Charge Storage Performance of Structurally Flexible Hybrid Ionic Liquid Electrolyte in Supercapacitor

Gaurav Tatrari¹, Sourav Bhowmick¹, Andrei Filippov¹, Rong An², and Faiz Ullah Shah¹

¹Lulea tekniska universitet

²Nanjing University of Science and Technology Herbert Gleiter Institute of Nanoscience

July 19, 2023

Abstract

The electrochemical and charge storage performance of a fluorine-free structurally flexible pyrrolidinium-based ionic liquid hybrid electrolyte (HILE) in a symmetric graphite-based supercapacitor is thoroughly investigated. The HILE revealed thermal decomposition at 270 $^{\text{o}}$ C, a glass transition (T g) temperature of -73 oC, and ionic conductivity of 0.16 mS cm ⁻¹ at 30 oC. A systematic variable temperature ¹H and ³¹P NMR spectroscopy and diffusometry, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge (GCD) are employed. HILE-based supercapacitor demonstrated a notable specific capacitance of 186 Fg ⁻¹ at a scan rate of 1 mVs ⁻¹ and a specific capacitance of 122 Fg ⁻¹ at a current density of 0.5 Ag ⁻¹. The maximum energy density of 49 Wh kg ⁻¹, a power density of 370 W kg ⁻¹ at a current density of 0.5 Ag ⁻¹ and a potential window of 4V were obtained. HILE displayed a promising electrochemical performance over a wide potential window of 4V and temperature range (-20 oC to 90 oC) in a symmetric graphite supercapacitor.

Hosted file

Manuscript_HILE.docx available at https://authorea.com/users/640640/articles/655407charge-storage-performance-of-structurally-flexible-hybrid-ionic-liquid-electrolytein-supercapacitor