector in t generation of ith individual and yi,j,t is the jth
objective value of this individual. m is the objective space dimension. wi is the related
weight vector for the individual and Tch(wi,yi,t−1) is the Tchebycheff scalarisation
function value. Once we get the rates, each sub-problem’s total improvement rate is
computed by Equation. 10.

Ratei = Scai +Domi (10)

All the Ratei are collected in a 1 × N row vector Rate (N is the number of sub-
problems). Each column of it represents ith sub-problem’s total improvement rate.

Then, the probability for evolving each individual needs to be decided by Rate.
And two kind of probabilities are defined, external probability and basic probability.

To guarantee that each sub-problem will be improved, The basic probability
(Pi basic) is assigned to each individual equally by Equation. 11. The sum of Pi basic is

7



P , and its a per-defined value in [0, 1].

Pi basic =
P

N
(11)

External probability for ith individual (Pi external) is calculated by Equation. 12.
This part is employed to focus on the sub-problems which get better historical im-
provement. The Rate(1, i) is the 1 × i item for Rate and the ith individual’s total
improvement rate.

Pi external = (1− P )× Rate(1, i)∑N
j=1(Rate(1, i))

(12)

Finally, ith individual’s probability to be picked is Equation. 13.

Pi = Pi basic + Pi external (13)

The sum of all the probabilities is 1 and whether the ith sub-problem will be evolved
in next round is decided by Pi (line 5 in Algorithm. 2).

Algorithm 2 Computing resources allocating by new utility function

1: Calculate the improvement rate on scalarisation function Scai and dominance
relationship Domi of each individual by Equation. 8 and 9

2: Sum the total rate of each individual Ratei by Equation. 10
3: Allocate the basic probability evenly to each sub-problems by Equation. 11
4: Distribute the external probability by the improvement values Rate as Equation.

12
5: Choose the sub-problems to be evolved in the next round individualistic action by

each problems’ probability

4.3. Individualistic actions

The pseudo-code for individualistic actions is in Algorithm. 3. This part implements
inertia, pattern search and differential evolution sequentially until an improvement
happens (a new solution which satisfies Tchebycheff or dominant criterion is gener-
ated). This part is same as MACS2.1 [4].

4.3.1. Inertia

The previous moves define a direction (Vi) in the decision space and inertia generates
a new sample on this direction. The ith individual’s trial position is:

xtrial = xi + αVi (14)

8



Algorithm 3 Individualistic actions with adaptive scalarisation method

1: for i = 1 : npop do
2: Set improved=FALSE
3: if ‖Vi‖ 6= 0 then
4: Perform Inertia move
5: Evaluate move
6: if successful then
7: set improved=TRUE
8: end if
9: end if

10: if not improved then
11: counter=0
12: while counter ≤ max pat search dirs & not improved do
13: counter=counter+1
14: Pick random direction
15: Perform Pattern Search
16: Evaluate move
17: if successful then
18: set improved=TRUE
19: Vi = xi,old − xi
20: end if
21: end while
22: end if
23: if not improved then
24: Perform Differential Evolution
25: Evaluate move
26: if successful then
27: set improved=TRUE
28: end if
29: end if
30: if not improved then
31: Contract ρi
32: if ρi has contracted more than ρmax,contr times then
33: ρi = ρini
34: else
35: De-contract ρi unless this would cause ρi to be greater than ρini
36: end if
37: end if
38: end for

9



where α is a random number between 0 and 1. Once xtrial exceeds the feasible area
D, the α is contracted with a simple backtracking procedure to ensure that xtrial falls
in D. Moreover, if xi’s one component which is lower than n is equal to either their
lower or upper limit and xi+αVi is outside D, those components of Vi are set as zero
before the backtracking procedure. Target of this part is enhancing the exploration for
the boundary in the search space.

4.3.2. Pattern Search

If the improvement doesn’t happen or the inertia is not executed (Vi = 0), the pattern
search is implemented. This part changes only one randomly component j in xi once.
For the ith individual, the new position (xtrial) is same as xi, expect for the jth
component:

xtrial,j = xij + α∆jρi (15)

where α is a random number between −1 and 1, ∆j is the difference between the
upper and lower boundaries for jth variable and ρi is the size of the hyperrectangle
which has xi as its center. If the exploration on direction ∆jρi fails, the new direction
−sign(α)β∆jρi is utilized here with a randomly chosen β between 0 and 1. Finally, if
all the attempts fail, a new random direction which is different from all the previous
directions is chosen.

This strategy is repeated until the predefined maximum number of directions have
been explored or an improvement happens. The maximum number of directions will
be explored is defined as:

max dirs = round

(
n− (n− 1)

curr arch size

max arch size

)
(16)

where max dirs is the maximum number of dimensions to scan, n is the number
of coordinates, curr arch size is the size of current archive and max arch size is the
predefined maximum size of the archive. It is worth noting that max dirs is changing
with the evolution process. Once a better individual is acquired, the Vi is calculated
by it.

4.3.3. Differential Evolution

Once pattern search also fails, individualistic action enters differential evolution stage.
The displacement has the following format:

dxi = αe ((xi − xi1) + F (xi2 − xi3)) (17)

where α is a random number between 0 and 1, F is a predefined constant. xi is the
individual to be evolved and xi1−3

are three individuals picked from current population
randomly. e is a mask vector which is decided by:

ej =

{
1 if α2 < CR

0 otherwise
(18)
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where α2 is a random number between 0 and 1, and CR is another predefined
constant. Then, the differential evolution move’s trial position is defined as follows:

xtrial = xi + dxi (19)

If xtrial is out of boundary after Differential Evolution, the algorithm reduce the α
or some components of dxi.

4.3.4. Local neighborhood size management

If all the previous actions fail, the local neighborhood size ρi is reduced by a predefined
constant ρcontr. At extreme situation, if all the actions are still invalid, ρi is reset to
ρini after a predefined maximum number of contractions ρmax,contr. Conversely, ρi is
increased by ρcontr if one action is successful and the upper boundary of ρi is ρini.

4.4. Social actions with multiple operators

As MACS algorithms divide multi-objective problem into many single-objective prob-
lems and try to solve them respectively, some state-of-art methods in single-objective
algorithms may be useful. As the DE part in individualistic action is not always exe-
cuted, we only improve social action here.

Among the latest algorithms, IMODE [13] has relatively simple structure and ex-
cellent performance in operators choosing. And SHADE [18] is relatively useful and
easy to understand in parameters adjusting. We want to transform their method and
embed them into MACS.

The IMODE utilizes three mutation operators (‘DE/current-to-φbest with
archive/1’, ‘DE/current-to-φbest without archive/1’ and ‘DE weighted-rand-to-
φbest’). At the start, each operator generates same number of solutions. Then two
parameters, diversity and quality, are computed for deciding the number of solutions
that will be generated by each operator in the next round. The diversity of the indi-
viduals obtained by each operator are computed by:

Di =
1

NPi
(

NP i∑
i=1

dis(~xi,j − ~xbesti )) (20)

where Di is the diversity for ith operator, and dis(~xi,j − ~xbesti ) is the Euclidean
distance between jth solution and the best one obtained by ith operator. NPi is the
number of individual generated by ith operator.

Further, the diversity rate for the ith operator DRi can be formulated as follows:

DRi =
Di∑3
i=1Di

(21)

As for quality rate of the ith operator, it has the following form:
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QRi =
fitbesti∑3
i=1 fit

best
i

(22)

where fitbesti is the best objective function value obtained by operator ith and QRi
is its quality rate.

The improvement rate value for ith operator (IRVi) is:

IRVi = (1−QRi) +DRi (23)

Finally, the number of solutions that will be generated by ith operator (NPi) next
is defined as follows:

NPi = max

(
0.1,min

(
0.9,

IRVi∑3
i=1 IRVi

))
×NP (24)

where NP is the total number of solutions generated by all the operators.
The SHADE uses a historical memory for deciding DE control parameters. The

memory has following structure:

Figure 3.: structure of historical memory

Before evolution, for the individual xi, a index ri is randomly picked from [1, H].
The CRi and Fi are decided by the Equation. 25 and 26. MCR,ri and MF,ri are related
value in ri column of memory.

CRi = randni(MCR,ri , 0.1) (25)

Fi = randci(MF,ri , 0.1) (26)

where randni(µ, σ
2) and randci(µ, σ

2) are randomly sampling from normal and
Cauchy distributions with mean µ and variance σ2. After the generation of new indi-
viduals, the success attempts’ related CRi and Fi are recorded as SCR and SF . They
are utilized to update the memory as Equation. 27 and 28. k has a initial value 1 and
it increases with the generation of new offspring. k will be set to 1 if k>H.
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MCR,k,G+1 =

{
meanWA(SCR) if SCR 6= φ

MCR,k,G otherwise
(27)

MF,k,G+1 =

{
meanWL(SF ) if SF 6= φ

MF,k,G otherwise
(28)

The index k (1 ≤ k ≤ H) determines the position that need to be updated.
The meanWA(SCR) and meanWL(SF ) formulated as follows:

meanWA(SCR) =

|SCR|∑
k=1

ωk · SCR,k (29)

meanWL(SF ) =

∑|SF |
k=1 ωk · S

2
F,k∑|SF |

k=1 ωk · SF,k
(30)

ωk =
∆fk∑|SCR|

k=1 ∆fk

(31)

where ∆fk = |f(uk,G)− f(xk,G)| is the the amount of improvement.

4.4.1. mutation operators determining process

In MACSAW, we introduce three mutation operators approach as IMODE and convert
it to solve multi-objective problems. A detailed description for new social action is
given in the following part.

For IMODE, it only focuses on one objective function and holds one archive. But
MACSAW needs to handle many sub-problems and more objective functions. It also
has a archive for all the problems. We made a revision here.

The MACSAW’s three mutation operators have the following forms in details:

(1) DE/current-to-φbest with archive/1 vi = xi + Fi,k × (xφ,i − xi + xi,1 − xi,2)
(2) DE/current-to-φbest without archive/1 vi = xi+Fi,k× (xφ,i−xi+xi,1−xi,3)
(3) DE weighted-rand-to-φbest vi = Fi,k × x1 + (xφ,i − xi,3)

where xi is the ith individual’s value in decision space. To elevate the offspring’s
quality by picking parents from diverse sources, x1 and x3 are from the archive A or
current population P . The probability of choosing individuals from the archive or the
population is formulated as:

parch vs pop = 1− e−
current size archive

num individual (32)
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where parch vs pop is the possibility of choosing individuals from archive in social ac-
tions, current size archive is the size of the archive. And num individual is the size
of current population.

Then x2 is randomly chosen from the mix consists of A and P (named it M).
xφ,i is randomly picked from the best 10% solutions in M on ith sub-problem with
Tchebycheff scalarizing function. Fi,k is mutation parameter at kth round and decided
by historically obtained solutions on ith sub-problem.

IMODE has the same mutation operators structure as our new algorithm. To com-
pare them, the meanings for the items in those operators in MACSAW and IMODE
are listed in Table. 1.

Table 1.: The meanings for those items in MACSAW and IMODE

xi xφ,i x1, x3 x2

IMODE
the individual
that will evolve

one individual from the
best 10% solutions in the
whole population

two random
individuals in the
whole population

one random
individual from the
union of the
whole population
and archive

MACSAW
the individual
that will evolve

one random individual
from the best 10%
solutions in the union
of the archive and population

two random
individuals in
archive or population

one random
individual from the
union of the archive
and population

vi is the trial vector and enters the binomial crossover to get the offspring. It works
as:

x
′i
j =

{
vij , if rand ≤ Cri,k
xij , otherwise

(33)

where j ∈ 1, ..., n and rand is a random number from [0, 1]. xij is from the ith

individual and x
′i
j is jth component of offspring. Cri,k is mutation parameter at kth

round and got by historically obtained solutions on ith sub-problem, too.
Once offspring on ith sub-problem is better than old solution on scalarisation func-

tion or dominance relationship at kth round, its total improvement rate ratei,k will be
calculated by Equation 8, 9 and 10. The offspring’s value in decision space (offi,k),
the operator number (opi,k) that has been executed at this time, the Fi,k, the Cri,k
and the ratei,k are stored in the top of a sliding window social archivei. It has the
following structure in Figure. 4 . The sliding window has a maximum length maxlength,
and it is set as 0.5N (N is the population size). It’s a queue. If the window size will
bigger than maxlength after inserting, old record will be deleted from tail.
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Figure 4.: structure of social archivei

Before the (k + 1)th round social action, the selected probability for each operator
on ith sub-problem is computed by following process. The total rate value for jth
mutation operator (sumi,j) and the sum of row 2 in social archivei (sumi) need to
be computed at first. Then, the probability of selecting the jth mutation operators at
the (k + 1)th round, pj,k+1, can be computed by:


pj,k+1 = max

(
0.1,min

(
0.9,

sumi,j

sumi

))
if all the operators appear

pj,k+1 =
1

3
otherwise

(34)

It is noteworthy that the basic value 0.1 is assigned to each operator. Before all
the operators appearing in social archivei,

1
3 is assigned to p1,k+1 − p3,k+1. After

attaining the probability, which operator will be picked at (k+1)th round is determined
by the value p1,k+1, p2,k+1 and p3,k+1 (line 2 in Algorithm. 4).

4.4.2. related parameters determining process

SHADE is modified for MACS2.1, the w in SHADE is relative improvement in objec-
tive space. In MACSAW, wi,t is tth item’s proportion in total relative improvement in
social archivei (Equation. 35).

On the one hand, if a better solution is got on ith sub-problem at kth round,
the following procedure is applied to decide the mutation related parameters CRi,k+1

and Fi,k+1 at the (k + 1)th round. The auxiliary parameter w is set here at first for
calculating MCRi,k and MFi,k for next step as Equation. 35, 36 and 37.

wi,t =
ratei,t∑k

j=k−maxlength+1 ratei,j
(35)

MCRi,k =

k∑
t=k−maxlength+1

(wi,t × Cri,t) (36)
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MFi,k =

∑k
t=k−maxlength+1(wi,t × Fi,k

2)∑k
t=k−maxlength+1(wi,t × Fi,t)

(37)

Cri,k and Fi,k are successful attempt’s related parameters at the kth round. After-
ward, the decision process for Cri,k and Fi,k is described in detail.
CRi,k+1 and Fi,k+1 are determined by the following Equation 38 and 39. In addition,

if Fi,k+1 is small than 0, Equation 39 will be repeated until a positive value is got.

CRi,k+1 = max(0,min(1, randni(MCRi,k, 0.1))) (38)

Fi,k+1 = randci(MFi,k, 0.1) (39)

On the other hand, if the algorithm fails on ith sub-problem at the kth round.
CRi,k+1 and Fi,k+1 are computed by the following Equation. 40 and 41. Similarly,
Equation. 41 will be iterated until a positive Fi,k+1 is obtained.

CRi,k+1 = max(0,min(1, randni(0.5, 0.1))) (40)

Fi,k+1 = randci(0.5, 0.1) (41)

In IMODE, as it has only one objective function, one memory is enough for operator
picking and parameter deciding. For MACSAW, N memories are needed because we
have to choose operator and parameter respectively for each sub-problem. Further, if
one attempt fails, we will choose CR and F by randni(0.5, 0.1) and randci(0.5, 0.1)
to generate the parameters for next round. The distributions with fixed expectation
are used as a restart process.

Algorithm 4 Social actions with multiple operators

1: for i = 1 : npop do
2: Determine the mutation operator that will be used applied by Equation. 34
3: Determine the needed parameter by Equation. 38, 39 or Equation. 40, 41
4: Get offspring by picked strategy
5: if get better offspring than ith individual then
6: Update the ith individual
7: Update social archivei
8: end if
9: end for

10: add candidate solutions in archive through Algorithm 8
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4.5. Weight vector adjustment

MACS2.1 initializes even weight vectors, but they can’t ensure that the final solutions
are uniform if the PF is not even [22] (Figure. 2 shows this conclusion clearly).

The concept of weight vector is put forward in MOEA/D [23] which has even initial
vectors. After its appearing, many new algorithms combine it with vector adjust-
ment process to handle problems with uneven PF. MOEA/D-AWA [22] is a pioneer-
ing algorithm which utilizes WS-transformation. It’s a creative method that gener-
ates new weight vectors by solutions in archive with high quality. MOEA/D-URAW
[24] is on the base of MOEA/D-AWA and uses a new weight initialization approach.
MOEA/D-VOV [25] utilizes virtual objective vectors to supplement the PF estima-
tion. MOEA/D-2ADV [26] has two types of adjustments for the direction vectors.
Apart from MOEA/D-2ADV which directly updates vectors by current population,
other algorithms adjust vectors by a external archive.

Among them, MOEA/D-VOV is the latest algorithm which arranges the weight
vector set appropriately for the PF. It applies an arrangement method for weight
vectors with virtual objective vectors supplementing the PF estimation. We try to
embed the weight vectors arrangement method here.

But all the previous algorithms have one defect, the weight vector adjusting points
are fixed by predefined parameter (the adjusting points for those algorithms are in
Table. 2). It’s unreasonable. On the one hand, assuming that the current archive
is stable with wrong weight vectors but adjusting doesn’t happen, more computing
resources are wasted on the wrong search directions. On the other hand, if the adjusting
starts when the current archive is immature, wrong search directions may be generated
and reduce the quality of final solutions. So the adapting process should start when
the archive is in a relatively steady state.

Table 2.: The adjusting points for those algorithms

the adjusting point

MOEA/D-AWA

Adjusting happens before raatevol ×Gmax generation and at every
wag generation.
Gmax is the mix generation for evolution.
raatevol and wag are predefined value.

MOEA/D-URAW
Adjusting happens before 90%×Gmax generation
and at every 5%×Gmax.

MOEA/D-VOV
Adjusting happens at every N ×G generation.
N is the population size and G is a predefined value.

MOEA/D-2ADV

Adjustment for the number of direction vectors may happen at every
φ1 generation and adjustment for the positions of ineffective direction
vectors may happen at every φ2 generation.
φ1 and φ2 are predefined value.

How can we judge the state of current archive? Maybe the quality measurement
parameters for solution or population can be utilized for deciding the state.

Many parameters have been proposed. MaOEA-DDFC [27] uses directional den-
sity on the project hyperplane for choosing the survive individuals. MaOEA/IGD [28]
applies new IGD parameter (IGD+) to pick solutions. In PeEA [29], k-NN and di-
mensionality margin distance are used for diversity measuring. MSEA [30] divides the
evolution into three stages by diversity and convergence parameters.

Here, we choose the approach in MSEA for judging the state as it is easier for un-
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derstanding and more suitable for our propose. It is a creative optimization algorithm
which picks solutions with different criteria in different stages of evolution. In stage
3 of it, the population is in good convergence and diversity. Then they only need to
be fine-tuned. The parameters for the stage are the number of no-dominated solutions
and diversity degree. The degree for individual x is calculated by Equation. 42 and
43. At first, normalized objective value of x need to be calculated by Equation. 42.

f ′(x)i =
f(x)i − zi,min
zi,max − zi,min

(42)

where zi,min and zi,max represent the smallest and biggest value respectively in
objective space on ith dimension of current population. f(x)i is the value in objective
space on ith dimension of x. f(x) and f ′(x) is the objective vector and normalized
objective vector for x separately.

Div(x) =
∥∥f ′(x)− f ′(x1)

∥∥+ ε
∥∥f ′(x)− f ′(x2)

∥∥ (43)

where ‖f ′(x)− f ′(x1)‖ is the Euclidean distance between the normalized objec-
tive vector for x and its closest neighbor x1’s normalized objective vector in current
population, and ‖f ′(x)− f ′(x2)‖ represents the Euclidean distance between the nor-
malized objective vector for x and its second closest neighbor x2’s normalized objective
vector in current population. ε is a predefined value (ε = 0.01 is used here).

If the population P doesn’t contain dominated individual and minimum diversity
degree of all the individuals in P is smaller than half the existing maximum diversity
degree, P is considered to have entered the stage 3. This criterion can be expressed
as Equation. 44.

There is no dominated individual in Pminx∈PDiv(x)<
1

2
maxx∈PDiv(x)

(44)

As the population is directly relevant to the weight vectors instead of archive. We
use same strategy to judge whether the population is stable for weight vector adjusting.
Its pseudocode of weight vector adjusting process is in Algorithm. 5.

At first, the state of current population P is tested. For convergence, we calculate
the number of dominated solutions. When there is no dominated solution in popu-
lation, we consider that the population is relatively unchanging in convergence. For
diversity, different from MOEA/D-VOV, the sum of diversity degree for each individ-
ual (sumdiv,new in line 8) is used. The population is regarded as stable in diversity
when the relative changing of the sum in neighboring round is between 0.99 and 1.01.
If it is steady in convergence (line 2-4 in Algorithm. 5) and in diversity (line 5-11 in
Algorithm. 5). Then, the adjusting starts. The representative objective vector set is
picked by Algorithm. 6 and weight vectors are updated by Algorithm. 7.
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Algorithm 5 weight vector adjusting process

1: Set two sign cov and div as 0
2: if there is no dominated individual in current population P then
3: Set cov as 1
4: end if
5: if this is the first time that enters Algorithm 5 then
6: Set sumdiv,old as +∞
7: end if
8: Sum the diversity degree of each individual in P as sumdiv,new by Equation. 43 and 44

9: if 1.01>
sumdiv,new

sumdiv,old
>0.99 then

10: State div as 1
11: end if
12: Assign sumdiv,new to sumdiv,old

13: if cov == 1 and div == 1 then
14: Generate virtual objective vector set vov by Algorithm 6
15: Pick the representative objective vector set vovrep and update the weight vectors for

next generation by Algorithm 7
16: end if

In MOEA/D-VOV, a very huge archive is maintained for virtual weight vectors
selecting. But this may consume a lot of computing resources. Here we use the mix of
archive A and current population P for generating virtual objective vector set vov
by Algorithm. 6. The size of the mix is much smaller than the predefined archive size
in MOEA/D-VOV.

In Algorithm. 6, the archive A and current population P are combined as mix.
Then we get the normalized objective vectors set of it (mix′) by Equation. 42 (line 2 in
Algorithm. 6). A big virtual objective vector pool vovpool is generated by incremental
lattice design and the size of it is set as 20000 (it is same as the original paper). For
each vector in vovpool, the individual in mix′ which has the smallest d2 value to it is
picked and it’s related d1 is computed. Assuming the i vector in vovpool (vovpool,i)
and jth individual in mix′ (mix′j) are under processing, d1 and d2 are shown in
Figure. 5 (line 5-10 in Algorithm. 6).

If the d1 is lesser than θ (it is defined as 0.02 here), the vector in vovpool is added
to the virtual objective vector set vov after the transformation in Equation. 45. The
vector after transformation is named as new.
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Figure 5.: d1 and d2 in weight vector adjusting process

new = vovpool,i ×
d1

‖vovpool,i‖
(45)

Algorithm 6 Generate virtual objective vector set V OV

1: Combine the objective vectors for archive A and current population P as mix
2: Calculate the normalized objective vectors set of mix as mix′ by Equation. 42
3: Create a virtual objective vector pool vovpool by incremental lattice design
4: for each vector in vovpool do
5: Assuming the ith vector is chosen from vovpool (vovpool,i), pick the jth individual in

MIX′ (mix′
j) which has the smallest d2 value on vovpool,i

6: Compute the d1 value for mix′
j on vovpool,i

7: if d1<θ then
8: Calculate the vector new by Equation. 45
9: add the new in vov

10: end if
11: end for

After obtaining the virtual objective vector set, it is integrated with mix′ as the
total weight vector pool total pool. The vectors at the corner from total pool will
be moved to the final weight vector set W firstly (line 2 in Algorithm. 7). Here we
give an example. Assuming objective size is 3, the 3 vectors which are closest to
[1, 0, 0], [0, 1, 0] and [0, 0, 1] are moved to final weight vector set W at first. Then the
Euclidean distances between any two vectors in total pool are computed for later
screening process.

Afterward, the left vector from total pool which has the biggest distance to W
by Equation. 46 is relocated to W gradually until it reaches the maximum size. This
process assures that the W is in good diversity.

disi = min
j=1∼N

‖total pooli −Wj‖ (46)
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where total pooli is the ith vector in total pool, Wj is the jth vector in W and
N is the size of W . Finally, each vector in W is scaled into [0, 1] by Equation 47 (line
7 in Algorithm. 7).

Wi = Wi · (fmax − fmin) (47)

whereWi is the ith vector inW , fmax and fmin areM×1 vectors which contain the
biggest and smallest values for each dimension of objective space respectively. Behind
the creating of W , each vector in it matches a individual in mix by Tchebycheff
scalarization function and those individuals act as the population for next generation.

Algorithm 7 Pick the representative objective vector set and update the weight
vectors for next generation

1: Combine the vov and mix′ in Algorithm. 6 as total pool total pool
2: Move the vectors at the corner from total pool to the final weight vector set W firstly
3: Compute the Euclidean distances between any two vectors in total pool
4: if W is not full then
5: Move the vector from total pool which has the biggest distance to W by Equation. 46
6: end if
7: Scale the W into [0, 1] by Equation. 47
8: for each vector in W do
9: Pick the individual in mix which has the smallest scalarization function value on the

vector and it will enter the population for next generation
10: end for

4.6. Archiving strategy

This part is based on the physical concept of minimizing the total energy in a set of
particles. Assume we have a set of equally charged particles in a sphere which can move
towards its surface. Although their movements are not constrained here, the particles
can only occupy specified positions for the electromagnetic force between them.

Assume there is a full archive with r individuals and the iteration is k. Let yi and
yj be the position of element i and j in objective space, the energy of the archive can
be defined as:

E =

r∑
i=1

r∑
j=i+1

1

(yi − yj)T (yi − yj)
(48)

Suppose there are q nominated candidates and they do not dominate any elements
in the archive. The problem is choosing r individuals with possible minimum energy
E from all the q + r elements. It’s impossible to complete the choosing by calculating
the energy directly as there are

(
r+q
r

)
possible combination.

If archive A is not full and there is enough space for the candidates, adding those
candidates to the archive is enough (line 1-2). Then a symmetric matrix M which
contains the reciprocals of the squared distances of all the elements in the archive is
updated (line 4). And the total energy of the archive E and a helper vector E2 can
be computed from M (line 6-7). E2 is utilized to accelerate the calculation process
which will be elaborate later. If the archive is not full, the following procedure will be
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applied instead.
Given a archive A and a set of candidate elements C, for each individual in A,

calculate the new E assuming the individual is replaced by an elements in C (line
23). If the lowest variation of E is negative, the related elements in A and C will be
exchanged. This process repeats until the maximum specified number of iterations is
reached or there is no more possible improvements (lines 16-29). The maximum number
of iterations is defined as 100 here (named as nit max). If the archive is not full and the
left space is not enough for all the candidates, the algorithm adds, sequentially, the
candidates which are related to the smallest increasing of the total energy of the archive
(lines 11-12). In this case, the algorithm only adds candidates instead of exchanging
individuals until the archive is full. Meanwhile, the M and E2 are updated.

The pseudo-code for the energy based archiving strategy is given in Algorithm 8.

Algorithm 8 Energy Based Archiving

1: if left room in the archive is enough for all candidates then
2: Add all the candidates to the archive
3: for all candidates do
4: Update the matrix M which contains the reciprocal of the squared distance

of each pair of candidates
5: end for
6: Update the total energy E of the archive
7: Update the vector E2

8: else
9: if only some candidates can be added then

10: while archive is not full do
11: Choose the candidate which gives the least possible addition of energy to

the archive and add it
12: Update M , E, and E2

13: end while
14: else
15: if the archive is full then
16: Set improved as TRUE
17: Set iterations as 0
18: while improved and iterations < maxit do
19: Set improved as FALSE
20: iterations = iterations+ 1
21: Create a matrix containing the energy that the archive would have if each

element of the archive were substituted with each candidate
22: Locate the minimum entry Enew of this matrix
23: if Enew < E then
24: Enew is at position (i∗, j∗)
25: Swap candidate j∗ with element i∗

26: Set improved as TRUE
27: Update M , E, and E2

28: end if
29: end while
30: end if
31: end if
32: end if
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4.7. Computational complexity of MACSAW

In this section we try to calculate the computational complexity of the new algorithm.
The MACSAW is scattered into the following segments:

Table 3.: The parts and related computational complexity of MACSAW

Individualistic
actions

Social
actions

Weight
adjust

Update population
by archive

Update
archive

position in
Algorithm. 1

line 8,10,11 line 13 line 15,16,17 line 18-32 line 9,12,14

Computational
complexity

O(NMD) O(N(D +M +maxlength)) O(MSizevov pool
2) O(MN2) O(nit maxN

2 +MN2)

4.7.1. Individualistic actions

As MACSAW divides the individualistic action into three parts (line 8,11 in Algorithm.
1 and Algorithm. 2).

For line 8,11 in Algorithm. 1, we only consider line 11 as it evolves more individuals.
And the worst case for this part is that all the three predefined parts in Algorithm.
3 are executed. For those three parts, the biggest computing costs may be spent on
pattern search (line 10-22 Algorithm. 3) as it may explore many random directions.
And the biggest random direction amount which will be explored is the dimension
of decision space (named D here). Further, the new offspring need to be compared
with the old one on both dominance relationship and scalarization function value.
The objective space’s dimension is named M here. This process needs to traverse
every dimension of objective space (line 17 in Algorithm 1). Overall, the total cost for
line 11 is O(NMD) (N is the number of sub-problems, the population size and the
individual number evolved in one round of individualistic actions).

For Algorithm. 2, line 1 expends most resource as it traverses all the objectives and
individuals. It needs O(NM).

The computational complexity for individualistic action is O(NMD + NM) ≈
O(NMD).

4.7.2. Social actions

For social action, line 2 and 3 in Algorithm. 4 need O(maxlength) as they traverse the
memory. Line 4 needs O(D) as it considers all the dimension of decision space. Line
5 needs O(M) for comparison. As social actions evolve N individuals at one round,
they consume O(N(D +M +maxlength)).

4.7.3. Weight adjust

In weight vector adjusting, the state deciding needs O(MN2) in dominated-sorting [31]
(line 2-4 in Algorithm. 5) and O(MN2) in diversity measuring (line 8-11 in Algorithm.
5).

In Algorithm. 6, line 4-11 is the most expensive part. Line 5 require O(2NM)
as distance calculating needs to traverse all the objectives and it’s total cost is
O(2NMSizevov pool) for line 4-11. Sizevov pool is the size of vovpool.

For Algorithm. 7, the biggest time consuming happens in line 3. It costs
O(MSizevov pool

2).
Finally, the complexity for weight adjust isO(M(N2+Sizevov pool

2+NSizevov pool)).
Sizevov pool is a much larger number to N . So, the final result is O(MSizevov pool

2).
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4.7.4. Update population by archive

In line 18-32 in Algorithm 1, the worst situation is traversing all the solutions in
archive and population on all the objectives for matching the sub-problems which
needs O(MN2).

4.7.5. Update archive

Cost for Algorithm 8 has been calculated in MACS2.1 [4]. Its value is 3Mrq + 2r2nit.
M is dimension of the objective space. nit is the times for energy minimization step.
And the aim of this algorithm is pick r individuals from r + q.

The Algorithm 8 is applied to screen solutions after individual and social action.
And the mix of offspring and current archive is executed non-dominated sort before
archiving (line 9,12,14 in Algorithm 1). Let’s consider the sorting at first. Individ-
ualistic action may create more possible solutions than social action as it has three
parts that can yield individuals. Therefore, worst case is that all the parts produce 3N
solutions for the whole population in total and archive size is maxarch which is always
set as N (if archive is full, the pattern will execute only once). The non-dominated
sorting needs M(3N +N)2 ≈ O(MN2).

Further, let’s calculate the cost for archiving process. As individualistic action may
create more solutions than social action, line 11 in Algorithm 1 is picked for comput-
ing. Assuming the worst case, the archiving approach reaches biggest energy minimiza-
tion step times nit max and N solutions (same as maxarch) is already in the archive.
The individualistic action create maximum possible non-dominated 3N solutions. The
archiving strategy needs to selectN from total 3N+N individuals. Therefore, r is equal
to N and q is equal to 3N . The cost is 9MN2 +2nit max(N)2 ≈ O(nit maxN

2 +MN2).
As maxlength is 0.5N here. M and D is always smaller than N in the research field.

Finally, the total computational complexity for MACSAW is O(NMD) + O(N(D +
M+maxlength))+O(MSizevov pool

2)+O(MN2)+O(nit maxN
2 +MN2) ≈ O(MN2 +

nit maxN
2 +MSizevov pool

2).

5. Experiment

The experiments have been carried out and their results are displayed in this part. We
executed the comparative tests on MaOEA-DDFC [27], MOEA/D-DU [32], MOEA/D-
PaS [33], MSEA [30], PeEA [29], RVEAa [34], RVEAiGNG [35], VaEA [36], MACS2.1
[4] and MACSAW. The details of other algorithms are as follows:

MaOEA-DDFC is a many-objective evolutionary algorithm which contains a fa-
vorable convergence indicator and a directional diversity indicator which are intro-
duced to respectively measure the convergence and the diversity performances of an
individual. Further, a new mechanism is employed to generate offspring with good con-
vergence and a new mechanism in environmental selection is used to balance diversity
and convergence.

MOEA/D-DU applies a new method for a better tradeoff between convergence
and diversity in decomposition-based many-objective optimizers.

MOEA/D-PaS is a creative algorithm which can adaptively choose appropriate
scalarizing function for a better tradeoff between search ability and its robustness on
PF geometries.

MSEA is a multistage algorithm which can improve the diversity performance. It
divides the optimization process into multiple stages according to the current popu-
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lation’s characteristic. And it updates the population by various selection criteria in
different stages.

PeEA proposes an on-line PF shape estimation strategy to get the curvature of PF
approximately. And it presents an adaptive scalarizing function and a new similarity
measure parameter named dimensionality margin distance for diversity.

RVEAa is a inventive algorithm which does not require reference points or weight
vectors and the searching in it is guided by current population.

RVEAiGNG applies improved growing neural gas to solve MOEAs with irregular
PFs. The new method can balance exploration and exploitation appropriately.

VaEA adaptively adjusts the weight vectors based on the distribution of current
population. Moreover, this approach is parameter-less and with lower time complexity.

5.1. Experiment Setting

The standard benchmark sets UF and ZDT are tested here. And two real space mission
design problems are handled. They are all multi-objective problems.

The UF is a intractable set which has complex Pareto set. ZDT suite is also a
commonly used benchmark. The characteristics of UF can be found in [37] and the de-
scription for ZDT is in [38]. There are fifteen standard benchmarks and two real world
problems. The numbers of fitness evaluations and corresponding variables numbers are
listed in Table 4. And parameters of all the algorithms are in Table 5.

Table 4.: Objective numbers, variables numbers and maximum fitness evaluation for
each problem.

Problems Population Size (N) Objective No. (M) Variables No. Fitness Evaluation

UF1-7 100 2 30 300000

UF8-10 91 3 30 273000

ZDT1-3 100 2 30 300000
ZDT4,6 100 2 10 300000

Cassini 150 2 6 600000
3imp 150 2 5 600000

Table 5.: Parameters of all the algorithms.

Algorithms Parameters
MaOEA-DDFC K = 5 L = 3
MOEA/D-DU δ = 0.9 K = 3
RVEAa α = 2 fr = 0.1
RVEAiGNG α = 2
MACS2.1/MACAW F = 1 CR = 1

ρini = 1 ρcontr = 0.5
ρmax,contr = 5

Meanwhile the two real space mission design problems are 3imp and Cassini [2].
The target of 3imp is to transfer a spacecraft from a circular Low Earth Orbit, with
a radius of 7000km, to a circular Geostationary orbit, with a radius of 42000km by
three impulsive manoeuvres. The spacecraft departs at time t0 from the circular Low
Earth Orbit and injects into the circular Geostationary orbit after a transfer time
T = t1 + t2. The intermediate manoeuvre happens at t0 + t1 at a direction which has
radius r1 and angle θ1 in polar coordinates. The objective function for this problem

25



is the total transfer time T and the sum of the three impulses ∆vtot. The decision
vector is defined in a space [t0, t1, r1, θ1, t2]

T ∈ D ⊂ R5. And the decision variables
have the following intervals: t0 ∈ [0 1.62], t1 ∈ [0.03 21.54], r1 ∈ [7010 105410],
θ1 ∈ [0.01 2π − 0.01] and t2 ∈ [0.03 21.54].

The target of Cassini is launching a spacecraft from earth to land Saturn through a
sequence of swing-by’s with the planets: Venus, Venus, Earth, and Jupiter. The total
transfer arc consists with five small arcs. For each small arc, the departure time from
planet Pi and the arrival time at planet Pi+1 are given, then the required incoming
and outgoing velocities at each swing-by planet vin and vrout can be calculated as the
solution of a Lambert’s problem. Every swing-by is modeled through a linked-conic
approximation with powered manoeuvres. The mismatch between the required outgo-
ing velocity vrout and the achievable outgoing velocity vaout is compensated through a
∆v manoeuvre at the pericentre of the gravity assist hyperbola. The departure time
is defined as t0 and the transfer time for each leg is Ti, i = 1, .., 5. Once each powered
swing-by manoeuvre is computed, the normalized radius of the pericentre rp,i of each
swing-by hyperbola can be got. So, in the searching process of the optimal solution a
constraint on each pericentre radius should be considered and it is introduced into the
objective by weight vector as following:

f(x) = ∆v0 +

4∑
i=1

∆vi + ∆vf +

4∑
i=1

ωi(rp,i − rpmin,i)2 (49)

The decision vector is defined as [t0, T1, T2, T3, T4, T5]
T and the objectives are f(x)

and T =
∑5

i=1 Ti. The minimum normalized pericentre radii are rpmin,1 = 1.0496,
rpmin,2 = 1.0496, rpmin,3 = 1.0627 and rpmin,4 = 9.3925. The decision variables have
the following intervals: t0 ∈ [−1000 0]MJD2000, T1 ∈ [30 400]d, T2 ∈ [100 470]d,
T3 ∈ [30 400]d, T4 ∈ [400 2000]d and T5 ∈ [1000 6000]d.

5.2. Results

For the standard benchmark sets, HV and IGD are utilized as measurement parameters
and the results are shown in Table 6-7.The HV/IGD values of each solution set are
calculated with a set of reference points which are generated in a famous open source
platform [39]. Every instance was run for 30 times independently, and in the following
bracket we listed the standard deviation of HV and IGD. The Wilcoxon rank sum test
with a significance level of 0.05 is adopted to do the analysis. The marks ”+”, ”−”
and ”≈” mean that the result of another algorithm is significantly better, worse and
similar to the result of MASCAWS. The best result for each test case is marked by
’*’. MASCAWS demonstrates strong competitiveness in Table 6 and 7.

In general, two mixed (diversity and convergence) parameters HV and IGD are
picked as measurement parameters. But the two real world problems have unknown
true PFs. Therefore, the pure diversity PD parameter [40] which doesn’t need reference
are picked instead. We use it to quantify diversity. And HV is utilized to estimate
convergence. The results of the 30 runs for MACS2.1 and MACSAW are gathered and
the no-dominated solutions in them are applied as the reference for HV calculating. It
is worth noting that the bigger PD is, the better diversity.

Those measurement parameter results for the real problems are shown in Table 8.
Further, the run with middle HV is picked to plot the final results as Figure. 6-11.
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Figure 6.: Final results on 3imp for the test with middle HV of MACS2.1

Figure 7.: Final results on 3imp for the test with middle HV of MACSAW

Figure 8.: Final results on 3imp for the test with middle HV of MACS2.1 and MAC-
SAW (MACSAW in red and MACS2.1 in blue)

The 3imp problem’s results are in Figure. 6-8. For convergence, it seems that the
two algorithms put the PF into same depth in Figure. 8, and MACSAW obtains tiny
advantage in Table. 8. For diversity, in Figure. 8, MACSAW gets the solutions on
whole PF while MACS2.1 only can obtain results in a small area, but it also lose some
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solutions in the center of PF. The PD value for MACSAW in Table 8 shows better
diversity. The best result for each test case is marked by ’*’.

Figure 9.: Final results on Cassini for the test with middle HV of MACS2.1

Figure 10.: Final results on Cassini for the test with middle HV of MACSAW

Figure 11.: Final results on Cassini for the test with middle HV of MACS2.1 and
MACSAW (MACSAW in red and MACS2.1 in blue)
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For Cassini, in Figure. 11, MACSAW nearly puts all the part of PF deeper than
MACS2.1, and it gets more solutions in the rightmost area. In Table 8, they are nearly
same in HV and PD.

Table 8.: The results on HV and IGD for the two real world problems.

problem MACS2.1 MACSAW
3imp/HV 6.9214e-1 (2.89e-3) = 6.9232e-1 (2.92e-3)*
Cassini/HV 9.8347e-1 (2.26e-5) =* 9.8346e-1 (3.52e-5)
3imp/PD 2.9146e4 (1.36e4) = 3.0595e4 (1.71e4)*
Cassini/PD 3.0595e4 (1.71e4) = 3.0623e4 (1.62e4)*
+/− / ≈ 0/0/4

6. Discussion

In 3imp problems, we can get more solutions in the extreme regions on both sides. As
3imp has uneven PF, the weight vector process may be effective here. But MACSAW
still can’t obtain even solutions on the whole PF. The reason needs to be explored
later.

In Cassini, we can’t put the PF deeper in all parts and the measurement parameters
are almost unchanged. The new utility function may need more improvements.

We introduced weight vector adjusting process, but it still has great computational
complexity after we use a smaller archive. We need to make some improvements to
reduce the computing resources required.

As DE pool has massive optional strategies. More possible operator combinations
need to be explored.

7. Conclusions

In this paper, we presents a new Multi Agent Collaborative Search Algorithm with
Adaptive Weights (MACSAW). The improvement can be divided into three parts from
its previous version MACS2.1. First, a new kind of utility function is utilized. Secondly,
a new social action process which contains more operators and adaptive parameters is
used. Finally, a new weight vectors adjustment process with population state trigger
is applied. The new algorithm shows competitiveness on some standard benchmarks
and two real optimization problems.

There are still some flaws need to be tackled. The weight vector adjusting process
may help us get more solutions in the extreme regions in 3imp, but they are still
not even enough. And it has huge computational complexity. More works are needed
for its improvement. In Cassini, MACSAW can’t put all the part of PF deeper than
MACS2.1. Maybe a better utility function is useful here. In MACSAW we directly
use the IMODE’s operators, but the potential DE strategy pool is huge as many
researchers constantly propose new operators. More operator combinations need to be
explored. Our future work will focus on these issues.
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