B-spline Based on Vector Extension Improved CST Parameterization Algorithm

Bowen Yan ${ }^{1}$, Yuanyuan Si^{2}, Zhaoguo Zhou ${ }^{1}$, Wei Guo ${ }^{1}$, Hongwu Wen ${ }^{1}$, and Yaobin Wang ${ }^{3}$
${ }^{1}$ Military Transportation University
${ }^{2}$ Characteristic Medical Center of Chinese People's Armed Police Force
${ }^{3}$ Southwest University of Science and Technology

July 4, 2023

Abstract

In this paper, the vector extension operation is proposed to replace the de Boor-Cox formula for a fast algorithm to B-spline basis functions. This B-spline basis function based on vector extending operation is implemented in the class and shape transformation (CST) parameterization method in place of the traditional Bezier polynomials to enhance the local ability of control and accuracy to represent an airfoil shape. To calculate the k-degree B-spline function's nonzero values, the algorithm can improve the computing efficiency by $2 \mathrm{k}+1$ times.

Hosted file

Manuscript.tex available at https://authorea.com/users/635542/articles/652860-b-spline-based-on-vector-extension-improved-cst-parameterization-algorithm

Highlights

B-spline Based on Vector Extension Improved CST Parameterization A Igorithm

Bowen Yan,Y uanyuan Si,Zhaoguo Zhou,Wei Guo,H ongwu Wen,Y aobin Wang

- Using B-spline to improve the CST parameterization algorithm increases the parameterization design space and improves the local control ability of the CST algorithm.
- The vector expansion method is used to real ize the fast eval uation of B-spline, and the cal cul ation effiency is increased by $2 k+1$ times.

B-spline B ased on Vector Extension Improved CST Parameterization Algorithm

Bowen Yana ${ }^{\text {a }}$, Yuanyuan $\mathrm{Si}^{\mathrm{b},<}$, Zhaoguo Zhou ${ }^{\text {a, }}$, Wei Guo ${ }^{\text {a }}$, Hongwu Wen ${ }^{\text {a }}$ and Y aobin Wang ${ }^{\mathrm{c},<}$
${ }^{a}$ A rmy M ilitary Transportation University, Tianjin, China
${ }^{\text {b }}$ Characteristic M edical Center of Chinese People's A rmed Police Force, Tianjin, China
${ }^{\text {c }}$ Southwest University of Science and Technology, M ianyang, China

ARTICLE INFO

K eywords:
Vector Extension
de Boor-Cox Formula
B-spline Functions
CST
Bezier Polynomials

Abstract

In this paper, the vector extension operation is proposed to replace the de Boor-Cox formula for a fast algorithm to B -spline basis functions. This B-spline basis function based on vector extending operation is implemented in the class and shape transformation (CST) parameterization method in place of the traditional Bezier polynomials to enhance the local ability of control and accuracy to represent an airfoil shape. To calculate the k-degree B-spline function's nonzero values, the algorithm can improve the computing effiency by $2 k+1$ times.

1. Introduction

The aerospace achievement of a country has become an ever-important symbol of whether the country is a strong and big power under the current complex international situation. The exploration and development of technologies in the aviation field have a profound influence on a country's economy and national defense, among other aspects. One important indicator of whether a country has strong air superiority and mature and advanced air transport, among other aspects, is the aircraft. Undoubtedly, a country that has more advanced, higher-speed, and safer aircraft will be endowed with more advantages [24, $8,27,3,36]$. Designing outstanding aircraft has, therefore, become the objective of many scholars and the devel opment of national defense science and technology.

The most basic, as well as the most important step of aircraft design, is to design its shape. Civil aircraft can only survive the fierce competition in the market when it is economical, safe, and reduces its manufacturing cost to the highest possible extent $[6,13,14,34,15]$. How ever, the devel opment of the fighter has been transferred from the past when the high-altitude, high-speed performance was emphasized to today when the high maneuverability of the high subsonic speed and transonic speed in low- and mediumaltitude, among others, is emphasized [$30,17,21,35,40$].

It is well known that the quality of the shape design of the aircraft is one of the important factors that can determine whether the aircraft is enabled suffient lift to keep it flying, whether the aircraft has good maneuverability and steal th performance, and whether the aircraft can have good aerodynamic performance [25, 2, 1, 43, 33]. The first step of the shape design of the aircraft is to parameterize the shape, which has a critical influence on the success of the aircraft design and directly afcts the overall project progress. A

[^0]good parameterization methodology should have the following features - firstly, it should have a large optimization space; secondly, it has good local control ability and a relatively small number of design variables; finally, it needs to be ensured that the geometric shape of the aircraft in the optimization process is smooth [$12,9,18,47,28$]. The shape design of the aircraft is al so a crucial step in the aerodynamic optimization of the aircraft that determines the overall aerodynamic performance of the aircraft. Hence the first step of the shape design of the aircraft is to employ a proper parameterization method to generate a basic aircraft shape $[5,46,42]$. Because the shape of the aircraft needs constant modification in the overall design phase, it has become a must-be-solved problem as to how to quickly generate the three-dimensional shape model of the aircraft and realize it in a precise and complete way[32, 45, 11, 41, 19].

The Class and Shape Transformation (CST) method put forward by Kulfan [22, 7] has gained a wide application due to its features such as excellent robustness and smooth geometric description capacity. The main idea of the CST method is to control the shape using the Class Function and the Shape Function [23]. The Class Function will generate the basic shape of the geometric figures, and the Shape Function constructed by Bernstein Polynomial will rectify the basic geometric figure so that the features of the shape changes can be described [10]. The German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) has verified the application of the method in the design of the flying-wing layout aircraft; Liu C Z et al. [29] achieved the aerodynamic layout optimization design of the supersonic aircraft with the method. The global features of the basic function of the Bernstein Polynomial decide that the method can generate geometric shapes with relatively high smoothness, and at the same time decides that the method has the shortcoming of inadequate descriptive capacity of the partial geometric characteristics. Wang X et al. [50] proposed an improved method where the B-spline basis function is used to replace the Bernstein Polynomial, to
improve the partial descriptive capacity of the shape. The B spline method shows a good effct in data fitting, smoothing, and interpolation, so, the method does reach an optimization when the order is relatively small. However, the B-spline basis function [49] is a piecewise-defined function that cannot be expressed by a unified analytical expression. M ost of the functions will be evaluated through an iterative method where multiple repetitive cal culations occur; the calculation amount dramatically increases as the order increases. Wang X et al. only used a 3-order B-spline basis function to prove this[50]. The paper, therefore, employs the vector extension operation that can achieve the quick evaluation of the Bspline basis function to further optimize the CST method, improve the calculation effiency of the modified B-spline basis function CST method, and maximize the value of the modified B -spline basis function CST method.

2. B-spline substitute Bezier polynomial modeling

2.1. B-spline basis function definition

The basic function of the B-spline can be represented by many definitions, and the most widely recognized of them is the de Boor-Cox recursive definition method. In this paper, we choose the de Boor-Cox formula as the standard definition of b-spline basis functions. It not only demonstrates the properties but provides a clear recursive solution algorithm of the B spline basis function $[4,38,39,44]$.
B-spline basis functions of k order can be defined as:

$$
\begin{align*}
& \begin{array}{lcc}
h & N_{i ; 0} \cdot u /= & \begin{array}{c}
1 \\
n \\
i
\end{array} \\
0 & u_{,}\left[u_{i} ; u_{i+1} /\right. \\
\text { others }
\end{array} \tag{1}\\
& { }_{j} N_{i ; k} \cdot u /=\frac{u^{*} u_{i}}{u_{i+k^{*}} u_{i}} N_{i ; k^{*} 1} \cdot u /+\frac{u_{i+k+1}{ }^{*} u}{u_{i+k+1}^{*} u_{i+1}} N_{i+1 ; k^{*} 1} \cdot u /
\end{align*}
$$

Where:
u_{i} : The value of the ith nodes;
$\tilde{U}=\left[u_{0} ; u_{1} ; 5 ; u_{n}\right]$: The sequence of nodes represented by vectors, n being an integer;
$u_{i ; k} \cdot u /$: The value of the ith basis function of k-order B spline when the parameter is u.

2.2. B-spline basis function definition

Defining an airfoil shape function and specifying its geometry class is equivalent to defining the actual airfoil coordinates which are obtained from the shape function and class function as:

$$
\begin{equation*}
I=C_{N}^{N 1} \cdot l \cdot S \cdot I+\quad \cdot{ }_{T} \tag{2}
\end{equation*}
$$

W here:

$$
=x_{-} c \text { and }=y_{-} c \text {. }
$$

The term S. / is the shape function.
The term $C_{N}^{N} \frac{1}{2} . \quad$ is the class function.
The term ${ }^{\text {. }}$, provides control of the trailing edge thickness.

A fter replacing the shape function with the B-spline basis function, the CST method can be expressed as:

$$
\begin{equation*}
I=C_{N 2}^{N} 1 \cdot \quad / \cdot \sum_{i=0}^{n} y_{i} N_{i ; k} \cdot I+\quad . \tag{3}
\end{equation*}
$$

The CST method using the B-spline basis function can improve the ill-conditioned equation solution and enhance the local ability of control.

Examples of decompositions of the unit shape function using various orders of Bernstein polynomials and B-spline basis function are shown in figure 1.

3. The Quick Evaluation Method of B-spline B asis Function

3.1. The Disadvantages of de B oor-C ox Formula

In the actual calculation of B-spline [26, 16, 20, 31], it is not necessary to calculate the whole B-spline value, sometimes only the B-spline basis function of a parameter value is cal culated. A s the B-spline basis function has local support property, we just need to figure out $\mathrm{N}_{\mathrm{m} ; \mathrm{k}} \cdot \mathrm{u} / \mathrm{m}=$ $i^{*} \mathrm{k} ; \mathrm{i}^{*} \mathrm{k}+1 ; 5$; $\mathrm{i} / \mathrm{when} \mathrm{u},\left[\mathrm{u}_{\mathrm{i}} ; \mathrm{u}_{\mathrm{i}+1} /\right.$. Under this occasion, the value of the other K -order B -spline would be 0 . This property explicitly states the calculation range of the solution of B-spline basis function, which is helpful to improve the effiency of the algorithm.

Figure 2 shows that the calculation path of the k-order Bspline basis function is marked with a dotted triangle. It can be intuitively seen that each of the base functions depends not only on the two adjacent basis functions of the next layer but also on the two adjacent basis functions on the upper layer. The calculation method of equation 1 does not make full use of this grid structure, and the overlapped parts of the two dashed triangles have a large number of repeated computations.

3.2. Preparations

B efore we elaborate on the quick evaluation method of the B-spline basis function, we shall first define an al gorithm for vector extension [48, 37].

Definition 1

Given $n+1$ dimensional vector $\tilde{N}=\left[N_{0} ; N_{1} ; 5 ; N_{n^{*} 1}\right.$; $\left.N_{n}\right], N_{j}$ represents the element of vector \tilde{N}; when $\mathrm{j}<0$ or $\mathrm{j}<\mathrm{n}$, we shall refer to vector $\tilde{\mathrm{N}}$ as subscript overflow.

Definition 2

Given $n+1$ dimensional vector $\tilde{N}=\left[N_{0} ; N_{1} ; 5 ; N_{n^{*} 1}\right.$; $\left.N_{n}\right]$ and $n+1$ dimensional vector $\tilde{A}=\left[a_{0} ; a_{1} ; 5 ; a_{n * 1} ; a_{n}\right]$; $N_{j} ; a_{j}, R, R$ being the real number field, $j=0 ; 1 ; 5 ; n ; n$ being an integer. A fter multiply operation of the elements of vector $\tilde{N}, \tilde{A}-N_{j} ; a_{j}$ according to corresponding sequence numbers, we obtain the $\mathrm{n}+1$ dimensional middle vector $\tilde{\mathrm{Q}}=$ $\left[Q_{0} ; Q_{1} ; 5 ; Q_{n^{*}} ; Q_{n}\right]$, and $Q_{j}=a_{j} N_{j}, j=0 ; 1 ; 5 ; n$; moreover, we prescribe that when subscript overflow occurs on vectors \hat{Q}, N, their corresponding elements would be 0 . Therefore, the $n+2$ dimensional vector generated according to equation $4: \tilde{Z}=\left[Z_{0} ; Z_{1} ; 5 ; Z_{n * 1} ; Z_{n} ; Z_{n+1}\right]$ shall be referred to as the extended vector of vector \tilde{N} and vector \tilde{A},

Figure A:lgorithm Comparison

Figure The Calculation Path of the k-order B-spline Basis Function
of which \tilde{N} shall be referred to as primary vector and \tilde{A} as auxiliary vector.

$$
\begin{equation*}
Z_{j}=N_{j}+Q_{j^{*} 1} * Q_{j} \tag{4}
\end{equation*}
$$

The equation provides an operational rule for the combination of $2 \mathrm{~m}+1$ dimensional vectors into $1 \mathrm{~m}+2$ dimensional vector, which is referred to as vector extension operation. It is a mapping from vector to vector. Here we introduce the operational sign for vector extension $<\tilde{N} \mid \tilde{A}>$, operator $<\cdot>$ being the mapping from $R^{n} \rightarrow R^{n+1}, R$ being the real number field.

Definition 3
 $R^{i}, i=n ; n+1 ; 5 ; n+m^{*} 1, R$ being the real number field, m,n, being integers. Vector \tilde{N} is the primary vector while
 extension operation of $\tilde{N},{ }^{n} C^{n}$, we have vector $\left\langle\tilde{N} \tilde{\mid} C^{n}\right\rangle$, which is still the primary vector; then, have vector extension operation between $<\tilde{N} \tilde{\left.\right|^{n}}{ }^{n}>$ and \tilde{C}^{n+1}, after m times of extension, obtaining $\mathrm{n}+\mathrm{m}$ dimensional new vector" M , which shall be referred to as the m-time extended vector of primary vector \tilde{N} and auxiliary vector cluster ${ }^{2}{ }^{2}{ }^{i}{ }_{i=n}^{n+m^{*}}$, expressed as:
 " $\mathrm{C}^{\mathrm{n}+\mathrm{ml} 1}>$

This recursive operation is favorable for computer calcuIation. We refer to the operation given by Definition 3 as an operation for recursive extension of a vector.

3.3. Proofs to the Fast A Igorithm

We shall begin with description of symbols to be used:

U : The sequence of nodes represented by vectors, $\tilde{U}=$ $\left[u_{0} ; u_{1} ; 5 ; u_{n}\right] ;$
$\mathrm{N}_{\mathrm{j} ; \mathrm{m}} \cdot \mathrm{u}$: The jth spline basis function of m-order Bspline, where $m=0 ; 1 ; 2 ; 5 ; k ;$
$\mathrm{N}_{i}{ }^{\mathrm{m}}$: The value of the ith basis function of m -order B spline $N_{i ; m} . u /$ when $u,\left[u_{i} ; u_{i+1} /\right.$, where $m=0 ; 1 ; 2 ; 5 ; k$;
$\tilde{\mathrm{N}} \mathrm{m}$: The vector consists of the sequence of m -order B spline non-zero spline basis function value [$N_{i * m}^{m} ; N_{i * m+1}^{m}$; $\left.5 ; \mathrm{N}_{\mathrm{i}}^{\mathrm{m}}\right]$ when $\mathrm{u},\left[\mathrm{u}_{\mathrm{i}} ; \mathrm{u}_{\mathrm{i}+1} /\right.$, containing $\mathrm{m}+1$ elements, where $m=0 ; 1 ; 2 ; 5 ; k$;
a_{j}^{m} : Coeffient of node when $u,\left[u_{i} ; u_{i+1} /\right.$;

$$
\begin{equation*}
a_{j}^{m}=\frac{u^{*} u_{j}}{u_{j+m}^{*} u_{j}} \tag{5}
\end{equation*}
$$

where 1 " m"k; $i^{*} m+1$ " ${ }^{\prime \prime}$ " i; prescribe: $\frac{0}{0}=0$
${ }^{\mathrm{A}} \mathrm{A}$: The vector consists of the sequence of code cq effients when $u,\left[u_{i} ; u_{i+1} / ;{ }^{a} a_{i * m+1}^{m} ; a_{i * m+2}^{m} ; 5 ; a_{i}^{m}\right.$, containing m elements, where $\mathrm{m}=0 ; 1 ; 2 ; 5 ; \mathrm{k}$.
B efore proving the quick evaluation of the B-spline basis function, we need to first prove Lemma 1.

Lemma 1

For m-order B-spline, when $u,\left[u_{i} ; u_{i+1} /\right.$, vector $\tilde{N}{ }^{m}$ is the extended vector with $\tilde{N}^{\mathrm{m}^{*} 1}$ as the primary vector and $\tilde{\mathrm{A}}^{\mathrm{m}}$ as the auxiliary vector, symbolized as: $\tilde{N}{ }^{m}=\left\langle\tilde{N}{ }^{m * 1} \mid \tilde{A}^{m}\right\rangle$. Proof
According to the local support property of B-spline, \tilde{N}^{m} is a $m+1$ dimensional vector; $N{ }_{i * m+j}$ is an element of vector $\tilde{N}{ }^{m}$ with the sequence number $\mathrm{j}, \mathrm{j}=0 ; 1 ; 2 ; 5 ; \mathrm{m}$; both vector ${ }^{\sim} \mathrm{m}^{\mathrm{m}}$ and vector $\tilde{N}^{\mathrm{m}^{*} 1}$ are m dimensional vectors,
 with the sequence number $r, r=0 ; 1 ; 2 ; 5 ; m^{*} 1$. Since the vector extending operation is the mapping of $R^{n} \rightarrow R^{n+1}$, we have a $\mathrm{m}+1$ dimensional vector ${ }^{\sim} \mathrm{M}$ as:

$$
\tilde{M}=\left\langle\tilde{N} \tilde{N}^{m^{*} 1} \tilde{A}^{m}\right\rangle=\left[M_{0} ; M_{1} ; 5 ; M_{m}\right] .
$$

Pursuant to the vector extending algorithm under Definition 2, we have:

$$
\begin{equation*}
M_{j}=N_{i * m+1+j}^{m^{*} 1}+a_{i * m+j}^{m} N_{i * m+j}^{m^{*} 1} * a_{i * m+1+j}^{m} N_{i * m+1+j}^{m^{*} 1} \tag{6}
\end{equation*}
$$

where: 0 " j " m, with the prescription that the corresponding element shall be reset 0 upon subscript overflow of the vector.

According to the equations 5 and 6 , we have:

$$
\begin{equation*}
M_{j}=\frac{u^{*} u_{i * m+j}}{u_{i+j} * u_{i *}^{*} m+j} N_{i * * m+j}^{m^{*} 1}+\frac{u_{i+1+j} * u}{u_{i+1+j} * u_{i *} * m+1+j} N_{i * m^{*} m+1+j}^{m_{1}} \tag{7}
\end{equation*}
$$

where: 0 " j " m .
Comparing equation 1 with equation 7 , we notice that when $j=0 ; 1 ; 2 ; 5 ; m$ in equation $7, N_{i * m+j}^{m}=M_{j}$, i.e. the elements of vector ${ }^{M} \mathrm{M}$ and vector $\tilde{N} m$ present one-to-one equivalence, namely, ${ }^{2}=\tilde{N} \underset{\sim}{m}$.

Therefore, $\tilde{N}^{m}=<\tilde{N}{ }^{m * 1} \tilde{\mid A}^{m}>$ is established.

Theorem 1

For the k-order B-spline, when $u,\left[u_{i} ; u_{i+1} /, \tilde{N}^{m}\right.$ is the m-time expanded vector of 1 -dimensional unit primary vector $\tilde{N}{ }^{0}=[1]$ and auxiliary vector cluster ${ }^{2} \mathrm{~A}^{1}{ }_{\mathrm{im}}^{\mathrm{sm}}$, where I $=1 ; 2 ; 3 ; 5 ; \mathrm{m}$.
symbolized as:
 $\tilde{A}^{m}>$

Proof
According to Lemma 1, with the inductive method, we only need to prove the establishment of $\tilde{N}^{1}=\left\langle[1] \tilde{A}^{1}\right\rangle$. Given that:
$\tilde{A}^{1}=\left[a_{i}^{1}\right]=\left[\frac{u^{*} u_{i}}{u_{i+1}^{*} u_{i}}\right], \tilde{N}^{1}=\left[N_{i * 1}^{1} ; N_{i}^{1}\right]$
A nd we know from Definition 1 that:
$N_{i * 1}^{1}=\frac{u_{i+1} * u}{u_{i+1} * u_{i}}, N_{i}{ }^{1}=\frac{u^{*} u_{i}}{u_{i+1}^{*} u_{i}}$
i.e., $\tilde{N}^{1}=\left[\frac{u_{i+1} * u}{u_{i+1} * u_{i}} ; \frac{u^{*} u_{i}}{u_{i+1} * u_{i}}\right]$
and: $\left\langle[1] \tilde{A}^{1}\right\rangle=\left[\frac{u_{i+1}^{*} *}{u_{i+1} * u_{i}} ; \frac{u^{*} u_{i}}{u_{i+1} u_{i}}\right]$
Therefore, $\tilde{N}{ }^{1}=<[1] \mid \tilde{A}^{1}>$ is established. The proposition is proved.

Theorem 1 provides us with a recursive vector extending method for the realization of B-spline basis function evaluation, whose calculation path is as shown in Figure 3. We learn from Figure 3 that the quick evaluation method of vector extension for the B-spline basis function is just a reticular computing mechanism. With 1 - dimensional unit vector [1] as the primary vector, through recursive extension, the method realizes the synchronous computation of the value of B-spline basis functions with the same times (the rectangle with dotted lines in Figure 3). The recursive vector extension method can effctively avoid repeated calculation and thus improve computational effiency, which is fully demonstrated by the absence of overlap in the calculation paths shown in Figure 3. To sum up, the evaluation method of vector extension for the B -spline presents higher algorithmic effiency than the de Boor-Cox al gorithm in equation 1 concerning the calculation path.

3.4. Algorithm Flow

The quick evaluation method of B-spline basis function is based on a recursive vector operation which is favorable for computer calculation. In vector extension operation, the main operation is the calculation of auxiliary vector cluster. Pursuant to equation 5, we know the calculation of vector cluster ${ }^{\left\{{ }_{\mathrm{A}}\right.} \mathrm{m}^{\mathrm{m}}{ }_{\mathrm{k}=1}$ is only related to node vector \tilde{U} and parameter u.

Fi gure J:he Calculation Path of the Quick Evaluation M ethod of V ector Extension for B-spline Basis Function

For node vector $\tilde{U}=\left[u_{0} ; u_{1} ; u_{2} ; 5 ; u_{n}\right]$, the parameter value is the k -order B -spline of u , The computer algorithm flow of the quick evaluation method of B-spline basis function of vector extension is as follows:

Step 1: Initialize the vector member variable: B-spline order number variables $m=0$, the interval of the parameter values of B-splineCurrent_ $i=0$, primary vector $\tilde{N} m=\tilde{N}^{0}=$ [1];

Step 2: According to the parameter u, determine its range $u,\left[u_{i} ; u_{i+1} /\right.$, find the current node interval value Current_i=i.

Step 3: Update parameter $m=m+1$, Computing auxiliary vector $A^{m}=a_{i * m+1}^{m} ; a_{i * m+2}^{m} ; 5 ; a_{i}^{m}$;

Step 4: According to vector $\tilde{N}{ }^{\mathrm{m}^{*} 1}$ and $\tilde{\mathrm{A}} \mathrm{m}$, Computing vector $Q=a_{i * m+1}^{m} N_{i * m+1}^{m^{*} 1} ; a_{i * m+2}^{m} N_{i * m+2}^{m^{*}} ; 5 ; a_{i}^{m} N_{i}^{m^{* 1}}$;

Step 5: A ccording to equation 4, we get the new Vector $\tilde{N}{ }^{m}=N_{i * m}^{m} ; N_{i * m+1} ; 5 ; N_{i}^{m}$;

Step 6: If $m>k$,we choose step 7, otherwise we choose step 3.

Step 7: The result of the calculation is Vector $\tilde{\mathrm{N}} \mathrm{m}$.

3.5. Effiency of Algorithm

Compared with the de Boor-Cox algorithm, the evaluation method of vector extension for B-spline basis functions presents higher algorithmic effiency. In comparison between equation 1 and equation 4 , the calculation quantity of non-zero values of k-order B-spline basis functions, we have the recursive vector extension method is $2 \mathrm{k}+1$ times as effient as the de Boor-Cox al gorithm.

Figure 5 shows the comparison of effiency between Bspline and de Boor-Cox algorithm. Clark-Y (de Boor-Cox) represents the Clark-Y airfoil generated using the CST algorithm based on the de B oor-Cox formula. Clark-Y (B-spline) represents the Clark-Y airfoil generated by the modified CST algorithm using B-spline basis function based on vector extending operation. The remaining two curves represent the

Fi gure $\begin{aligned} & \text { a } \\ & \text { spline Local Control Ability }\end{aligned}$

Figure Bffiency Comparison

Ta ble 1
Comparison of the calculation quantity of the ($k+1$)th nonzero basis function of m-order B-spline

	Multiplication	Division
Vector Extension	$k \cdot k+1 / \bar{S}^{2}$	$k \cdot k+1 / \overline{2}^{2}$
de Boor-Cox	$k \cdot k+1 /{ }^{2}$	$k \cdot k+1 /{ }^{2}$

effiency comparison between the B-spline improved CST algorithm and the de Boor-Cox formula under 3rd basis. With the increasing amount of data, B-spline basis function

Ta ble 2
Hardware Configuration

Name	Properties
CPU	12th Gen Intel(R) Core(TM) i7-1260P
M emory	16 G
Hard Disk	450G
Operating System	CentOS 7.9.2009

based on vector extending operation has shown better performance advantages. The physical hardware configuration used in the above experiments is shown in Table 2.

4. A pplication of B-spline B ased on Vector Extension

4.1. Local C ontrol Ability of B-spline B ased on Vector Extension

Figure 4 shows the control of the cross-section from the circular to square using the CST method improved by Bspline based on vector extension. The initial geometry shape at the inlet is a circular duct defined with a cross-section class function with exponents equal to 0.5 . The duct geometry, in this example, retains a constant cross-section from 0 to 20% of the length. The last 5% length of the duct has a square cross-section which has class function exponents equal to 0.005. In between 20% and 95% of the length, the crosssection which has class function exponents was decreased from 0.5 at 20% to 0.001 at 95% by a cubic variation with zero slopes at both ends.

[^0]: <Corresponding author
 (Z. Zhou);
 (B. Yan);
 (Y. Si);
 (W. Guo);
 (H. Wen);
 (Y. Wang)

 ORCID(s):
 (B. Yan)

