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Abstract

Rodents are key reservoirs of zoonotic pathogens and play an important role in disease transmission to humans. Importantly,

anthropogenic land-use change has been found to increase the abundance of synanthropic rodents, particularly rodent reservoirs

of zoonotic disease. Anthropogenic environments also affect the microbiome of synanthropic wildlife, influencing wildlife health

and potentially introducing novel pathogens. Our objective was to characterize the microbiome and investigate the prevalence

of zoonotic bacterial pathogens in synanthropic rodents in native and anthropogenic environments to better understand their

role in pathogen maintenance and transmission. We sampled wild Peromyscus mice in agricultural and undeveloped landscapes

and forest and synanthropic habitat in Minnesota, USA and conducted 16S amplicon sequencing using long-read Nanopore

sequencing technology on fecal samples to characterize the rodent microbiome. We compared community composition and

diversity between habitats and screened for the presence of putative pathogenic bacteria species. Microbiome community

composition differed significantly between agricultural and undeveloped landscapes and forest and synanthropic habitat while

microbiome richness, diversity, and evenness were lower in undeveloped-forest habitat compared to all other habitats. We

detected overall low abundance and diversity of putative pathogenic bacteria, though the greatest number of pathogenic bacteria

were detected in the agricultural-forest habitat. Our findings show that rodent microbiome community composition differs across

landscapes and habitat types but suggest that landscape-level anthropogenic factors may be most important to predict zoonotic

pathogen abundance. Ultimately, understanding how anthropogenic land-use change and synanthropy affect rodent microbiomes

and pathogen prevalence is important to managing transmission of rodent-borne zoonotic diseases to humans.
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ABSTRACT 17 

Rodents are key reservoirs of zoonotic pathogens and play an important role in disease 18 

transmission to humans. Importantly, anthropogenic land-use change has been found to 19 

increase the abundance of synanthropic rodents, particularly rodent reservoirs of zoonotic 20 

disease. Anthropogenic environments also affect the microbiome of synanthropic wildlife, 21 

influencing wildlife health and potentially introducing novel pathogens. Our objective was to 22 

characterize the microbiome and investigate the prevalence of zoonotic bacterial pathogens in 23 

synanthropic rodents in native and anthropogenic environments to better understand their role 24 

in pathogen maintenance and transmission. We sampled wild Peromyscus mice in agricultural 25 

and undeveloped landscapes and forest and synanthropic habitat in Minnesota, USA and 26 

conducted 16S amplicon sequencing using long-read Nanopore sequencing technology on fecal 27 

samples to characterize the rodent microbiome. We compared community composition and 28 

diversity between habitats and screened for the presence of putative pathogenic bacteria 29 

species. Microbiome community composition differed significantly between agricultural and 30 

undeveloped landscapes and forest and synanthropic habitat while microbiome richness, 31 

diversity, and evenness were lower in undeveloped-forest habitat compared to all other habitats. 32 

We detected overall low abundance and diversity of putative pathogenic bacteria, though the 33 

greatest number of pathogenic bacteria were detected in the agricultural-forest habitat. Our 34 

findings show that rodent microbiome community composition differs across landscapes and 35 

habitat types but suggest that landscape-level anthropogenic factors may be most important to 36 

predict zoonotic pathogen abundance. Ultimately, understanding how anthropogenic land-use 37 

change and synanthropy affect rodent microbiomes and pathogen prevalence is important to 38 

managing transmission of rodent-borne zoonotic diseases to humans. 39 

 40 
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microbiome, Nanopore sequencing, Peromyscus, synanthropy, zoonoses, 16S amplicon 42 

sequencing  43 

 44 

1 INTRODUCTION 45 

Rodents are an important source of zoonotic disease spillover, accounting for a greater diversity 46 

of zoonotic pathogens than any other mammalian order (Han et al., 2016). While many factors 47 

have been proposed to contribute to this (e.g. fast-paced life history, Han et al., 2015; cyclic 48 

population fluctuations, Kallio et al., 2009) recent studies have suggested that the tendency of 49 

particular rodent species to occasionally or exclusively live in human-built environments 50 

(synanthropy) is likely a key factor (Ecke et al., 2022).  51 

 52 

Anthropogenic land-use change, leading to habitat fragmentation and the intensification of 53 

agricultural development and urbanization, is the major driver of zoonotic pathogen spillover 54 

(Gottdenker et al., 2014). Indeed, urbanized habitat has been found to have a significant, 55 

positive effect on the abundance of rodent hosts of zoonotic pathogens compared to areas of 56 

native vegetation (Mendoza et al., 2019). Shifts in rodent biodiversity in anthropogenic 57 

landscapes could further increase zoonotic risk, as rodent hosts and non-host rodents show 58 

opposite responses to agricultural and urban habitat, with the abundance of host species 59 

increasing and non-host species decreasing compared to areas of minimally disturbed primary 60 

vegetation (Gibb et al., 2020). 61 

 62 

However, spillover of zoonotic pathogens at the human-wildlife interface does not solely flow 63 

from wildlife into humans. Synanthropic wildlife (including rodents) also show increased 64 

prevalence of human pathogens: Escherichia coli, Clostridioides difficile, Salmonella enterica in 65 

Norway rats in New York City, New York (Firth et al., 2014); antimicrobial-resistant E.coli in 66 

racoons in Chicago, Illinois (Worsley-Tonks et al., 2021); Salmonella in urbanized white ibis in 67 
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southern Florida (Hernandez et al., 2016), representing both a concern for wildlife health and a 68 

potential source for spillback into human populations. As such, while the relationships between 69 

land-use change, rodents, and zoonotic pathogen prevalence are still being explored, 70 

synanthropic wildlife represent both important reservoirs for zoonotic pathogens and likely 71 

drivers of pathogen maintenance and spillover in anthropogenic landscapes (Hassell et al., 72 

2017). 73 

 74 

Synanthropy has also been shown to impact the gut microbiome of wildlife. The gut microbiome 75 

plays a role in host health (Marchesi et al., 2016) and immune function (Schluter et al., 2020) 76 

and disruption of the normal microbiome has been linked to various health conditions in wildlife, 77 

livestock, and domestic animals (Funosas et al., 2021; Monteiro & Faciola, 2020; Suchodolski, 78 

2022). Wildlife living in close proximity to humans often experience changes to the composition 79 

of their microbiome compared to counterparts in native habitat (e.g. rodents, Anders et al., 80 

2022; sparrows, Berlow et al., 2021) though whether anthropogenic habitats decrease or 81 

increase microbiome diversity may vary by species (Diaz et al., 2023; Dillard et al., 2022). It is 82 

likely that changes in microbiome diversity associated with synanthropy could increase the 83 

prevalence of pathogenic bacteria in wildlife, but studies linking microbiome shifts with pathogen 84 

prevalence are limited (but see Murray et al., 2020).  85 

 86 

Here, we characterize the microbiome and compare the abundance of zoonotic bacterial 87 

pathogens in Peromyscus mice in agricultural developed and undeveloped landscapes and 88 

forest and synanthropic habitat in Minnesota, USA. Our research questions were two-fold: 1) 89 

How does the microbiome community of Peromyscus mice differ between forest and 90 

synanthropic habitat? and 2) Are zoonotic bacterial pathogens more abundant in agricultural 91 

developed landscapes? 92 

 93 
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We expected the microbiome community of Peromyscus to be shaped by the surrounding 94 

landscape and specific habitat as they influence the availability of food resources and exposure 95 

to humans and their pathogens. We predicted that microbiome richness and diversity would be 96 

lower in the agricultural landscape and synanthropic habitat compared to the undeveloped 97 

landscape and forest habitat due lower diversity of food resources. We predicted that the 98 

agricultural landscape would have a higher abundance and diversity of pathogenic bacteria 99 

since the area is dominated by crop fields and human habitation and thus increased exposure to 100 

manure as fertilizer, wastewater and runoff, and trash; whereas we predicted that the 101 

undeveloped landscape would have lower pathogen abundance because the surrounding area 102 

is largely forested with little anthropogenic development. Characterizing rodent microbiomes 103 

across development gradients is important for quantifying the risk of rodent-borne zoonotic 104 

pathogen spillover and understanding how microbiome shifts associated with synanthropy may 105 

influence pathogen abundance.  106 

 107 

2 MATERIALS & METHODS 108 

2.1 Study Sites 109 

Three major North American biomes intersect in Minnesota: the eastern deciduous forest, 110 

northern coniferous forest, and western prairie, providing diverse habitats and biological 111 

communities of hosts and pathogens. With respect to land-use, the state is dominated by 112 

agricultural cropland and forest with interspersed developed areas ranging from dense 113 

metropolitan areas to small, rural communities. Together, the biological and anthropogenic 114 

factors create a heterogeneous landscape of natural areas mixed with agricultural and urban 115 

developed landscapes where synanthropic rodents have many opportunities to overlap with 116 

humans. We focus our study on mice of the genus Peromyscus (i.e. Peromyscus leucopus and 117 

Peromyscus maniculatis) which are highly adaptable generalists that are common throughout 118 

Minnesota and can thrive in agricultural and urban settings as well as forests and grasslands. 119 
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Importantly, Peromysucus mice are known reservoirs of zoonotic and foodborne pathogens 120 

(e.g. Borrelia, Campylobacter spp., E. coli, Giardia spp., hantavirus; Jahan et al., 2021).  121 

 122 

For our study, we focused on two landscape types: native, contiguous forest with little 123 

permanent human habitation or agriculture (hereafter “undeveloped landscape”) and a mosaic 124 

of fragmented forest interspersed with crop fields and low-density housing (hereafter 125 

“agricultural landscape”). Within each landscape, four study sites were chosen to represent two 126 

habitat types (two sites per habitat): forest habitat and synanthropic habitat around human-127 

frequented structures (e.g. cabins, tent platforms, field station buildings, maintenance sheds and 128 

garages). Rodent sampling was conducted at two locations: the Itasca Biological Station and 129 

Laboratories at Itasca State Park (“Itasca”, undeveloped landscape) and Cedar Creek 130 

Ecosystem Science Reserve (“Cedar Creek”, agricultural landscape). Itasca is located in 131 

northern Minnesota in the northern coniferous boreal forest biome. Though the state park is 132 

frequented by hikers and visitors, the surrounding landscape is contiguous forest with no 133 

agricultural development and very sparse permanent human habitation (Figure 1-A). Cedar 134 

Creek is located in central Minnesota in the eastern deciduous forest and oak savanna biome. 135 

The landscape surrounding the reserve is dominated by agricultural development (e.g. 136 

pasture/hay, cultivated crops), woody and herbaceous wetlands, and low-medium intensity 137 

housing communities (Figure 1-B).  138 

 139 

2.2 Rodent Trapping 140 

Two consecutive nights of rodent trapping were conducted at each study site (a “trapping 141 

session”) using 100 Sherman live-capture traps baited with oats. Traps were opened at dusk 142 

and checked at dawn the following morning. Traps were closed during the day between trap 143 

nights at a single site and were reopened at dusk for the second night. Captured Peromyscus 144 

mice were sampled and then released at the point of capture. Due to the difficulty in 145 
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distinguishing P. leucopus and P. maniculatus – two species found across our study landscapes 146 

in Minnesota – based solely on morphologic features, we did not attempt to identify captured 147 

Peromyscus mice to the species level. Captured non-target (i.e. non-Peromyscus) species were 148 

released immediately and were not sampled. Longitudinal trapping was conducted at the 149 

agricultural landscape sites. Each site was sampled three times throughout the summer (June, 150 

July, and August 2019) with 3-4 weeks between trapping sessions. Captured Peromyscus mice 151 

were marked with a metal ear tag to identify individuals at subsequent recaptures. Only one 152 

trapping session (July 2019) was conducted at the undeveloped landscape sites. For each 153 

captured Peromyscus, a fecal sample was collected and body mass, sex, and reproductive 154 

status were recorded (reproductive individuals identified by the presence of scrotal testes for 155 

males or any of the following traits for females: perforate vagina, enlarged nipples, palpable 156 

embryos). Individuals captured a second time within a trapping session were not resampled and 157 

were promptly released at the point of capture. 158 

 159 

All rodent trapping and handling methods were reviewed and approved by the University of 160 

Minnesota Institutional Animal Care and Use Committee (protocol no. 1903-36892A). The 161 

objective of this study was live-capture and release but trap fatalities (3.4% [16/477] of capture 162 

events of target and non-target species) were collected with approval by the Minnesota 163 

Department of Natural Resources (MN-DNR) under Special Permit No. 28440 and were 164 

accessioned with the Bell Museum of Natural History collections. 165 

 166 

2.3 DNA Extraction 167 

We collected 176 fecal samples representing 153 unique individuals. Fecal samples of up to 168 

250 mg were stored without buffer or ethanol and frozen at -80°C immediately after sampling 169 

until DNA extraction. DNA was extracted using a QIAamp PowerFecal Pro kit (Qiagen, Hilden, 170 

Germany) following manufacturer instructions both manually and using a QIAcube robotic 171 
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workstation (Qiagen, Hilden, Germany). DNA extracts were quantified using a Qubit 4 172 

fluorometer (Thermofisher Scientific, Waltham, MA, USA) using the Qubit dsDNA BR Assay Kit 173 

(Thermofisher Scientific, Waltham, MA, USA) following the manufacturer’s instructions. Samples 174 

with low DNA yield (<24 ng/µL, n=16) were excluded from downstream analysis.  175 

 176 

2.4 Library Prep & Nanopore Sequencing 177 

For the remaining 160 samples, the Rapid 16S Barcoding Kit (SQK-16S024 [utilizing ‘Kit 9’ 178 

chemistry]; Oxford Nanopore Technologies [ONT], Oxford, UK) was used to prepare barcoded 179 

amplicon libraries for sequencing, largely following the manufacturer's protocol (methods 180 

described in detail in Jahan et al., 2021). First, all fecal DNA extracts were diluted in nuclease-181 

free water to a concentration of 10-30 ng/μl. The full-length bacterial 16S rRNA gene region 182 

(1.6kb) was amplified via PCR using specific primers and between 20-40 ng of DNA template, a 183 

long-range master mix (LongAmp Hot Start Taq, 2X; New England Biolabs, Ipswich, MA, USA), 184 

and sample-specific barcode identifier. PCR products were purified and prepared for 185 

sequencing through a series of magnetic bead wash steps (AMPure XP beads; Beckman 186 

Coulter Life Sciences, Indianapolis, IN, USA). Barcoded samples were pooled with ONT rapid 187 

sequencing adapter mixture into a final library for sequencing. Seven sequencing runs were 188 

performed with a total of 160 samples, including 24 (run 1, 2, 4), 23 (run 6), 22 (run 3, 5), and 21 189 

(run 7) barcoded samples from individual mice. Libraries were sequenced on a FLO-MIN106 190 

MinION flow cell utilizing R9 sequencing chemistry (Oxford Nanopore Technologies, Oxford, 191 

UK), run for 24 hours using the ONT MinKNOW GUI (v4.3.20; Oxford Nanopore Technologies, 192 

Oxford, UK). 193 

 194 

2.5 Bioinformatic Pipeline 195 

Raw Fast5 data from the sequencing runs were base-called using the ONT Guppy basecaller 196 

using the 'super accuracy' basecalling model (ONT configuration file: 197 
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dna_r9.4.1_450bps_sup.cfg). The barcoded samples were further de-multiplexed using the 198 

Guppy barcoder to identify reads as belonging to one of the 24 unique barcodes. Reads were 199 

quality filtered (Nanopore Q score ≥ 8, corresponds to 84.15% base call accuracy) and filtered 200 

for target length (full-length bacterial 16S region approx. 1600 bp in length) using NanoFilt 201 

(v2.8.0; De Coster et al., 2018). Only reads 1200-1800 bp in length were retained for onward 202 

analysis. Summary reports were generated using Nanoq (v0.9.0; Steinig & Coin, 2022). 203 

 204 

Taxonomic abundance profiles were generated using Emu, an expectation-maximization 205 

algorithm designed specifically to account for the increased read length and error rate often 206 

associated with long-read data such as ONT-generated sequences (v3.4.4; Curry et al., 2022). 207 

Compared to conventional taxonomic identification algorithms, Emu is able to reduce the false 208 

positive rate of identification and accurately identify long reads to species level (Curry et al., 209 

2022). Reads were mapped using the Emu default database settings: a combination of rrnDB 210 

v5.6 (Stoddard et al., 2015) and NCBI (National Center for Biotechnology Information) 16S 211 

RefSeq downloaded on 17 September 2020 (O’Leary et al., 2016). The output of Emu is an 212 

estimated abundance (read count) of each identified species in a given sample. Because read 213 

counts are estimated based on likelihood probabilities, outputted values are not necessarily 214 

integer counts. Values were rounded to the nearest integer for analysis.  215 

 216 

2.6 Data Analysis 217 

The full fecal microbiome was characterized at the sample level using measures of alpha and 218 

beta diversity (to quantify within-sample and between sample bacterial diversity, respectively). 219 

Alpha diversity indices included species richness, Shannon-Weiner diversity, Simpson diversity, 220 

and species evenness. Shannon diversity and Simpson diversity make different assumptions 221 

about species evenness and how it contributes to diversity: Shannon diversity assumes all 222 

species are present and are randomly sampled while Simpson diversity gives more weight to 223 
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common species. Calculating both indices can suggest how common or rare species may affect 224 

diversity estimates for different populations. Beta diversity was quantified using the Bray-Curtis 225 

dissimilarity index to compare bacterial microbiome community composition at the species level 226 

between all pairs of samples. As a subset of the full fecal microbiome, the presence of 227 

pathogenic bacteria (foodborne and zoonotic pathogens of concern for human, livestock, and 228 

domestic animal health) was quantified at the sample level, then grouped by landscape-habitat 229 

pairing. 230 

 231 

Rodent sampling was conducted across three months (June, July, and August) in the 232 

agricultural landscape and 18 individuals were captured and sampled in multiple months. To 233 

control for non-independence between repeat samples of the same individuals, only one sample 234 

per mouse (n=140) was included in the alpha and beta diversity analyses. We chose to include 235 

only the July sample for all recaptured mice to avoid introducing variation based on sampling 236 

month (all recaptured animals were sampled in July, but not in June or August) and to better 237 

align with the undeveloped landscape sampling (which was only conducted in July). For the 238 

analysis of pathogenic bacteria species, all samples (n=160) were used. 239 

 240 

For the analyses of alpha and beta diversity, all samples were rarefied to the number of reads of 241 

the least abundant sample using the ‘phyloseq’ R package (v1.38.0; McMurdie & Holmes, 242 

2013). Alpha diversity indices (richness, Shannon, Simpson, and evenness) were estimated 243 

from the rarefied data using the ‘vegan’ R package (v2.6.4; Oksanen et al., 2022). We 244 

investigated whether alpha diversity was affected by landscape or habitat type by developing a 245 

linear regression model for species richness and Shannon diversity and a beta regression 246 

model for Simpson diversity and species evenness. In all models, the response variable was the 247 

alpha diversity index and the explanatory variables were landscape type (i.e. anthropogenic or 248 

undeveloped), habitat type (forest or synanthropic), the interaction of landscape and habitat 249 
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type, mouse sex, reproductive status (reproductive or non-reproductive), body mass, and 250 

sampling month (June, July, or August). Beta diversity was visualized using non-metric 251 

multidimensional scaling (NMDS) ordination performed on the rarefied data using the Bray-252 

Curtis dissimilarity index in the ‘vegan’ package. NMDS was first performed with 2-dimensions 253 

(k) and the k value was iteratively increased until the stress value was below 0.1. Non-254 

parametric statistical analyses were performed on the rarefied distance matrices using the 255 

‘adonis2’, ‘anosim’, ‘betadisper’, and ‘permutest’ functions also in the ‘vegan’ package. 256 

 257 

For the analysis of pathogenic bacteria, species-level abundances were not rarefied and the raw 258 

estimated read counts output by the Emu pipeline were used. A list of 209 putative pathogenic 259 

bacteria species was generated using the PHI-base pathogen database (Urban et al., 2020; 260 

accessed on 13 Feb. 2023, plant-specific pathogens removed); resources from the U.S. Centers 261 

for Disease Control and Prevention on ‘foodborne germs and illnesses’ (CDC, 2022); and 262 

foodborne and mastitis-causing pathogens screened for by Jahan et al. 2021 (Jahan et al., 263 

2021; For full list of pathogens, see Table S1). The species-level read count abundance data 264 

from the sequenced samples was filtered for reads assigned to the pathogen species on this 265 

list. We thresholded read count per pathogen species to at least 50 reads and visualized the 266 

patterns of pathogen read count per mouse, grouped by landscape-habitat pairing. 267 

 268 

All analyses were performed in R Statistical Software (v4.1.2; R Core Team, 2021).  269 

 270 

3 RESULTS 271 

3.1 Rodent Samples 272 

160 fecal samples were sequenced, representing 140 unique Peromyscus mice. In the 273 

agricultural landscape, 50 and 39 total fecal samples were collected from forest and 274 

synanthropic habitats, respectively, across three months of rodent trapping (Figure 1-C). 275 
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Excluding recaptures, 40 and 29 unique mouse fecal samples were collected in forest and 276 

synanthropic habitats, respectively. In the undeveloped landscape, 31 and 40 unique mouse 277 

fecal samples were collected from forest and synanthropic habitats, respectively (Figure 1-D). 278 

 279 

3.2 Nanopore Sequencing Summary  280 

After quality filtering, over 32.7 million high quality reads were retained (mean Q score 12.8 ± 281 

0.31 s.d; Q score of 12.8 corresponds to base call accuracy of 94.75%). The mean number of 282 

reads per sample was 204,772.4, though the number of reads per sample was highly variable 283 

(standard deviation: 82,970.5; range: 74,517-517,058 reads; Table 1).  284 

 285 

The Emu algorithm identified 1212 unique bacterial species across the 160 fecal samples. The 286 

mean number of species per sample was 211 (standard deviation: ± 55.8; range: 82-367). 287 

 288 

Rarefaction curves were plotted for all sequenced samples (n=160). The asymptotic nature of 289 

these curves suggest reasonable sequencing depth was achieved for all samples (Figure S1). 290 

To enable direct comparisons between samples for the alpha and beta diversity analyses, the 291 

samples used in the diversity analysis (n=140) were rarefied to the minimum number of reads 292 

per sample (74,517 reads) and species were selected without replacement to reach the desired 293 

number of reads. After rarefaction, 36 species were removed because they were no longer 294 

present in any sample after random subsampling. 295 

 296 

3.3 Alpha Diversity 297 

The interaction of landscape and habitat type had a moderate effect on observed species 298 

richness, Shannon diversity and Simpson diversity indices (all p<0.05; Table S2). The effect of 299 

the interaction of landscape and habitat type on species evenness was weaker and only 300 

marginally significant (p=0.087; Table S2), though there was a significant effect of landscape 301 
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alone (p=0.016; Table S2). Mean observed species richness, Shannon diversity, Simpson 302 

diversity, and species evenness were lower in the undeveloped-forest habitat compared to all 303 

other landscape-habitat pairings (Figure 2; Table S3). However, contrary to our hypotheses, 304 

there was no difference in species richness, diversity, or evenness between forest and 305 

synanthropic habitats in the agricultural landscape or between agricultural-synanthropic and 306 

undeveloped-synanthropic habitat. Reproductive status (reproductive or non-reproductive 307 

individual, as noted by external morphology) had a moderate effect on Shannon and Simpson 308 

diversity and species evenness (all p<0.01; Table S2). None of the other parameters tested 309 

(sex, body mass, sampling month) had an effect on any alpha diversity index. 310 

 311 

3.4 Beta Diversity 312 

Across the four landscape-habitat pairings, the microbiome communities of sampled mice were 313 

dominated by three phyla: Firmicutes, Proteobacteria, and Bacteroidetes (relative abundance 314 

≥5%) though Melainabacteria (a candidate phylum related to Cyanobacteria, Di Rienzi et al., 315 

2013) and Deferribacteres were observed at relative abundances ≥1% in some samples (Figure 316 

3). Firmicutes was the dominant phyla in most samples (relative abundance 90.1% mean ± 11.1 317 

s.d.) followed by Proteobacteria (16.8% ± 20.0) and Bacteriodetes (8.92% ± 3.07).  318 

 319 

Bacterial microbiome community composition at the species level was compared between all 320 

pairs of samples using the Bray-Curtis dissimilarity index based on rarefied count data. A 321 

nonparametric analysis of similarities test (‘anosim’ function, ‘vegan’ R package) comparing 322 

dissimilarity indices between samples from the four landscape-habitat pairings suggested that 323 

the between-group dissimilarity in microbiome community composition was significantly greater 324 

than the within-group dissimilarity (p=0.001). 325 

 326 
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An NMDS ordination plot calculated based on Bray-Curtis dissimilarity indices showed a high 327 

degree of overlap between samples from the four landscape-habitat pairings (Figure 4). 328 

Samples from agricultural-synanthropic and undeveloped-forest habitat showed the greatest 329 

dissimilarity while samples from agricultural-forest and undeveloped-synanthropic habitat were 330 

more similar. The variability among samples was high, but an analysis of multivariate 331 

homogeneity of group dispersion (‘betadisper’ and ‘permutest’ functions, ‘vegan’ R package) by 332 

landscape-habitat pairing showed no significant difference in variance between the groups 333 

(permutation test, p=0.96), indicating that the differences in community composition were not 334 

only due to differences in sample variance. 335 

 336 

A nonparametric PERMANOVA analysis was used to test the effects of landscape, habitat type, 337 

mouse sex, reproductive status, body mass, and sampling month on differences in microbiome 338 

community composition using the ‘adonis2’ function in the ‘vegan’ R package with the 339 

by=“margin” option to determine the marginal effect of each parameter. There was a small but 340 

significant effect of landscape and habitat, suggesting that the microbiome of sampled mice was 341 

different between agricultural and undeveloped landscapes and between forest and 342 

synanthropic habitats (PERMANOVA, R2
Landscape=0.06, R2

Habitat=0.04, both p=0.001; Table S4). 343 

Mouse reproductive status and body mass also had small, but significant effects (both p<0.05). 344 

However, much of the variance in microbiome community composition was not explained by the 345 

modeled parameters (residual R2=0.85). 346 

 347 

3.5 Putative Pathogen Detection 348 

The presence of putative pathogenic bacteria was investigated using raw read counts of all 349 

sequenced samples (n=160). Read counts from mice captured in more than one month in the 350 

agricultural landscape were pooled by bacterial species across fecal samples from a single 351 

mouse. Of the 209 putative pathogenic bacteria species screened for, 18 were identified in 352 
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sampled mice (read count ≥ 50). At the population level, putative pathogen species richness 353 

was higher in agricultural-forest and undeveloped-synanthropic habitat (13 species identified; 354 

Figure 5) compared to agricultural-synanthropic and undeveloped-forest habitat (7 species 355 

identified). However, at the individual level, putative pathogen species richness was higher in 356 

mice in the agricultural landscape (agricultural-forest: mean putative pathogen species/mouse 357 

1.42 ± 1.17 s.d.; agricultural-synanthropic: 1.24 ± 1.06) compared to mice in the undeveloped 358 

landscape (undeveloped-forest: 0.42 ± 0.77; undeveloped-synanthropic: 0.83 ± 0.93).  359 

 360 

Read counts of detected putative pathogens were similar across landscape-habitat pairings with 361 

many mice having low read counts (<200 reads), though the number of mice with high read 362 

counts (>500 reads) was greatest in the agricultural-forest habitat (Figure 5). Across all sampled 363 

mice, Clostridioides difficile, Streptococcus sanguinis, Enterococcus gallinarum, Citrobacter 364 

freundii, and Morganella morganii were the most frequently detected putative pathogens (Figure 365 

5).  366 

 367 

4 DISCUSSION 368 

Our objective was to characterize and compare the microbiome of synanthropic rodents and the 369 

abundance of zoonotic bacterial pathogens in agricultural landscapes and synanthropic habitat 370 

in Minnesota. We found that landscape-habitat pairing affected microbiome richness and 371 

diversity but species evenness was only affected by landscape. Overall, undeveloped-forest 372 

habitat had lower mean alpha diversity (richness, Shannon and Simpson diversity, evenness) 373 

than the other three landscape-habitat pairings. Microbiome community composition at the 374 

species level was also significantly different between landscapes (agricultural versus 375 

undeveloped) and habitat types (forest vs. synanthropic). We detected reads for a number of 376 

putative pathogenic bacteria across the four habitats, mostly at low read counts. The mean 377 
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number of putative pathogenic bacteria detected per mouse was higher in the agricultural 378 

landscape than the undeveloped. 379 

 380 

Across landscape-habitat pairings, the microbiome of sampled mice was dominated by three 381 

phyla (Firmicutes, Bacteroidetes, Proteobacteria). These phyla are typical of the gut microbiome 382 

of wild Peromyscus, though we observed higher levels of Firmicutes and lower levels of 383 

Bacteroidetes compared to previous studies (e.g. Diaz et al., 2023; Schmidt et al., 2019). This 384 

suggests that the core fecal microbiome of the mice in our study is similar to Peromyscus 385 

maniculatus in other regions of North America. Only one other study has compared microbiome 386 

communities of free living Peromyscus in developed and undeveloped habitats (Diaz et al., 387 

2023). We found lower richness and alpha diversity in the undeveloped-forest habitat compared 388 

to all other habitats, conversely, Diaz et al. found lower mean richness and Shannon diversity in 389 

urban habitats compared to undeveloped habitats. However, the directionality of alpha diversity 390 

shifts between undeveloped and developed populations is likely affected by multiple species- 391 

and system-specific factors; research in other wildlife systems has documented an increase in 392 

alpha diversity between undeveloped and developed populations (Dillard et al., 2022). Despite 393 

the differences in the direction of alpha diversity shifts, our finding that the microbiome 394 

community composition (beta diversity) between mice from undeveloped and agricultural 395 

developed landscapes was significantly different aligned with the findings of Diaz et al. These 396 

shifts in microbiome composition could be attributed to dietary shifts based on habitat type and 397 

food availability, particularly in synanthropic environments (Anders et al., 2022). In future 398 

studies, stable isotope analysis similar to those conducted by Anders et al. could provide 399 

additional insights into the diet of synanthropic and forest mice. Such information would likely 400 

inform the microbiome composition observed in our data, as the PERMANOVA modeling 401 

approach utilized herein indicated a high degree of unexplained microbiome composition 402 

variability that was not accounted for by landscape or habitat type. 403 
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 404 

We detected 16S sequences of a number of putative pathogenic bacteria in samples from all 405 

four landscape-habitat pairings. The greatest number of mice carrying putative pathogenic 406 

bacteria and the highest mean diversity of putative pathogen species per mouse was found in 407 

the anthropogenic-forest habitat while the lowest was found in the undeveloped-forest habitat. 408 

These differences are likely explained by the landscape surrounding our sampling locations 409 

which could represent a source of infection for many of these pathogens. The forest sampling 410 

sites in the agricultural landscape were located on the periphery of a research reserve which is 411 

surrounded by crop fields, pastures, and low-density housing. By contrast, the forest sites in the 412 

undeveloped landscape were contained in a state park and the forest continues uninterrupted 413 

beyond the park boundary with little agricultural development, limiting sources of pathogen 414 

exposure. Peromyscus are known to forage in crop fields as well as forest habitat, so it is likely 415 

that the abundance of putative pathogens in mice in the anthropogenic-forest habitat are 416 

representative of exposure to the surrounding agricultural landscape. Indeed, Clostridioides 417 

difficile was the most frequently detected putative pathogenic bacteria in the agricultural 418 

landscape, aligning with literature documenting this bacteria in many species of livestock and 419 

wildlife, including antimicrobial resistant strains in urban rodents and those living on or near 420 

farms (reviewed in Weese, 2020). In agricultural settings, manure used as fertilizer may serve 421 

as a source of environmental contamination for C. difficile (Frentrup et al., 2021) which could 422 

provide a transmission route to rodents and other wildlife. Contrary to our predictions, the mean 423 

number of putative pathogenic bacteria per mouse was similar between forest and synanthropic 424 

habitat within a landscape, suggesting similar levels of pathogen exposure for mice between 425 

these two habitats. The synanthropic habitats sampled were all at the interface of forest and 426 

human-habitated areas. It is possible the synanthropic mice only occasionally visit the human 427 

structures where they were trapped (maintenance garages and storage areas, cabins and tent 428 

platforms, etc.) and predominantly reside in the nearby forest. Frequent movement of mice 429 
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between native vegetation and synanthropic habitat could account for similar putative pathogen 430 

exposure within a landscape type.  431 

 432 

Accurate detection and taxonomic assignment of reads is a key assumption for community 433 

diversity and metagenomic analyses. Species richness and diversity estimates can be sensitive 434 

to the presence of rare species. The Emu algorithm has a built-in abundance threshold of 10 435 

reads for large samples (over 1,000 reads) to control against long tails of low-abundance 436 

species which are an artifact of the probabilistic expectation-maximization model (Curry et al., 437 

2022). As a result, Emu has a limited ability to detect rare species and thus our estimates of 438 

species richness and diversity are likely underestimations of the true community composition. 439 

However, Emu’s strength is that it was specifically designed for taxonomic identification of long-440 

read sequence data. The Emu pipeline helps to correct errors and improve the accuracy of 441 

Nanopore 16S amplicon sequencing through the expectation-maximization algorithm and has 442 

been shown to outperform algorithms designed for short-read (i.e. Illumina) data when 443 

classifying 16S Nanopore sequences (Curry et al., 2022). Because we were most interested in 444 

the species-level identification of reads for the detection of putative pathogenic bacteria, we 445 

chose to prioritize accurate taxonomic assignment over the ability to detect rare species and 446 

more accurately estimate species richness and diversity. Furthermore, Nanopore sequencing 447 

provides a key advancement over short-read microbiome sequencing in that species-level 448 

identification is possible and accurate. In future research, we see great utility for taxonomic 449 

assignment algorithms like Emu designed specifically for long-read Nanopore sequences and 450 

expect these novel methods to continue to improve the ability to accurately characterize and 451 

study species-level microbiome composition. Indeed, already the Nanopore ‘Kit 12’ chemistry 452 

and R10 flow cells (released in late 2021) are able to outperform Illumina sequencing with less 453 

noise and higher accuracy, specifically for species-level classification of 16S amplicon 454 

sequencing of gut microbiota (Szoboszlay et al., 2023). 455 
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 456 

It is important to clarify that, while we can be confident in accurate taxonomic assignment of the 457 

bacterial species detected in the sampled mice, their presence does not guarantee zoonotic 458 

potential. Many of these bacteria are commensal in the human and mammalian gut and may 459 

only be opportunistic pathogens or only certain serotypes possess virulence factors capable of 460 

infecting humans. Determining pathogenicity requires more in-depth genotyping or lab cultures 461 

that were outside the scope of this research. Nonetheless, our detection of these bacteria 462 

species serves to inform the potential of Peromyscus mice to be reservoirs for zoonotic 463 

pathogens and can inform future studies that characterize the pathogenicity of these bacteria.  464 

 465 

Our research supports and expands upon previous work done in Minnesota using Nanopore 466 

sequencing to identify pathogenic bacteria in synanthropic rodents. Jahan et al. pointed to the 467 

role that farms play in the increased abundance of putative pathogenic bacteria in synanthropic 468 

rodents (Jahan et al., 2021). However, farms are a unique anthropogenic environment with 469 

many routes of pathogen introduction, and rodents at this interface may not be representative of 470 

synanthropic rodents more broadly. Our work expands upon the foundation set by Jahan et al. 471 

by investigating less disturbed environments to understand the abundance and diversity of 472 

zoonotic bacterial pathogens in undeveloped and agricultural (cropland) landscapes. The 473 

diversity of putative pathogenic genera found in Peromyscus mice generally align between our 474 

studies: Jahan et al. similarly identified putative pathogenic genera including Bacillus, 475 

Clostridium, Enterococcus, and Streptococcus circulating in synanthropic rodents on Minnesota 476 

farms. However, we identified a higher abundance of Clostridioides and no pathogenic species 477 

of Helicobacter in our study. It is possible that these differences can be attributed to differences 478 

in how pathogen abundance was quantified: Jahan et al. reported abundance of reads identified 479 

at the genus level (summed across all sampled Peromyscus) whereas we focused on read 480 

abundance of specific pathogenic species per individual mouse. Interestingly, Jahan et al. found 481 
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lower abundance of putative pathogenic genera in Peromyscus mice compared to other rodent 482 

species trapped on farms including Mus musculus, Microtus pennsylvanicus, and Rattus 483 

norvegicus. While our study did not include other rodent species, the limited abundance of 484 

putative pathogenic bacteria found in Peromyscus herein corroborates the findings of Jahan et 485 

al. and could indicate lower exposure for these mice compared to other synanthropic rodents. 486 

 487 

Overall, we found that Peromyscus in undeveloped and agricultural landscapes in Minnesota 488 

carried low abundance and diversity of putative pathogenic bacteria (we detected, on average, 489 

1-2 putative pathogens per mouse and zero putative pathogens in many mice). Further, many of 490 

these were opportunistic pathogens which may pose a limited risk to zoonotic transmission in 491 

the human population. Our findings suggest that agricultural landscapes play a role in 492 

increasing the abundance of zoonotic pathogens in wild rodents; however, synanthropic habitat 493 

may be less informative of the abundance of zoonotic bacterial pathogens, particularly in 494 

environments where mice are expected to be highly mobile across interfaces between native 495 

vegetation and synanthropic areas. Taken together, our research suggests that Peromyscus are 496 

occasional hosts of zoonotic bacterial pathogens when sources of exposure are high (i.e. 497 

agricultural settings like crop fields and farms) but their flexibility to thrive in natural vegetation 498 

as well synanthropic habitat may act as a buffer to higher levels of zoonotic pathogen 499 

abundance.  500 

 501 

5 CONCLUSIONS 502 

The data presented herein provide a glimpse into the gut microbiome of Peromyscus mice in 503 

diverse landscapes of Minnesota. By sampling from populations in agricultural and undeveloped 504 

landscapes and in forest and synanthropic habitat, we find that landscape and habitat are 505 

important factors influencing microbiome community composition in wild rodents. We also 506 

identify low abundance of putative pathogenic bacteria species in these populations and 507 



21 
 

suggest the role of agricultural landscapes in increasing rodent exposure to putative pathogens. 508 

Even where transmission risk seems low, infection in wildlife populations could represent 509 

sources of novel pathogenic strains, bridge hosts linking environmental contamination back to 510 

human or livestock infection, or vectors to translocate pathogens across the landscape. As 511 

such, this research underscores the importance of investigating zoonotic pathogen prevalence 512 

in synanthropic rodents and other wildlife to better characterize their potential as reservoirs and 513 

vectors for pathogen spillover at the human-wildlife interface. 514 

 515 
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FIGURES & TABLES 702 

 703 
Figure 1. Rodent sampling locations and sample size summary. Sampling was conducted at two 704 
locations in Minnesota, USA representing undeveloped and agricultural landscapes. Study sites 705 
are outlined with white boxes (A, B). Sample size (total number of fecal samples) in forest and 706 
synanthropic habitat is shown for each landscape (C, D). Sampling was conducted once in the 707 
undeveloped landscape and three times in the agricultural landscape. Total number of samples 708 
per landscape-habitat pairing is noted first with samples per month in parentheses below 709 
(includes multiple samples from individual mice). Maps and land cover classification legend from 710 
National Land Class Database (NLCD) 2019 (Dewitz, 2021). Figure created with 711 
BioRender.com. 712 
  713 
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Table 1. Summary statistics of 16S Nanopore sequencing data of mouse fecal sample DNA 714 
(after quality filtering) by landscape, habitat type, and sampling month. Mean and standard 715 
deviation are reported for number (N) of reads per sample (reported in units of thousands of 716 
reads), number of basepairs per sample (reported in units of millions of basepairs [Mb]), and 717 
read quality (Q) score. Individual sampling months in the agricultural landscape shown in italics, 718 
rows shaded in gray. Mean values across all three months shown in bold. Number of samples 719 
represents total number of fecal samples sequenced (includes repeat sampling of unique mice). 720 
 721 

Landscape Habitat Type Month 
N 

samples 
N reads/sample 

(thousands of reads) 
N basepairs/sample 

(Mb) 
Q Score 

Agricultural Forest June 6 272.18 ± 39.12 433.27 ± 61.68 13.08 ± 0.04 

Agricultural Forest July 27 262.35 ± 62.91 418.69 ± 100.39 13.14 ± 0.06 

Agricultural Forest August 17 248.61 ± 116.91 395.76 ± 186.39 12.84 ± 0.31 

Agricultural Forest Summer 50 258.86 ± 82.36 412.64 ± 131.34 13.03 ± 0.23 

Agricultural Synanthropic June 5 326.35 ± 73.84 517.32 ± 115.67 13.08 ± 0.08 

Agricultural Synanthropic July 18 215.45 ± 21.66 342.53 ± 33.57 12.82 ± 0.04 

Agricultural Synanthropic August 16 88.02 ± 10.85 139.68 ± 17.33 12.4 ± 0 

Agricultural Synanthropic Summer 39 177.39 ± 88.31 281.72 ± 139.93 12.68 ± 0.25 

Undeveloped Forest July 31 139.49 ± 22.44 223.04 ± 35.6 12.43 ± 0.22 

Undeveloped Synanthropic July 40 214.45 ± 59.77 342.01 ± 95.9 12.88 ± 0.11 
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 723 

Figure 2. Alpha diversity for all unique mouse fecal samples (n=140) in anthropogenic and 724 
undeveloped landscapes and in forest and synanthropic habitat according to A) observed 725 
species richness B) Shannon diversity index C) Simpson diversity index and D) species 726 
evenness. 727 
  728 
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 729 

Figure 3. Relative abundance of bacteria phyla per sample (n=140) by landscape-habitat pairing 730 
showing phyla present at ≥1% relative abundance. Phyla observed at <1% relative abundance 731 
were grouped in a single category “Other”. The microbiome of sampled mice was dominated by 732 
three phyla: Bacteroidetes, Firmicutes, and Proteobacteria. 733 
 734 
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 735 

Figure 4. Non-metric multidimensional scaling ordination on microbiome community composition 736 
by Bray-Curtis dissimilarity index. Points represent individual samples, colored by landscape-737 
habitat pairing. Ellipses denote the 95% confidence level for a multivariate t-distribution of the 738 
data points per group (centroids marked with larger points). Stress value: 0.086 (k=4). 739 
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 741 

Figure 5. Heatmap of read counts of putative pathogenic bacteria species per mouse in each 742 
landscape-habitat pairing (count threshold >50 reads). The vertical axis represents samples 743 
from an individual mouse. Warmer colors indicate higher read abundance (natural log scale). 744 


